git/remote-curl.c

1659 lines
43 KiB
C
Raw Normal View History

global: introduce `USE_THE_REPOSITORY_VARIABLE` macro Use of the `the_repository` variable is deprecated nowadays, and we slowly but steadily convert the codebase to not use it anymore. Instead, callers should be passing down the repository to work on via parameters. It is hard though to prove that a given code unit does not use this variable anymore. The most trivial case, merely demonstrating that there is no direct use of `the_repository`, is already a bit of a pain during code reviews as the reviewer needs to manually verify claims made by the patch author. The bigger problem though is that we have many interfaces that implicitly rely on `the_repository`. Introduce a new `USE_THE_REPOSITORY_VARIABLE` macro that allows code units to opt into usage of `the_repository`. The intent of this macro is to demonstrate that a certain code unit does not use this variable anymore, and to keep it from new dependencies on it in future changes, be it explicit or implicit For now, the macro only guards `the_repository` itself as well as `the_hash_algo`. There are many more known interfaces where we have an implicit dependency on `the_repository`, but those are not guarded at the current point in time. Over time though, we should start to add guards as required (or even better, just remove them). Define the macro as required in our code units. As expected, most of our code still relies on the global variable. Nearly all of our builtins rely on the variable as there is no way yet to pass `the_repository` to their entry point. For now, declare the macro in "biultin.h" to keep the required changes at least a little bit more contained. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-06-14 14:50:23 +08:00
#define USE_THE_REPOSITORY_VARIABLE
#include "git-compat-util.h"
#include "git-curl-compat.h"
#include "config.h"
#include "environment.h"
#include "gettext.h"
#include "hex.h"
#include "remote.h"
#include "connect.h"
#include "strbuf.h"
#include "walker.h"
#include "http.h"
#include "run-command.h"
#include "pkt-line.h"
#include "string-list.h"
#include "strvec.h"
http: hoist credential request out of handle_curl_result When we are handling a curl response code in http_request or in the remote-curl RPC code, we use the handle_curl_result helper to translate curl's response into an easy-to-use code. When we see an HTTP 401, we do one of two things: 1. If we already had a filled-in credential, we mark it as rejected, and then return HTTP_NOAUTH to indicate to the caller that we failed. 2. If we didn't, then we ask for a new credential and tell the caller HTTP_REAUTH to indicate that they may want to try again. Rejecting in the first case makes sense; it is the natural result of the request we just made. However, prompting for more credentials in the second step does not always make sense. We do not know for sure that the caller is going to make a second request, and nor are we sure that it will be to the same URL. Logically, the prompt belongs not to the request we just finished, but to the request we are (maybe) about to make. In practice, it is very hard to trigger any bad behavior. Currently, if we make a second request, it will always be to the same URL (even in the face of redirects, because curl handles the redirects internally). And we almost always retry on HTTP_REAUTH these days. The one exception is if we are streaming a large RPC request to the server (e.g., a pushed packfile), in which case we cannot restart. It's extremely unlikely to see a 401 response at this stage, though, as we would typically have seen it when we sent a probe request, before streaming the data. This patch drops the automatic prompt out of case 2, and instead requires the caller to do it. This is a few extra lines of code, and the bug it fixes is unlikely to come up in practice. But it is conceptually cleaner, and paves the way for better handling of credentials across redirects. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
2013-09-28 16:31:45 +08:00
#include "credential.h"
#include "oid-array.h"
#include "send-pack.h"
#include "setup.h"
#include "protocol.h"
#include "quote.h"
#include "trace2.h"
#include "transport.h"
#include "url.h"
#include "write-or-die.h"
static struct remote *remote;
/* always ends with a trailing slash */
static struct strbuf url = STRBUF_INIT;
struct options {
int verbosity;
unsigned long depth;
char *deepen_since;
struct string_list deepen_not;
struct string_list push_options;
char *filter;
unsigned progress : 1,
check_self_contained_and_connected : 1,
cloning : 1,
update_shallow : 1,
followtags : 1,
dry_run : 1,
signed push: teach smart-HTTP to pass "git push --signed" around The "--signed" option received by "git push" is first passed to the transport layer, which the native transport directly uses to notice that a push certificate needs to be sent. When the transport-helper is involved, however, the option needs to be told to the helper with set_helper_option(), and the helper needs to take necessary action. For the smart-HTTP helper, the "necessary action" involves spawning the "git send-pack" subprocess with the "--signed" option. Once the above all gets wired in, the smart-HTTP transport now can use the push certificate mechanism to authenticate its pushes. Add a test that is modeled after tests for the native transport in t5534-push-signed.sh to t5541-http-push-smart.sh. Update the test Apache configuration to pass GNUPGHOME environment variable through. As PassEnv would trigger warnings for an environment variable that is not set, export it from test-lib.sh set to a harmless value when GnuPG is not being used in the tests. Note that the added test is deliberately loose and does not check the nonce in this step. This is because the stateless RPC mode is inevitably flaky and a nonce that comes back in the actual push processing is one issued by a different process; if the two interactions with the server crossed a second boundary, the nonces will not match and such a check will fail. A later patch in the series will work around this shortcoming. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-16 05:59:00 +08:00
thin : 1,
/* One of the SEND_PACK_PUSH_CERT_* constants. */
fetch, upload-pack: --deepen=N extends shallow boundary by N commits In git-fetch, --depth argument is always relative with the latest remote refs. This makes it a bit difficult to cover this use case, where the user wants to make the shallow history, say 3 levels deeper. It would work if remote refs have not moved yet, but nobody can guarantee that, especially when that use case is performed a couple months after the last clone or "git fetch --depth". Also, modifying shallow boundary using --depth does not work well with clones created by --since or --not. This patch fixes that. A new argument --deepen=<N> will add <N> more (*) parent commits to the current history regardless of where remote refs are. Have/Want negotiation is still respected. So if remote refs move, the server will send two chunks: one between "have" and "want" and another to extend shallow history. In theory, the client could send no "want"s in order to get the second chunk only. But the protocol does not allow that. Either you send no want lines, which means ls-remote; or you have to send at least one want line that carries deep-relative to the server.. The main work was done by Dongcan Jiang. I fixed it up here and there. And of course all the bugs belong to me. (*) We could even support --deepen=<N> where <N> is negative. In that case we can cut some history from the shallow clone. This operation (and --depth=<shorter depth>) does not require interaction with remote side (and more complicated to implement as a result). Helped-by: Duy Nguyen <pclouds@gmail.com> Helped-by: Eric Sunshine <sunshine@sunshineco.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Dongcan Jiang <dongcan.jiang@gmail.com> Signed-off-by: Nguyễn Thái Ngọc Duy <pclouds@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-12 18:54:09 +08:00
push_cert : 2,
deepen_relative : 1,
/* see documentation of corresponding flag in fetch-pack.h */
from_promisor : 1,
refetch : 1,
atomic : 1,
object_format : 1,
force_if_includes : 1;
const struct git_hash_algo *hash_algo;
};
static struct options options;
static struct string_list cas_options = STRING_LIST_INIT_DUP;
static int set_option(const char *name, size_t namelen, const char *value)
{
if (!strncmp(name, "verbosity", namelen)) {
char *end;
int v = strtol(value, &end, 10);
if (value == end || *end)
return -1;
options.verbosity = v;
return 0;
}
else if (!strncmp(name, "progress", namelen)) {
if (!strcmp(value, "true"))
options.progress = 1;
else if (!strcmp(value, "false"))
options.progress = 0;
else
return -1;
return 0;
}
else if (!strncmp(name, "depth", namelen)) {
char *end;
unsigned long v = strtoul(value, &end, 10);
if (value == end || *end)
return -1;
options.depth = v;
return 0;
}
else if (!strncmp(name, "deepen-since", namelen)) {
options.deepen_since = xstrdup(value);
return 0;
}
else if (!strncmp(name, "deepen-not", namelen)) {
string_list_append(&options.deepen_not, value);
return 0;
}
else if (!strncmp(name, "deepen-relative", namelen)) {
fetch, upload-pack: --deepen=N extends shallow boundary by N commits In git-fetch, --depth argument is always relative with the latest remote refs. This makes it a bit difficult to cover this use case, where the user wants to make the shallow history, say 3 levels deeper. It would work if remote refs have not moved yet, but nobody can guarantee that, especially when that use case is performed a couple months after the last clone or "git fetch --depth". Also, modifying shallow boundary using --depth does not work well with clones created by --since or --not. This patch fixes that. A new argument --deepen=<N> will add <N> more (*) parent commits to the current history regardless of where remote refs are. Have/Want negotiation is still respected. So if remote refs move, the server will send two chunks: one between "have" and "want" and another to extend shallow history. In theory, the client could send no "want"s in order to get the second chunk only. But the protocol does not allow that. Either you send no want lines, which means ls-remote; or you have to send at least one want line that carries deep-relative to the server.. The main work was done by Dongcan Jiang. I fixed it up here and there. And of course all the bugs belong to me. (*) We could even support --deepen=<N> where <N> is negative. In that case we can cut some history from the shallow clone. This operation (and --depth=<shorter depth>) does not require interaction with remote side (and more complicated to implement as a result). Helped-by: Duy Nguyen <pclouds@gmail.com> Helped-by: Eric Sunshine <sunshine@sunshineco.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Dongcan Jiang <dongcan.jiang@gmail.com> Signed-off-by: Nguyễn Thái Ngọc Duy <pclouds@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-12 18:54:09 +08:00
if (!strcmp(value, "true"))
options.deepen_relative = 1;
else if (!strcmp(value, "false"))
options.deepen_relative = 0;
else
return -1;
return 0;
}
else if (!strncmp(name, "followtags", namelen)) {
if (!strcmp(value, "true"))
options.followtags = 1;
else if (!strcmp(value, "false"))
options.followtags = 0;
else
return -1;
return 0;
}
else if (!strncmp(name, "dry-run", namelen)) {
if (!strcmp(value, "true"))
options.dry_run = 1;
else if (!strcmp(value, "false"))
options.dry_run = 0;
else
return -1;
return 0;
}
else if (!strncmp(name, "check-connectivity", namelen)) {
if (!strcmp(value, "true"))
options.check_self_contained_and_connected = 1;
else if (!strcmp(value, "false"))
options.check_self_contained_and_connected = 0;
else
return -1;
return 0;
}
else if (!strncmp(name, "cas", namelen)) {
struct strbuf val = STRBUF_INIT;
remote-curl: make --force-with-lease work with non-ASCII ref names When we invoke a remote transport helper and pass an option with an argument, we quote the argument as a C-style string if necessary. This is the case for the cas option, which implements the --force-with-lease command-line flag, when we're passing a non-ASCII refname. However, the remote curl helper isn't designed to parse such an argument, meaning that if we try to use --force-with-lease with an HTTP push and a non-ASCII refname, we get an error like this: error: cannot parse expected object name '0000000000000000000000000000000000000000"' Note the double quote, which get_oid has reminded us is not valid in an hex object ID. Even if we had been able to parse it, we would send the wrong data to the server: we'd send an escaped ref, which would not behave as the user wanted and might accidentally result in updating or deleting a ref we hadn't intended. Since we need to expect a quoted C-style string here, just check if the first argument is a double quote, and if so, unquote it. Note that if the refname contains a double quote, then we will have double-quoted it already, so there is no ambiguity. We test for this case only in the smart protocol, since the DAV-based protocol is not capable of handling this capability. We use UTF-8 because this is nicer in our tests and friendlier to Windows, but the code should work for all non-ASCII refs. While we're at it, since the name of the option is now well established and isn't going to change, let's inline it instead of using the #define constant. Reported-by: Frej Bjon <frej.bjon@nemit.fi> Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-07-21 09:15:11 +08:00
strbuf_addstr(&val, "--force-with-lease=");
if (*value != '"')
strbuf_addstr(&val, value);
else if (unquote_c_style(&val, value, NULL))
return -1;
string_list_append(&cas_options, val.buf);
strbuf_release(&val);
return 0;
} else if (!strncmp(name, TRANS_OPT_FORCE_IF_INCLUDES, namelen)) {
if (!strcmp(value, "true"))
options.force_if_includes = 1;
else if (!strcmp(value, "false"))
options.force_if_includes = 0;
else
return -1;
return 0;
} else if (!strncmp(name, "cloning", namelen)) {
if (!strcmp(value, "true"))
options.cloning = 1;
else if (!strcmp(value, "false"))
options.cloning = 0;
else
return -1;
return 0;
} else if (!strncmp(name, "update-shallow", namelen)) {
if (!strcmp(value, "true"))
options.update_shallow = 1;
else if (!strcmp(value, "false"))
options.update_shallow = 0;
else
return -1;
return 0;
} else if (!strncmp(name, "pushcert", namelen)) {
signed push: teach smart-HTTP to pass "git push --signed" around The "--signed" option received by "git push" is first passed to the transport layer, which the native transport directly uses to notice that a push certificate needs to be sent. When the transport-helper is involved, however, the option needs to be told to the helper with set_helper_option(), and the helper needs to take necessary action. For the smart-HTTP helper, the "necessary action" involves spawning the "git send-pack" subprocess with the "--signed" option. Once the above all gets wired in, the smart-HTTP transport now can use the push certificate mechanism to authenticate its pushes. Add a test that is modeled after tests for the native transport in t5534-push-signed.sh to t5541-http-push-smart.sh. Update the test Apache configuration to pass GNUPGHOME environment variable through. As PassEnv would trigger warnings for an environment variable that is not set, export it from test-lib.sh set to a harmless value when GnuPG is not being used in the tests. Note that the added test is deliberately loose and does not check the nonce in this step. This is because the stateless RPC mode is inevitably flaky and a nonce that comes back in the actual push processing is one issued by a different process; if the two interactions with the server crossed a second boundary, the nonces will not match and such a check will fail. A later patch in the series will work around this shortcoming. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-16 05:59:00 +08:00
if (!strcmp(value, "true"))
options.push_cert = SEND_PACK_PUSH_CERT_ALWAYS;
signed push: teach smart-HTTP to pass "git push --signed" around The "--signed" option received by "git push" is first passed to the transport layer, which the native transport directly uses to notice that a push certificate needs to be sent. When the transport-helper is involved, however, the option needs to be told to the helper with set_helper_option(), and the helper needs to take necessary action. For the smart-HTTP helper, the "necessary action" involves spawning the "git send-pack" subprocess with the "--signed" option. Once the above all gets wired in, the smart-HTTP transport now can use the push certificate mechanism to authenticate its pushes. Add a test that is modeled after tests for the native transport in t5534-push-signed.sh to t5541-http-push-smart.sh. Update the test Apache configuration to pass GNUPGHOME environment variable through. As PassEnv would trigger warnings for an environment variable that is not set, export it from test-lib.sh set to a harmless value when GnuPG is not being used in the tests. Note that the added test is deliberately loose and does not check the nonce in this step. This is because the stateless RPC mode is inevitably flaky and a nonce that comes back in the actual push processing is one issued by a different process; if the two interactions with the server crossed a second boundary, the nonces will not match and such a check will fail. A later patch in the series will work around this shortcoming. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-16 05:59:00 +08:00
else if (!strcmp(value, "false"))
options.push_cert = SEND_PACK_PUSH_CERT_NEVER;
else if (!strcmp(value, "if-asked"))
options.push_cert = SEND_PACK_PUSH_CERT_IF_ASKED;
signed push: teach smart-HTTP to pass "git push --signed" around The "--signed" option received by "git push" is first passed to the transport layer, which the native transport directly uses to notice that a push certificate needs to be sent. When the transport-helper is involved, however, the option needs to be told to the helper with set_helper_option(), and the helper needs to take necessary action. For the smart-HTTP helper, the "necessary action" involves spawning the "git send-pack" subprocess with the "--signed" option. Once the above all gets wired in, the smart-HTTP transport now can use the push certificate mechanism to authenticate its pushes. Add a test that is modeled after tests for the native transport in t5534-push-signed.sh to t5541-http-push-smart.sh. Update the test Apache configuration to pass GNUPGHOME environment variable through. As PassEnv would trigger warnings for an environment variable that is not set, export it from test-lib.sh set to a harmless value when GnuPG is not being used in the tests. Note that the added test is deliberately loose and does not check the nonce in this step. This is because the stateless RPC mode is inevitably flaky and a nonce that comes back in the actual push processing is one issued by a different process; if the two interactions with the server crossed a second boundary, the nonces will not match and such a check will fail. A later patch in the series will work around this shortcoming. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-16 05:59:00 +08:00
else
return -1;
return 0;
} else if (!strncmp(name, "atomic", namelen)) {
remote-curl: pass on atomic capability to remote side When pushing more than one reference with the --atomic option, the server is supposed to perform a single atomic transaction to update the references, leaving them either all to succeed or all to fail. This works fine when pushing locally or over SSH, but when pushing over HTTP, we fail to pass the atomic capability to the remote side. In fact, we have not reported this capability to any remote helpers during the life of the feature. Now normally, things happen to work nevertheless, since we actually check for most types of failures, such as non-fast-forward updates, on the client side, and just abort the entire attempt. However, if the server side reports a problem, such as the inability to lock a ref, the transaction isn't atomic, because we haven't passed the appropriate capability over and the remote side has no way of knowing that we wanted atomic behavior. Fix this by passing the option from the transport code through to remote helpers, and from the HTTP remote helper down to send-pack. With this change, we can detect if the server side rejects the push and report back appropriately. Note the difference in the messages: the remote side reports "atomic transaction failed", while our own checking rejects pushes with the message "atomic push failed". Document the atomic option in the remote helper documentation, so other implementers can implement it if they like. Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-10-17 07:45:34 +08:00
if (!strcmp(value, "true"))
options.atomic = 1;
else if (!strcmp(value, "false"))
options.atomic = 0;
else
return -1;
return 0;
} else if (!strncmp(name, "push-option", namelen)) {
if (*value != '"')
string_list_append(&options.push_options, value);
else {
struct strbuf unquoted = STRBUF_INIT;
if (unquote_c_style(&unquoted, value, NULL) < 0)
die(_("invalid quoting in push-option value: '%s'"), value);
string_list_append_nodup(&options.push_options,
strbuf_detach(&unquoted, NULL));
}
return 0;
} else if (!strncmp(name, "family", namelen)) {
if (!strcmp(value, "ipv4"))
git_curl_ipresolve = CURL_IPRESOLVE_V4;
else if (!strcmp(value, "ipv6"))
git_curl_ipresolve = CURL_IPRESOLVE_V6;
else if (!strcmp(value, "all"))
git_curl_ipresolve = CURL_IPRESOLVE_WHATEVER;
else
return -1;
return 0;
} else if (!strncmp(name, "from-promisor", namelen)) {
options.from_promisor = 1;
return 0;
} else if (!strncmp(name, "refetch", namelen)) {
options.refetch = 1;
return 0;
} else if (!strncmp(name, "filter", namelen)) {
options.filter = xstrdup(value);
return 0;
} else if (!strncmp(name, "object-format", namelen)) {
options.object_format = 1;
transport-helper: drop "object-format <algo>" option The documentation in gitremote-helpers.txt claims that helpers should accept an object-format option from Git whose value is either: 1. "true", in which case the helper is merely told that Git understands the special ":object-format" response, and will send it 2. an algorithm name that the helper should use However, Git has never sent the second form, and it's not clear if it would ever be useful. When interacting with a remote Git repository, we generally discover what _their_ object format is, and then decide what to do with a mismatch (where that is currently just "bail out", but could eventually be on-the-fly conversion and interop). And that is true for native protocols, but also for transport helpers like remote-curl that talk to remote Git repositories. There we send back an ":object-format" line telling Git what remote-curl detected on the other side. And this is true even for pushes (since we get it via receive-pack's advertisement). And it is even true for dumb-http, as we guess at the algorithm based on the hash size, due to ac093d0790 (remote-curl: detect algorithm for dumb HTTP by size, 2020-06-19). The one case where it _isn't_ true is dumb-http talking to an empty repository. There we have no clue what the remote hash is, so remote-curl just sends back its default. If we kept the "object-format <algo>" form then in theory Git could say "object-format sha256" to change that default. But it doesn't really accomplish anything. We still may or may not be mis-matched with the other side. For a fetch that's OK, since it's by definition a noop. For a push into an empty repository, it might matter (though the dumb http-push DAV code seems happy to clobber a remote sha256 info/refs and corrupt the repository). If we want to pursue making this work, I think we'd be better off improving detection of the object format of empty repositories over dumb-http (e.g., an "info/object-format" file). But what about helpers that _aren't_ talking to another Git repo? Consider something like git-cinnabar, which is converting on the fly to/from hg. Most of the heavy lifting is done by fast-import/export, but some oids may still pass between Git and the helper. Could "object-format <algo>" be useful to tell the helper what oids we expect to see? Possibly, but in practice this isn't necessary. Git-cinnabar for example already peeks at the local-repo .git/config to check its object-format (and currently just bails if it is sha256). So I think the "object-format" extension really is only useful for the helper telling Git what object-format it found, and not the other way around. Note that this patch can't break any remote helpers; we're not changing the code on the Git side at all, but just bringing the documentation in line with what Git has always done. It does remove the receiving support in remote-curl.c, but that code was never actually triggered. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-03-20 17:37:40 +08:00
if (strcmp(value, "true"))
die(_("unknown value for object-format: %s"), value);
return 0;
} else {
return 1 /* unsupported */;
}
}
struct discovery {
char *service;
char *buf_alloc;
char *buf;
size_t len;
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
struct ref *refs;
struct oid_array shallow;
enum protocol_version version;
unsigned proto_git : 1;
};
static struct discovery *last_discovery;
static struct ref *parse_git_refs(struct discovery *heads, int for_push)
{
struct ref *list = NULL;
struct packet_reader reader;
packet_reader_init(&reader, -1, heads->buf, heads->len,
PACKET_READ_CHOMP_NEWLINE |
PACKET_READ_GENTLE_ON_EOF |
PACKET_READ_DIE_ON_ERR_PACKET);
heads->version = discover_version(&reader);
switch (heads->version) {
case protocol_v2:
/*
* Do nothing. This isn't a list of refs but rather a
* capability advertisement. Client would have run
* 'stateless-connect' so we'll dump this capability listing
* and let them request the refs themselves.
*/
break;
case protocol_v1:
case protocol_v0:
get_remote_heads(&reader, &list, for_push ? REF_NORMAL : 0,
NULL, &heads->shallow);
options.hash_algo = reader.hash_algo;
break;
case protocol_unknown_version:
BUG("unknown protocol version");
}
return list;
}
/*
* Try to detect the hash algorithm used by the remote repository when using
* the dumb HTTP transport. As dumb transports cannot tell us the object hash
* directly have to derive it from the advertised ref lengths.
*/
static const struct git_hash_algo *detect_hash_algo(struct discovery *heads)
{
const char *p = memchr(heads->buf, '\t', heads->len);
int algo;
/*
* In case the remote has no refs we have no way to reliably determine
* the object hash used by that repository. In that case we simply fall
* back to SHA1, which may or may not be correct.
*/
if (!p)
return &hash_algos[GIT_HASH_SHA1];
algo = hash_algo_by_length((p - heads->buf) / 2);
if (algo == GIT_HASH_UNKNOWN)
return NULL;
return &hash_algos[algo];
}
static struct ref *parse_info_refs(struct discovery *heads)
{
char *data, *start, *mid;
char *ref_name;
int i = 0;
struct ref *refs = NULL;
struct ref *ref = NULL;
struct ref *last_ref = NULL;
options.hash_algo = detect_hash_algo(heads);
if (!options.hash_algo)
die("%sinfo/refs not valid: could not determine hash algorithm; "
"is this a git repository?",
transport_anonymize_url(url.buf));
/*
* Set the repository's hash algo to whatever we have just detected.
* This ensures that we can correctly parse the remote references.
*/
repo_set_hash_algo(the_repository, hash_algo_by_ptr(options.hash_algo));
data = heads->buf;
start = NULL;
mid = data;
while (i < heads->len) {
if (!start) {
start = &data[i];
}
if (data[i] == '\t')
mid = &data[i];
if (data[i] == '\n') {
if (mid - start != options.hash_algo->hexsz)
die(_("%sinfo/refs not valid: is this a git repository?"),
transport_anonymize_url(url.buf));
data[i] = 0;
ref_name = mid + 1;
ref = alloc_ref(ref_name);
get_oid_hex_algop(start, &ref->old_oid, options.hash_algo);
if (!refs)
refs = ref;
if (last_ref)
last_ref->next = ref;
last_ref = ref;
start = NULL;
}
i++;
}
ref = alloc_ref("HEAD");
if (!http_fetch_ref(url.buf, ref) &&
!resolve_remote_symref(ref, refs)) {
ref->next = refs;
refs = ref;
} else {
free_one_ref(ref);
}
return refs;
}
static void free_discovery(struct discovery *d)
{
if (d) {
if (d == last_discovery)
last_discovery = NULL;
free(d->shallow.oid);
free(d->buf_alloc);
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
free_refs(d->refs);
free(d->service);
free(d);
}
}
static int show_http_message(struct strbuf *type, struct strbuf *charset,
struct strbuf *msg)
remote-curl: show server content on http errors If an http request to a remote git server fails, we show only the http response code, or sometimes a custom message for particular codes. This gives the server no opportunity to offer a more detailed explanation of the reason for the failure, or to give extra advice. This patch teaches remote-curl to record and display the body content of a failed http response. We only display such responses when the content-type is advertised as text/plain, as it is the most likely to look presentable on the user's terminal (and it is hoped to be a good indication that the message is intended for git clients, and not for a web browser). Each line of the new output is prepended with "remote:". Example output may look like this (assuming the server is configured to display such a helpful message): $ GIT_SMART_HTTP=0 git clone https://example.com/some/repo.git Cloning into 'repo'... remote: Sorry, fetching via dumb http is forbidden. remote: Please upgrade your git client to v1.6.6 or greater remote: and make sure that smart-http is enabled. error: The requested URL returned error: 403 while accessing http://localhost:5001/some/repo.git/info/refs fatal: HTTP request failed For the sake of simplicity, we only record and display these errors during the initial fetch of the ref list, as that is the initial contact with the server and where the most common, interesting errors happen (and there is already precedent, as that is the only place we currently massage http error codes into more helpful messages). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-04-06 06:17:23 +08:00
{
const char *p, *eol;
/*
* We only show text/plain parts, as other types are likely
* to be ugly to look at on the user's terminal.
*/
if (strcmp(type->buf, "text/plain"))
remote-curl: show server content on http errors If an http request to a remote git server fails, we show only the http response code, or sometimes a custom message for particular codes. This gives the server no opportunity to offer a more detailed explanation of the reason for the failure, or to give extra advice. This patch teaches remote-curl to record and display the body content of a failed http response. We only display such responses when the content-type is advertised as text/plain, as it is the most likely to look presentable on the user's terminal (and it is hoped to be a good indication that the message is intended for git clients, and not for a web browser). Each line of the new output is prepended with "remote:". Example output may look like this (assuming the server is configured to display such a helpful message): $ GIT_SMART_HTTP=0 git clone https://example.com/some/repo.git Cloning into 'repo'... remote: Sorry, fetching via dumb http is forbidden. remote: Please upgrade your git client to v1.6.6 or greater remote: and make sure that smart-http is enabled. error: The requested URL returned error: 403 while accessing http://localhost:5001/some/repo.git/info/refs fatal: HTTP request failed For the sake of simplicity, we only record and display these errors during the initial fetch of the ref list, as that is the initial contact with the server and where the most common, interesting errors happen (and there is already precedent, as that is the only place we currently massage http error codes into more helpful messages). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-04-06 06:17:23 +08:00
return -1;
if (charset->len)
strbuf_reencode(msg, charset->buf, get_log_output_encoding());
remote-curl: show server content on http errors If an http request to a remote git server fails, we show only the http response code, or sometimes a custom message for particular codes. This gives the server no opportunity to offer a more detailed explanation of the reason for the failure, or to give extra advice. This patch teaches remote-curl to record and display the body content of a failed http response. We only display such responses when the content-type is advertised as text/plain, as it is the most likely to look presentable on the user's terminal (and it is hoped to be a good indication that the message is intended for git clients, and not for a web browser). Each line of the new output is prepended with "remote:". Example output may look like this (assuming the server is configured to display such a helpful message): $ GIT_SMART_HTTP=0 git clone https://example.com/some/repo.git Cloning into 'repo'... remote: Sorry, fetching via dumb http is forbidden. remote: Please upgrade your git client to v1.6.6 or greater remote: and make sure that smart-http is enabled. error: The requested URL returned error: 403 while accessing http://localhost:5001/some/repo.git/info/refs fatal: HTTP request failed For the sake of simplicity, we only record and display these errors during the initial fetch of the ref list, as that is the initial contact with the server and where the most common, interesting errors happen (and there is already precedent, as that is the only place we currently massage http error codes into more helpful messages). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-04-06 06:17:23 +08:00
strbuf_trim(msg);
if (!msg->len)
return -1;
p = msg->buf;
do {
eol = strchrnul(p, '\n');
fprintf(stderr, "remote: %.*s\n", (int)(eol - p), p);
p = eol + 1;
} while(*eol);
return 0;
}
static int get_protocol_http_header(enum protocol_version version,
struct strbuf *header)
{
if (version > 0) {
strbuf_addf(header, GIT_PROTOCOL_HEADER ": version=%d",
version);
return 1;
}
return 0;
}
remote-curl: refactor smart-http discovery After making initial contact with an http server, we have to decide if the server supports smart-http, and if so, which version. Our rules are a bit inconsistent: 1. For v0, we require that the content-type indicates a smart-http response. We also require the response to look vaguely like a pkt-line starting with "#". If one of those does not match, we fall back to dumb-http. But according to our http protocol spec[1]: Dumb servers MUST NOT return a return type starting with `application/x-git-`. If we see the expected content-type, we should consider it smart-http. At that point we can parse the pkt-line for real, and complain if it is not syntactically valid. 2. For v2, we do not actually check the content-type. Our v2 protocol spec says[2]: When using the http:// or https:// transport a client makes a "smart" info/refs request as described in `http-protocol.txt`[...] and the http spec is clear that for a smart-http response[3]: The Content-Type MUST be `application/x-$servicename-advertisement`. So it is required according to the spec. These inconsistencies were easy to miss because of the way the original code was written as an inline conditional. Let's pull it out into its own function for readability, and improve a few things: - we now predicate the smart/dumb decision entirely on the presence of the correct content-type - we do a real pkt-line parse before deciding how to proceed (and die if it isn't valid) - use skip_prefix() for comparing service strings, instead of constructing expected output in a strbuf; this avoids dealing with memory cleanup Note that this _is_ tightening what the client will allow. It's all according to the spec, but it's possible that other implementations might violate these. However, violating these particular rules seems like an odd choice for a server to make. [1] Documentation/technical/http-protocol.txt, l. 166-167 [2] Documentation/technical/protocol-v2.txt, l. 63-64 [3] Documentation/technical/http-protocol.txt, l. 247 Helped-by: Josh Steadmon <steadmon@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-02-07 03:18:48 +08:00
static void check_smart_http(struct discovery *d, const char *service,
struct strbuf *type)
{
const char *p;
struct packet_reader reader;
/*
* If we don't see x-$service-advertisement, then it's not smart-http.
* But once we do, we commit to it and assume any other protocol
* violations are hard errors.
*/
if (!skip_prefix(type->buf, "application/x-", &p) ||
!skip_prefix(p, service, &p) ||
strcmp(p, "-advertisement"))
return;
packet_reader_init(&reader, -1, d->buf, d->len,
PACKET_READ_CHOMP_NEWLINE |
PACKET_READ_DIE_ON_ERR_PACKET);
if (packet_reader_read(&reader) != PACKET_READ_NORMAL)
die(_("invalid server response; expected service, got flush packet"));
remote-curl: refactor smart-http discovery After making initial contact with an http server, we have to decide if the server supports smart-http, and if so, which version. Our rules are a bit inconsistent: 1. For v0, we require that the content-type indicates a smart-http response. We also require the response to look vaguely like a pkt-line starting with "#". If one of those does not match, we fall back to dumb-http. But according to our http protocol spec[1]: Dumb servers MUST NOT return a return type starting with `application/x-git-`. If we see the expected content-type, we should consider it smart-http. At that point we can parse the pkt-line for real, and complain if it is not syntactically valid. 2. For v2, we do not actually check the content-type. Our v2 protocol spec says[2]: When using the http:// or https:// transport a client makes a "smart" info/refs request as described in `http-protocol.txt`[...] and the http spec is clear that for a smart-http response[3]: The Content-Type MUST be `application/x-$servicename-advertisement`. So it is required according to the spec. These inconsistencies were easy to miss because of the way the original code was written as an inline conditional. Let's pull it out into its own function for readability, and improve a few things: - we now predicate the smart/dumb decision entirely on the presence of the correct content-type - we do a real pkt-line parse before deciding how to proceed (and die if it isn't valid) - use skip_prefix() for comparing service strings, instead of constructing expected output in a strbuf; this avoids dealing with memory cleanup Note that this _is_ tightening what the client will allow. It's all according to the spec, but it's possible that other implementations might violate these. However, violating these particular rules seems like an odd choice for a server to make. [1] Documentation/technical/http-protocol.txt, l. 166-167 [2] Documentation/technical/protocol-v2.txt, l. 63-64 [3] Documentation/technical/http-protocol.txt, l. 247 Helped-by: Josh Steadmon <steadmon@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-02-07 03:18:48 +08:00
if (skip_prefix(reader.line, "# service=", &p) && !strcmp(p, service)) {
/*
* The header can include additional metadata lines, up
* until a packet flush marker. Ignore these now, but
* in the future we might start to scan them.
*/
for (;;) {
packet_reader_read(&reader);
if (reader.pktlen <= 0) {
break;
}
}
/*
* v0 smart http; callers expect us to soak up the
* service and header packets
*/
d->buf = reader.src_buffer;
d->len = reader.src_len;
d->proto_git = 1;
} else if (!strcmp(reader.line, "version 2")) {
remote-curl: refactor smart-http discovery After making initial contact with an http server, we have to decide if the server supports smart-http, and if so, which version. Our rules are a bit inconsistent: 1. For v0, we require that the content-type indicates a smart-http response. We also require the response to look vaguely like a pkt-line starting with "#". If one of those does not match, we fall back to dumb-http. But according to our http protocol spec[1]: Dumb servers MUST NOT return a return type starting with `application/x-git-`. If we see the expected content-type, we should consider it smart-http. At that point we can parse the pkt-line for real, and complain if it is not syntactically valid. 2. For v2, we do not actually check the content-type. Our v2 protocol spec says[2]: When using the http:// or https:// transport a client makes a "smart" info/refs request as described in `http-protocol.txt`[...] and the http spec is clear that for a smart-http response[3]: The Content-Type MUST be `application/x-$servicename-advertisement`. So it is required according to the spec. These inconsistencies were easy to miss because of the way the original code was written as an inline conditional. Let's pull it out into its own function for readability, and improve a few things: - we now predicate the smart/dumb decision entirely on the presence of the correct content-type - we do a real pkt-line parse before deciding how to proceed (and die if it isn't valid) - use skip_prefix() for comparing service strings, instead of constructing expected output in a strbuf; this avoids dealing with memory cleanup Note that this _is_ tightening what the client will allow. It's all according to the spec, but it's possible that other implementations might violate these. However, violating these particular rules seems like an odd choice for a server to make. [1] Documentation/technical/http-protocol.txt, l. 166-167 [2] Documentation/technical/protocol-v2.txt, l. 63-64 [3] Documentation/technical/http-protocol.txt, l. 247 Helped-by: Josh Steadmon <steadmon@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-02-07 03:18:48 +08:00
/*
* v2 smart http; do not consume version packet, which will
* be handled elsewhere.
*/
d->proto_git = 1;
} else {
die(_("invalid server response; got '%s'"), reader.line);
remote-curl: refactor smart-http discovery After making initial contact with an http server, we have to decide if the server supports smart-http, and if so, which version. Our rules are a bit inconsistent: 1. For v0, we require that the content-type indicates a smart-http response. We also require the response to look vaguely like a pkt-line starting with "#". If one of those does not match, we fall back to dumb-http. But according to our http protocol spec[1]: Dumb servers MUST NOT return a return type starting with `application/x-git-`. If we see the expected content-type, we should consider it smart-http. At that point we can parse the pkt-line for real, and complain if it is not syntactically valid. 2. For v2, we do not actually check the content-type. Our v2 protocol spec says[2]: When using the http:// or https:// transport a client makes a "smart" info/refs request as described in `http-protocol.txt`[...] and the http spec is clear that for a smart-http response[3]: The Content-Type MUST be `application/x-$servicename-advertisement`. So it is required according to the spec. These inconsistencies were easy to miss because of the way the original code was written as an inline conditional. Let's pull it out into its own function for readability, and improve a few things: - we now predicate the smart/dumb decision entirely on the presence of the correct content-type - we do a real pkt-line parse before deciding how to proceed (and die if it isn't valid) - use skip_prefix() for comparing service strings, instead of constructing expected output in a strbuf; this avoids dealing with memory cleanup Note that this _is_ tightening what the client will allow. It's all according to the spec, but it's possible that other implementations might violate these. However, violating these particular rules seems like an odd choice for a server to make. [1] Documentation/technical/http-protocol.txt, l. 166-167 [2] Documentation/technical/protocol-v2.txt, l. 63-64 [3] Documentation/technical/http-protocol.txt, l. 247 Helped-by: Josh Steadmon <steadmon@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-02-07 03:18:48 +08:00
}
}
static struct discovery *discover_refs(const char *service, int for_push)
{
struct strbuf type = STRBUF_INIT;
struct strbuf charset = STRBUF_INIT;
struct strbuf buffer = STRBUF_INIT;
struct strbuf refs_url = STRBUF_INIT;
remote-curl: rewrite base url from info/refs redirects For efficiency and security reasons, an earlier commit in this series taught http_get_* to re-write the base url based on redirections we saw while making a specific request. This commit wires that option into the info/refs request, meaning that a redirect from http://example.com/foo.git/info/refs to https://example.com/bar.git/info/refs will behave as if "https://example.com/bar.git" had been provided to git in the first place. The tests bear some explanation. We introduce two new hierearchies into the httpd test config: 1. Requests to /smart-redir-limited will work only for the initial info/refs request, but not any subsequent requests. As a result, we can confirm whether the client is re-rooting its requests after the initial contact, since otherwise it will fail (it will ask for "repo.git/git-upload-pack", which is not redirected). 2. Requests to smart-redir-auth will redirect, and require auth after the redirection. Since we are using the redirected base for further requests, we also update the credential struct, in order not to mislead the user (or credential helpers) about which credential is needed. We can therefore check the GIT_ASKPASS prompts to make sure we are prompting for the new location. Because we have neither multiple servers nor https support in our test setup, we can only redirect between paths, meaning we need to turn on credential.useHttpPath to see the difference. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
2013-09-28 16:35:35 +08:00
struct strbuf effective_url = STRBUF_INIT;
struct strbuf protocol_header = STRBUF_INIT;
struct string_list extra_headers = STRING_LIST_INIT_DUP;
struct discovery *last = last_discovery;
int http_ret, maybe_smart = 0;
struct http_get_options http_options;
enum protocol_version version = get_protocol_version_config();
if (last && !strcmp(service, last->service))
return last;
free_discovery(last);
strbuf_addf(&refs_url, "%sinfo/refs", url.buf);
if ((starts_with(url.buf, "http://") || starts_with(url.buf, "https://")) &&
git_env_bool("GIT_SMART_HTTP", 1)) {
maybe_smart = 1;
if (!strchr(url.buf, '?'))
strbuf_addch(&refs_url, '?');
else
strbuf_addch(&refs_url, '&');
strbuf_addf(&refs_url, "service=%s", service);
}
/*
* NEEDSWORK: If we are trying to use protocol v2 and we are planning
git_connect(): fix corner cases in downgrading v2 to v0 There's code in git_connect() that checks whether we are doing a push with protocol_v2, and if so, drops us to protocol_v0 (since we know how to do v2 only for fetches). But it misses some corner cases: 1. it checks the "prog" variable, which is actually the path to receive-pack on the remote side. By default this is just "git-receive-pack", but it could be an arbitrary string (like "/path/to/git receive-pack", etc). We'd accidentally stay in v2 mode in this case. 2. besides "receive-pack" and "upload-pack", there's one other value we'd expect: "upload-archive" for handling "git archive --remote". Like receive-pack, this doesn't understand v2, and should use the v0 protocol. In practice, neither of these causes bugs in the real world so far. We do send a "we understand v2" probe to the server, but since no server implements v2 for anything but upload-pack, it's simply ignored. But this would eventually become a problem if we do implement v2 for those endpoints, as older clients would falsely claim to understand it, leading to a server response they can't parse. We can fix (1) by passing in both the program path and the "name" of the operation. I treat the name as a string here, because that's the pattern set in transport_connect(), which is one of our callers (we were simply throwing away the "name" value there before). We can fix (2) by allowing only known-v2 protocols ("upload-pack"), rather than blocking unknown ones ("receive-pack" and "upload-archive"). That will mean whoever eventually implements v2 push will have to adjust this list, but that's reasonable. We'll do the safe, conservative thing (sticking to v0) by default, and anybody working on v2 will quickly realize this spot needs to be updated. The new tests cover the receive-pack and upload-archive cases above, and re-confirm that we allow v2 with an arbitrary "--upload-pack" path (that already worked before this patch, of course, but it would be an easy thing to break if we flipped the allow/block logic without also handling "name" separately). Here are a few miscellaneous implementation notes, since I had to do a little head-scratching to understand who calls what: - transport_connect() is called only for git-upload-archive. For non-http git remotes, that resolves to the virtual connect_git() function (which then calls git_connect(); confused yet?). So plumbing through "name" in connect_git() covers that. - for regular fetches and pushes, callers use higher-level functions like transport_fetch_refs(). For non-http git remotes, that means calling git_connect() under the hood via connect_setup(). And that uses the "for_push" flag to decide which name to use. - likewise, plumbing like fetch-pack and send-pack may call git_connect() directly; they each know which name to use. - for remote helpers (including http), we already have separate parameters for "name" and "exec" (another name for "prog"). In process_connect_service(), we feed the "name" to the helper via "connect" or "stateless-connect" directives. There's also a "servpath" option, which can be used to tell the helper about the "exec" path. But no helpers we implement support it! For http it would be useless anyway (no reasonable server implementation will allow you to send a shell command to run the server). In theory it would be useful for more obscure helpers like remote-ext, but even there it is not implemented. It's tempting to get rid of it simply to reduce confusion, but we have publicly documented it since it was added in fa8c097cc9 (Support remote helpers implementing smart transports, 2009-12-09), so it's possible some helper in the wild is using it. - So for v2, helpers (again, including http) are mainly used via stateless-connect, driven by the main program. But they do still need to decide whether to do a v2 probe. And so there's similar logic in remote-curl.c's discover_refs() that looks for "git-receive-pack". But it's not buggy in the same way. Since it doesn't support servpath, it is always dealing with a "service" string like "git-receive-pack". And since it doesn't support straight "connect", it can't be used for "upload-archive". So we could leave that spot alone. But I've updated it here to match the logic we're changing in connect_git(). That seems like the least confusing thing for somebody who has to touch both of these spots later (say, to add v2 push support). I didn't add a new test to make sure this doesn't break anything; we already have several tests (in t5551 and elsewhere) that make sure we are using v2 over http. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-03-18 03:08:51 +08:00
* to perform any operation that doesn't involve upload-pack (i.e., a
* fetch, ls-remote, etc), then fallback to v0 since we don't know how
* to do anything else (like push or remote archive) via v2.
*/
git_connect(): fix corner cases in downgrading v2 to v0 There's code in git_connect() that checks whether we are doing a push with protocol_v2, and if so, drops us to protocol_v0 (since we know how to do v2 only for fetches). But it misses some corner cases: 1. it checks the "prog" variable, which is actually the path to receive-pack on the remote side. By default this is just "git-receive-pack", but it could be an arbitrary string (like "/path/to/git receive-pack", etc). We'd accidentally stay in v2 mode in this case. 2. besides "receive-pack" and "upload-pack", there's one other value we'd expect: "upload-archive" for handling "git archive --remote". Like receive-pack, this doesn't understand v2, and should use the v0 protocol. In practice, neither of these causes bugs in the real world so far. We do send a "we understand v2" probe to the server, but since no server implements v2 for anything but upload-pack, it's simply ignored. But this would eventually become a problem if we do implement v2 for those endpoints, as older clients would falsely claim to understand it, leading to a server response they can't parse. We can fix (1) by passing in both the program path and the "name" of the operation. I treat the name as a string here, because that's the pattern set in transport_connect(), which is one of our callers (we were simply throwing away the "name" value there before). We can fix (2) by allowing only known-v2 protocols ("upload-pack"), rather than blocking unknown ones ("receive-pack" and "upload-archive"). That will mean whoever eventually implements v2 push will have to adjust this list, but that's reasonable. We'll do the safe, conservative thing (sticking to v0) by default, and anybody working on v2 will quickly realize this spot needs to be updated. The new tests cover the receive-pack and upload-archive cases above, and re-confirm that we allow v2 with an arbitrary "--upload-pack" path (that already worked before this patch, of course, but it would be an easy thing to break if we flipped the allow/block logic without also handling "name" separately). Here are a few miscellaneous implementation notes, since I had to do a little head-scratching to understand who calls what: - transport_connect() is called only for git-upload-archive. For non-http git remotes, that resolves to the virtual connect_git() function (which then calls git_connect(); confused yet?). So plumbing through "name" in connect_git() covers that. - for regular fetches and pushes, callers use higher-level functions like transport_fetch_refs(). For non-http git remotes, that means calling git_connect() under the hood via connect_setup(). And that uses the "for_push" flag to decide which name to use. - likewise, plumbing like fetch-pack and send-pack may call git_connect() directly; they each know which name to use. - for remote helpers (including http), we already have separate parameters for "name" and "exec" (another name for "prog"). In process_connect_service(), we feed the "name" to the helper via "connect" or "stateless-connect" directives. There's also a "servpath" option, which can be used to tell the helper about the "exec" path. But no helpers we implement support it! For http it would be useless anyway (no reasonable server implementation will allow you to send a shell command to run the server). In theory it would be useful for more obscure helpers like remote-ext, but even there it is not implemented. It's tempting to get rid of it simply to reduce confusion, but we have publicly documented it since it was added in fa8c097cc9 (Support remote helpers implementing smart transports, 2009-12-09), so it's possible some helper in the wild is using it. - So for v2, helpers (again, including http) are mainly used via stateless-connect, driven by the main program. But they do still need to decide whether to do a v2 probe. And so there's similar logic in remote-curl.c's discover_refs() that looks for "git-receive-pack". But it's not buggy in the same way. Since it doesn't support servpath, it is always dealing with a "service" string like "git-receive-pack". And since it doesn't support straight "connect", it can't be used for "upload-archive". So we could leave that spot alone. But I've updated it here to match the logic we're changing in connect_git(). That seems like the least confusing thing for somebody who has to touch both of these spots later (say, to add v2 push support). I didn't add a new test to make sure this doesn't break anything; we already have several tests (in t5551 and elsewhere) that make sure we are using v2 over http. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-03-18 03:08:51 +08:00
if (version == protocol_v2 && strcmp("git-upload-pack", service))
version = protocol_v0;
/* Add the extra Git-Protocol header */
if (get_protocol_http_header(version, &protocol_header))
string_list_append(&extra_headers, protocol_header.buf);
memset(&http_options, 0, sizeof(http_options));
http_options.content_type = &type;
http_options.charset = &charset;
http_options.effective_url = &effective_url;
http_options.base_url = &url;
http_options.extra_headers = &extra_headers;
http: make redirects more obvious We instruct curl to always follow HTTP redirects. This is convenient, but it creates opportunities for malicious servers to create confusing situations. For instance, imagine Alice is a git user with access to a private repository on Bob's server. Mallory runs her own server and wants to access objects from Bob's repository. Mallory may try a few tricks that involve asking Alice to clone from her, build on top, and then push the result: 1. Mallory may simply redirect all fetch requests to Bob's server. Git will transparently follow those redirects and fetch Bob's history, which Alice may believe she got from Mallory. The subsequent push seems like it is just feeding Mallory back her own objects, but is actually leaking Bob's objects. There is nothing in git's output to indicate that Bob's repository was involved at all. The downside (for Mallory) of this attack is that Alice will have received Bob's entire repository, and is likely to notice that when building on top of it. 2. If Mallory happens to know the sha1 of some object X in Bob's repository, she can instead build her own history that references that object. She then runs a dumb http server, and Alice's client will fetch each object individually. When it asks for X, Mallory redirects her to Bob's server. The end result is that Alice obtains objects from Bob, but they may be buried deep in history. Alice is less likely to notice. Both of these attacks are fairly hard to pull off. There's a social component in getting Mallory to convince Alice to work with her. Alice may be prompted for credentials in accessing Bob's repository (but not always, if she is using a credential helper that caches). Attack (1) requires a certain amount of obliviousness on Alice's part while making a new commit. Attack (2) requires that Mallory knows a sha1 in Bob's repository, that Bob's server supports dumb http, and that the object in question is loose on Bob's server. But we can probably make things a bit more obvious without any loss of functionality. This patch does two things to that end. First, when we encounter a whole-repo redirect during the initial ref discovery, we now inform the user on stderr, making attack (1) much more obvious. Second, the decision to follow redirects is now configurable. The truly paranoid can set the new http.followRedirects to false to avoid any redirection entirely. But for a more practical default, we will disallow redirects only after the initial ref discovery. This is enough to thwart attacks similar to (2), while still allowing the common use of redirects at the repository level. Since c93c92f30 (http: update base URLs when we see redirects, 2013-09-28) we re-root all further requests from the redirect destination, which should generally mean that no further redirection is necessary. As an escape hatch, in case there really is a server that needs to redirect individual requests, the user can set http.followRedirects to "true" (and this can be done on a per-server basis via http.*.followRedirects config). Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-12-07 02:24:41 +08:00
http_options.initial_request = 1;
http_options.no_cache = 1;
http_ret = http_get_strbuf(refs_url.buf, &buffer, &http_options);
switch (http_ret) {
case HTTP_OK:
break;
case HTTP_MISSING_TARGET:
show_http_message(&type, &charset, &buffer);
die(_("repository '%s' not found"),
transport_anonymize_url(url.buf));
case HTTP_NOAUTH:
show_http_message(&type, &charset, &buffer);
die(_("Authentication failed for '%s'"),
transport_anonymize_url(url.buf));
case HTTP_NOMATCHPUBLICKEY:
show_http_message(&type, &charset, &buffer);
die(_("unable to access '%s' with http.pinnedPubkey configuration: %s"),
transport_anonymize_url(url.buf), curl_errorstr);
default:
show_http_message(&type, &charset, &buffer);
die(_("unable to access '%s': %s"),
transport_anonymize_url(url.buf), curl_errorstr);
}
if (options.verbosity && !starts_with(refs_url.buf, url.buf)) {
char *u = transport_anonymize_url(url.buf);
warning(_("redirecting to %s"), u);
free(u);
}
http: make redirects more obvious We instruct curl to always follow HTTP redirects. This is convenient, but it creates opportunities for malicious servers to create confusing situations. For instance, imagine Alice is a git user with access to a private repository on Bob's server. Mallory runs her own server and wants to access objects from Bob's repository. Mallory may try a few tricks that involve asking Alice to clone from her, build on top, and then push the result: 1. Mallory may simply redirect all fetch requests to Bob's server. Git will transparently follow those redirects and fetch Bob's history, which Alice may believe she got from Mallory. The subsequent push seems like it is just feeding Mallory back her own objects, but is actually leaking Bob's objects. There is nothing in git's output to indicate that Bob's repository was involved at all. The downside (for Mallory) of this attack is that Alice will have received Bob's entire repository, and is likely to notice that when building on top of it. 2. If Mallory happens to know the sha1 of some object X in Bob's repository, she can instead build her own history that references that object. She then runs a dumb http server, and Alice's client will fetch each object individually. When it asks for X, Mallory redirects her to Bob's server. The end result is that Alice obtains objects from Bob, but they may be buried deep in history. Alice is less likely to notice. Both of these attacks are fairly hard to pull off. There's a social component in getting Mallory to convince Alice to work with her. Alice may be prompted for credentials in accessing Bob's repository (but not always, if she is using a credential helper that caches). Attack (1) requires a certain amount of obliviousness on Alice's part while making a new commit. Attack (2) requires that Mallory knows a sha1 in Bob's repository, that Bob's server supports dumb http, and that the object in question is loose on Bob's server. But we can probably make things a bit more obvious without any loss of functionality. This patch does two things to that end. First, when we encounter a whole-repo redirect during the initial ref discovery, we now inform the user on stderr, making attack (1) much more obvious. Second, the decision to follow redirects is now configurable. The truly paranoid can set the new http.followRedirects to false to avoid any redirection entirely. But for a more practical default, we will disallow redirects only after the initial ref discovery. This is enough to thwart attacks similar to (2), while still allowing the common use of redirects at the repository level. Since c93c92f30 (http: update base URLs when we see redirects, 2013-09-28) we re-root all further requests from the redirect destination, which should generally mean that no further redirection is necessary. As an escape hatch, in case there really is a server that needs to redirect individual requests, the user can set http.followRedirects to "true" (and this can be done on a per-server basis via http.*.followRedirects config). Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-12-07 02:24:41 +08:00
last= xcalloc(1, sizeof(*last_discovery));
last->service = xstrdup(service);
last->buf_alloc = strbuf_detach(&buffer, &last->len);
last->buf = last->buf_alloc;
remote-curl: refactor smart-http discovery After making initial contact with an http server, we have to decide if the server supports smart-http, and if so, which version. Our rules are a bit inconsistent: 1. For v0, we require that the content-type indicates a smart-http response. We also require the response to look vaguely like a pkt-line starting with "#". If one of those does not match, we fall back to dumb-http. But according to our http protocol spec[1]: Dumb servers MUST NOT return a return type starting with `application/x-git-`. If we see the expected content-type, we should consider it smart-http. At that point we can parse the pkt-line for real, and complain if it is not syntactically valid. 2. For v2, we do not actually check the content-type. Our v2 protocol spec says[2]: When using the http:// or https:// transport a client makes a "smart" info/refs request as described in `http-protocol.txt`[...] and the http spec is clear that for a smart-http response[3]: The Content-Type MUST be `application/x-$servicename-advertisement`. So it is required according to the spec. These inconsistencies were easy to miss because of the way the original code was written as an inline conditional. Let's pull it out into its own function for readability, and improve a few things: - we now predicate the smart/dumb decision entirely on the presence of the correct content-type - we do a real pkt-line parse before deciding how to proceed (and die if it isn't valid) - use skip_prefix() for comparing service strings, instead of constructing expected output in a strbuf; this avoids dealing with memory cleanup Note that this _is_ tightening what the client will allow. It's all according to the spec, but it's possible that other implementations might violate these. However, violating these particular rules seems like an odd choice for a server to make. [1] Documentation/technical/http-protocol.txt, l. 166-167 [2] Documentation/technical/protocol-v2.txt, l. 63-64 [3] Documentation/technical/http-protocol.txt, l. 247 Helped-by: Josh Steadmon <steadmon@google.com> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-02-07 03:18:48 +08:00
if (maybe_smart)
check_smart_http(last, service, &type);
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
if (last->proto_git)
last->refs = parse_git_refs(last, for_push);
else
last->refs = parse_info_refs(last);
strbuf_release(&refs_url);
strbuf_release(&type);
strbuf_release(&charset);
remote-curl: rewrite base url from info/refs redirects For efficiency and security reasons, an earlier commit in this series taught http_get_* to re-write the base url based on redirections we saw while making a specific request. This commit wires that option into the info/refs request, meaning that a redirect from http://example.com/foo.git/info/refs to https://example.com/bar.git/info/refs will behave as if "https://example.com/bar.git" had been provided to git in the first place. The tests bear some explanation. We introduce two new hierearchies into the httpd test config: 1. Requests to /smart-redir-limited will work only for the initial info/refs request, but not any subsequent requests. As a result, we can confirm whether the client is re-rooting its requests after the initial contact, since otherwise it will fail (it will ask for "repo.git/git-upload-pack", which is not redirected). 2. Requests to smart-redir-auth will redirect, and require auth after the redirection. Since we are using the redirected base for further requests, we also update the credential struct, in order not to mislead the user (or credential helpers) about which credential is needed. We can therefore check the GIT_ASKPASS prompts to make sure we are prompting for the new location. Because we have neither multiple servers nor https support in our test setup, we can only redirect between paths, meaning we need to turn on credential.useHttpPath to see the difference. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
2013-09-28 16:35:35 +08:00
strbuf_release(&effective_url);
strbuf_release(&buffer);
strbuf_release(&protocol_header);
string_list_clear(&extra_headers, 0);
last_discovery = last;
return last;
}
static struct ref *get_refs(int for_push)
{
struct discovery *heads;
if (for_push)
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
heads = discover_refs("git-receive-pack", for_push);
else
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
heads = discover_refs("git-upload-pack", for_push);
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
return heads->refs;
}
static void output_refs(struct ref *refs)
{
struct ref *posn;
if (options.object_format && options.hash_algo) {
printf(":object-format %s\n", options.hash_algo->name);
repo_set_hash_algo(the_repository,
hash_algo_by_ptr(options.hash_algo));
}
for (posn = refs; posn; posn = posn->next) {
if (posn->symref)
printf("@%s %s\n", posn->symref, posn->name);
else
printf("%s %s\n", hash_to_hex_algop(posn->old_oid.hash,
options.hash_algo),
posn->name);
}
printf("\n");
fflush(stdout);
}
struct rpc_state {
const char *service_name;
char *service_url;
char *hdr_content_type;
char *hdr_accept;
char *hdr_accept_language;
char *protocol_header;
char *buf;
size_t alloc;
size_t len;
size_t pos;
int in;
int out;
remote-curl: don't hang when a server dies before any output In the event that a HTTP server closes the connection after giving a 200 but before giving any packets, we don't want to hang forever waiting for a response that will never come. Instead, we should die immediately. One case where this happens is when attempting to fetch a dangling object by its object name. In this case, the server dies before sending any data. Prior to this patch, fetch-pack would wait for data from the server, and remote-curl would wait for fetch-pack, causing a deadlock. Despite this patch, there is other possible malformed input that could cause the same deadlock (e.g. a half-finished pktline, or a pktline but no trailing flush). There are a few possible solutions to this: 1. Allowing remote-curl to tell fetch-pack about the EOF (so that fetch-pack could know that no more data is coming until it says something else). This is tricky because an out-of-band signal would be required, or the http response would have to be re-framed inside another layer of pkt-line or something. 2. Make remote-curl understand some of the protocol. It turns out that in addition to understanding pkt-line, it would need to watch for ack/nak. This is somewhat fragile, as information about the protocol would end up in two places. Also, pkt-lines which are already at the length limit would need special handling. Both of these solutions would require a fair amount of work, whereas this hack is easy and solves at least some of the problem. Still to do: it would be good to give a better error message than "fatal: The remote end hung up unexpectedly". Signed-off-by: David Turner <dturner@twosigma.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-11-19 04:30:49 +08:00
int any_written;
unsigned gzip_request : 1;
unsigned initial_buffer : 1;
/*
* Whenever a pkt-line is read into buf, append the 4 characters
* denoting its length before appending the payload.
*/
unsigned write_line_lengths : 1;
/*
* Used by rpc_out; initialize to 0. This is true if a flush has been
* read, but the corresponding line length (if write_line_lengths is
* true) and EOF have not been sent to libcurl. Since each flush marks
* the end of a request, each flush must be completely sent before any
* further reading occurs.
*/
unsigned flush_read_but_not_sent : 1;
};
#define RPC_STATE_INIT { 0 }
/*
* Appends the result of reading from rpc->out to the string represented by
* rpc->buf and rpc->len if there is enough space. Returns 1 if there was
* enough space, 0 otherwise.
*
* If rpc->write_line_lengths is true, appends the line length as a 4-byte
* hexadecimal string before appending the result described above.
*
* Writes the total number of bytes appended into appended.
*/
static int rpc_read_from_out(struct rpc_state *rpc, int options,
size_t *appended,
enum packet_read_status *status) {
size_t left;
char *buf;
int pktlen_raw;
if (rpc->write_line_lengths) {
left = rpc->alloc - rpc->len - 4;
buf = rpc->buf + rpc->len + 4;
} else {
left = rpc->alloc - rpc->len;
buf = rpc->buf + rpc->len;
}
if (left < LARGE_PACKET_MAX)
return 0;
*status = packet_read_with_status(rpc->out, NULL, NULL, buf,
left, &pktlen_raw, options);
if (*status != PACKET_READ_EOF) {
*appended = pktlen_raw + (rpc->write_line_lengths ? 4 : 0);
rpc->len += *appended;
}
if (rpc->write_line_lengths) {
switch (*status) {
case PACKET_READ_EOF:
if (!(options & PACKET_READ_GENTLE_ON_EOF))
die(_("shouldn't have EOF when not gentle on EOF"));
break;
case PACKET_READ_NORMAL:
set_packet_header(buf - 4, *appended);
break;
case PACKET_READ_DELIM:
memcpy(buf - 4, "0001", 4);
break;
case PACKET_READ_FLUSH:
memcpy(buf - 4, "0000", 4);
break;
case PACKET_READ_RESPONSE_END:
die(_("remote server sent unexpected response end packet"));
}
}
return 1;
}
static size_t rpc_out(void *ptr, size_t eltsize,
size_t nmemb, void *buffer_)
{
size_t max = eltsize * nmemb;
struct rpc_state *rpc = buffer_;
size_t avail = rpc->len - rpc->pos;
enum packet_read_status status;
if (!avail) {
rpc->initial_buffer = 0;
rpc->len = 0;
rpc->pos = 0;
if (!rpc->flush_read_but_not_sent) {
if (!rpc_read_from_out(rpc, 0, &avail, &status))
BUG("The entire rpc->buf should be larger than LARGE_PACKET_MAX");
if (status == PACKET_READ_FLUSH)
rpc->flush_read_but_not_sent = 1;
}
/*
* If flush_read_but_not_sent is true, we have already read one
* full request but have not fully sent it + EOF, which is why
* we need to refrain from reading.
*/
}
if (rpc->flush_read_but_not_sent) {
if (!avail) {
/*
* The line length either does not need to be sent at
* all or has already been completely sent. Now we can
* return 0, indicating EOF, meaning that the flush has
* been fully sent.
*/
rpc->flush_read_but_not_sent = 0;
return 0;
}
/*
* If avail is non-zero, the line length for the flush still
* hasn't been fully sent. Proceed with sending the line
* length.
*/
}
if (max < avail)
avail = max;
memcpy(ptr, rpc->buf + rpc->pos, avail);
rpc->pos += avail;
return avail;
}
http: prefer CURLOPT_SEEKFUNCTION to CURLOPT_IOCTLFUNCTION The IOCTLFUNCTION option has been deprecated, and generates a compiler warning in recent versions of curl. We can switch to using SEEKFUNCTION instead. It was added in 2008 via curl 7.18.0; our INSTALL file already indicates we require at least curl 7.19.4. But there's one catch: curl says we should use CURL_SEEKFUNC_{OK,FAIL}, and those didn't arrive until 7.19.5. One workaround would be to use a bare 0/1 here (or define our own macros). But let's just bump the minimum required version to 7.19.5. That version is only a minor version bump from our existing requirement, and is only a 2 month time bump for versions that are almost 13 years old. So it's not likely that anybody cares about the distinction. Switching means we have to rewrite the ioctl functions into seek functions. In some ways they are simpler (seeking is the only operation), but in some ways more complex (the ioctl allowed only a full rewind, but now we can seek to arbitrary offsets). Curl will only ever use SEEK_SET (per their documentation), so I didn't bother implementing anything else, since it would naturally be completely untested. This seems unlikely to change, but I added an assertion just in case. Likewise, I doubt curl will ever try to seek outside of the buffer sizes we've told it, but I erred on the defensive side here, rather than do an out-of-bounds read. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-01-17 11:04:44 +08:00
static int rpc_seek(void *clientp, curl_off_t offset, int origin)
{
struct rpc_state *rpc = clientp;
http: prefer CURLOPT_SEEKFUNCTION to CURLOPT_IOCTLFUNCTION The IOCTLFUNCTION option has been deprecated, and generates a compiler warning in recent versions of curl. We can switch to using SEEKFUNCTION instead. It was added in 2008 via curl 7.18.0; our INSTALL file already indicates we require at least curl 7.19.4. But there's one catch: curl says we should use CURL_SEEKFUNC_{OK,FAIL}, and those didn't arrive until 7.19.5. One workaround would be to use a bare 0/1 here (or define our own macros). But let's just bump the minimum required version to 7.19.5. That version is only a minor version bump from our existing requirement, and is only a 2 month time bump for versions that are almost 13 years old. So it's not likely that anybody cares about the distinction. Switching means we have to rewrite the ioctl functions into seek functions. In some ways they are simpler (seeking is the only operation), but in some ways more complex (the ioctl allowed only a full rewind, but now we can seek to arbitrary offsets). Curl will only ever use SEEK_SET (per their documentation), so I didn't bother implementing anything else, since it would naturally be completely untested. This seems unlikely to change, but I added an assertion just in case. Likewise, I doubt curl will ever try to seek outside of the buffer sizes we've told it, but I erred on the defensive side here, rather than do an out-of-bounds read. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-01-17 11:04:44 +08:00
if (origin != SEEK_SET)
BUG("rpc_seek only handles SEEK_SET, not %d", origin);
http: prefer CURLOPT_SEEKFUNCTION to CURLOPT_IOCTLFUNCTION The IOCTLFUNCTION option has been deprecated, and generates a compiler warning in recent versions of curl. We can switch to using SEEKFUNCTION instead. It was added in 2008 via curl 7.18.0; our INSTALL file already indicates we require at least curl 7.19.4. But there's one catch: curl says we should use CURL_SEEKFUNC_{OK,FAIL}, and those didn't arrive until 7.19.5. One workaround would be to use a bare 0/1 here (or define our own macros). But let's just bump the minimum required version to 7.19.5. That version is only a minor version bump from our existing requirement, and is only a 2 month time bump for versions that are almost 13 years old. So it's not likely that anybody cares about the distinction. Switching means we have to rewrite the ioctl functions into seek functions. In some ways they are simpler (seeking is the only operation), but in some ways more complex (the ioctl allowed only a full rewind, but now we can seek to arbitrary offsets). Curl will only ever use SEEK_SET (per their documentation), so I didn't bother implementing anything else, since it would naturally be completely untested. This seems unlikely to change, but I added an assertion just in case. Likewise, I doubt curl will ever try to seek outside of the buffer sizes we've told it, but I erred on the defensive side here, rather than do an out-of-bounds read. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-01-17 11:04:44 +08:00
if (rpc->initial_buffer) {
if (offset < 0 || offset > rpc->len) {
error("curl seek would be outside of rpc buffer");
return CURL_SEEKFUNC_FAIL;
}
http: prefer CURLOPT_SEEKFUNCTION to CURLOPT_IOCTLFUNCTION The IOCTLFUNCTION option has been deprecated, and generates a compiler warning in recent versions of curl. We can switch to using SEEKFUNCTION instead. It was added in 2008 via curl 7.18.0; our INSTALL file already indicates we require at least curl 7.19.4. But there's one catch: curl says we should use CURL_SEEKFUNC_{OK,FAIL}, and those didn't arrive until 7.19.5. One workaround would be to use a bare 0/1 here (or define our own macros). But let's just bump the minimum required version to 7.19.5. That version is only a minor version bump from our existing requirement, and is only a 2 month time bump for versions that are almost 13 years old. So it's not likely that anybody cares about the distinction. Switching means we have to rewrite the ioctl functions into seek functions. In some ways they are simpler (seeking is the only operation), but in some ways more complex (the ioctl allowed only a full rewind, but now we can seek to arbitrary offsets). Curl will only ever use SEEK_SET (per their documentation), so I didn't bother implementing anything else, since it would naturally be completely untested. This seems unlikely to change, but I added an assertion just in case. Likewise, I doubt curl will ever try to seek outside of the buffer sizes we've told it, but I erred on the defensive side here, rather than do an out-of-bounds read. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-01-17 11:04:44 +08:00
rpc->pos = offset;
return CURL_SEEKFUNC_OK;
}
http: prefer CURLOPT_SEEKFUNCTION to CURLOPT_IOCTLFUNCTION The IOCTLFUNCTION option has been deprecated, and generates a compiler warning in recent versions of curl. We can switch to using SEEKFUNCTION instead. It was added in 2008 via curl 7.18.0; our INSTALL file already indicates we require at least curl 7.19.4. But there's one catch: curl says we should use CURL_SEEKFUNC_{OK,FAIL}, and those didn't arrive until 7.19.5. One workaround would be to use a bare 0/1 here (or define our own macros). But let's just bump the minimum required version to 7.19.5. That version is only a minor version bump from our existing requirement, and is only a 2 month time bump for versions that are almost 13 years old. So it's not likely that anybody cares about the distinction. Switching means we have to rewrite the ioctl functions into seek functions. In some ways they are simpler (seeking is the only operation), but in some ways more complex (the ioctl allowed only a full rewind, but now we can seek to arbitrary offsets). Curl will only ever use SEEK_SET (per their documentation), so I didn't bother implementing anything else, since it would naturally be completely untested. This seems unlikely to change, but I added an assertion just in case. Likewise, I doubt curl will ever try to seek outside of the buffer sizes we've told it, but I erred on the defensive side here, rather than do an out-of-bounds read. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-01-17 11:04:44 +08:00
error(_("unable to rewind rpc post data - try increasing http.postBuffer"));
return CURL_SEEKFUNC_FAIL;
}
struct check_pktline_state {
char len_buf[4];
int len_filled;
int remaining;
};
static void check_pktline(struct check_pktline_state *state, const char *ptr, size_t size)
{
while (size) {
if (!state->remaining) {
int digits_remaining = 4 - state->len_filled;
if (digits_remaining > size)
digits_remaining = size;
memcpy(&state->len_buf[state->len_filled], ptr, digits_remaining);
state->len_filled += digits_remaining;
ptr += digits_remaining;
size -= digits_remaining;
if (state->len_filled == 4) {
state->remaining = packet_length(state->len_buf,
sizeof(state->len_buf));
if (state->remaining < 0) {
die(_("remote-curl: bad line length character: %.4s"), state->len_buf);
stateless-connect: send response end packet Currently, remote-curl acts as a proxy and blindly forwards packets between an HTTP server and fetch-pack. In the case of a stateless RPC connection where the connection is terminated before the transaction is complete, remote-curl will blindly forward the packets before waiting on more input from fetch-pack. Meanwhile, fetch-pack will read the transaction and continue reading, expecting more input to continue the transaction. This results in a deadlock between the two processes. This can be seen in the following command which does not terminate: $ git -c protocol.version=2 clone https://github.com/git/git.git --shallow-since=20151012 Cloning into 'git'... whereas the v1 version does terminate as expected: $ git -c protocol.version=1 clone https://github.com/git/git.git --shallow-since=20151012 Cloning into 'git'... fatal: the remote end hung up unexpectedly Instead of blindly forwarding packets, make remote-curl insert a response end packet after proxying the responses from the remote server when using stateless_connect(). On the RPC client side, ensure that each response ends as described. A separate control packet is chosen because we need to be able to differentiate between what the remote server sends and remote-curl's control packets. By ensuring in the remote-curl code that a server cannot send response end packets, we prevent a malicious server from being able to perform a denial of service attack in which they spoof a response end packet and cause the described deadlock to happen. Reported-by: Force Charlie <charlieio@outlook.com> Helped-by: Jeff King <peff@peff.net> Signed-off-by: Denton Liu <liu.denton@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-19 18:54:00 +08:00
} else if (state->remaining == 2) {
die(_("remote-curl: unexpected response end packet"));
} else if (state->remaining < 4) {
state->remaining = 0;
} else {
state->remaining -= 4;
}
state->len_filled = 0;
}
}
if (state->remaining) {
int remaining = state->remaining;
if (remaining > size)
remaining = size;
ptr += remaining;
size -= remaining;
state->remaining -= remaining;
}
}
}
struct rpc_in_data {
struct rpc_state *rpc;
struct active_request_slot *slot;
int check_pktline;
struct check_pktline_state pktline_state;
};
/*
* A callback for CURLOPT_WRITEFUNCTION. The return value is the bytes consumed
* from ptr.
*/
static size_t rpc_in(char *ptr, size_t eltsize,
size_t nmemb, void *buffer_)
{
size_t size = eltsize * nmemb;
struct rpc_in_data *data = buffer_;
long response_code;
if (curl_easy_getinfo(data->slot->curl, CURLINFO_RESPONSE_CODE,
&response_code) != CURLE_OK)
return size;
if (response_code >= 300)
return size;
remote-curl: don't hang when a server dies before any output In the event that a HTTP server closes the connection after giving a 200 but before giving any packets, we don't want to hang forever waiting for a response that will never come. Instead, we should die immediately. One case where this happens is when attempting to fetch a dangling object by its object name. In this case, the server dies before sending any data. Prior to this patch, fetch-pack would wait for data from the server, and remote-curl would wait for fetch-pack, causing a deadlock. Despite this patch, there is other possible malformed input that could cause the same deadlock (e.g. a half-finished pktline, or a pktline but no trailing flush). There are a few possible solutions to this: 1. Allowing remote-curl to tell fetch-pack about the EOF (so that fetch-pack could know that no more data is coming until it says something else). This is tricky because an out-of-band signal would be required, or the http response would have to be re-framed inside another layer of pkt-line or something. 2. Make remote-curl understand some of the protocol. It turns out that in addition to understanding pkt-line, it would need to watch for ack/nak. This is somewhat fragile, as information about the protocol would end up in two places. Also, pkt-lines which are already at the length limit would need special handling. Both of these solutions would require a fair amount of work, whereas this hack is easy and solves at least some of the problem. Still to do: it would be good to give a better error message than "fatal: The remote end hung up unexpectedly". Signed-off-by: David Turner <dturner@twosigma.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-11-19 04:30:49 +08:00
if (size)
data->rpc->any_written = 1;
if (data->check_pktline)
check_pktline(&data->pktline_state, ptr, size);
write_or_die(data->rpc->in, ptr, size);
return size;
}
static int run_slot(struct active_request_slot *slot,
struct slot_results *results)
{
http: prompt for credentials on failed POST All of the smart-http GET requests go through the http_get_* functions, which will prompt for credentials and retry if we see an HTTP 401. POST requests, however, do not go through any central point. Moreover, it is difficult to retry in the general case; we cannot assume the request body fits in memory or is even seekable, and we don't know how much of it was consumed during the attempt. Most of the time, this is not a big deal; for both fetching and pushing, we make a GET request before doing any POSTs, so typically we figure out the credentials during the first request, then reuse them during the POST. However, some servers may allow a client to get the list of refs from receive-pack without authentication, and then require authentication when the client actually tries to POST the pack. This is not ideal, as the client may do a non-trivial amount of work to generate the pack (e.g., delta-compressing objects). However, for a long time it has been the recommended example configuration in git-http-backend(1) for setting up a repository with anonymous fetch and authenticated push. This setup has always been broken without putting a username into the URL. Prior to commit 986bbc0, it did work with a username in the URL, because git would prompt for credentials before making any requests at all. However, post-986bbc0, it is totally broken. Since it has been advertised in the manpage for some time, we should make sure it works. Unfortunately, it is not as easy as simply calling post_rpc again when it fails, due to the input issue mentioned above. However, we can still make this specific case work by retrying in two specific instances: 1. If the request is large (bigger than LARGE_PACKET_MAX), we will first send a probe request with a single flush packet. Since this request is static, we can freely retry it. 2. If the request is small and we are not using gzip, then we have the whole thing in-core, and we can freely retry. That means we will not retry in some instances, including: 1. If we are using gzip. However, we only do so when calling git-upload-pack, so it does not apply to pushes. 2. If we have a large request, the probe succeeds, but then the real POST wants authentication. This is an extremely unlikely configuration and not worth worrying about. While it might be nice to cover those instances, doing so would be significantly more complex for very little real-world gain. In the long run, we will be much better off when curl learns to internally handle authentication as a callback, and we can cleanly handle all cases that way. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2012-08-27 21:27:15 +08:00
int err;
struct slot_results results_buf;
if (!results)
results = &results_buf;
http: never use curl_easy_perform We currently don't reuse http connections when fetching via the smart-http protocol. This is bad because the TCP handshake introduces latency, and especially because SSL connection setup may be non-trivial. We can fix it by consistently using curl's "multi" interface. The reason is rather complicated: Our http code has two ways of being used: queuing many "slots" to be fetched in parallel, or fetching a single request in a blocking manner. The parallel code is built on curl's "multi" interface. Most of the single-request code uses http_request, which is built on top of the parallel code (we just feed it one slot, and wait until it finishes). However, one could also accomplish the single-request scheme by avoiding curl's multi interface entirely and just using curl_easy_perform. This is simpler, and is used by post_rpc in the smart-http protocol. It does work to use the same curl handle in both contexts, as long as it is not at the same time. However, internally curl may not share all of the cached resources between both contexts. In particular, a connection formed using the "multi" code will go into a reuse pool connected to the "multi" object. Further requests using the "easy" interface will not be able to reuse that connection. The smart http protocol does ref discovery via http_request, which uses the "multi" interface, and then follows up with the "easy" interface for its rpc calls. As a result, we make two HTTP connections rather than reusing a single one. We could teach the ref discovery to use the "easy" interface. But it is only once we have done this discovery that we know whether the protocol will be smart or dumb. If it is dumb, then our further requests, which want to fetch objects in parallel, will not be able to reuse the same connection. Instead, this patch switches post_rpc to build on the parallel interface, which means that we use it consistently everywhere. It's a little more complicated to use, but since we have the infrastructure already, it doesn't add any code; we can just factor out the relevant bits from http_request. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-02-18 18:34:20 +08:00
err = run_one_slot(slot, results);
http: prompt for credentials on failed POST All of the smart-http GET requests go through the http_get_* functions, which will prompt for credentials and retry if we see an HTTP 401. POST requests, however, do not go through any central point. Moreover, it is difficult to retry in the general case; we cannot assume the request body fits in memory or is even seekable, and we don't know how much of it was consumed during the attempt. Most of the time, this is not a big deal; for both fetching and pushing, we make a GET request before doing any POSTs, so typically we figure out the credentials during the first request, then reuse them during the POST. However, some servers may allow a client to get the list of refs from receive-pack without authentication, and then require authentication when the client actually tries to POST the pack. This is not ideal, as the client may do a non-trivial amount of work to generate the pack (e.g., delta-compressing objects). However, for a long time it has been the recommended example configuration in git-http-backend(1) for setting up a repository with anonymous fetch and authenticated push. This setup has always been broken without putting a username into the URL. Prior to commit 986bbc0, it did work with a username in the URL, because git would prompt for credentials before making any requests at all. However, post-986bbc0, it is totally broken. Since it has been advertised in the manpage for some time, we should make sure it works. Unfortunately, it is not as easy as simply calling post_rpc again when it fails, due to the input issue mentioned above. However, we can still make this specific case work by retrying in two specific instances: 1. If the request is large (bigger than LARGE_PACKET_MAX), we will first send a probe request with a single flush packet. Since this request is static, we can freely retry it. 2. If the request is small and we are not using gzip, then we have the whole thing in-core, and we can freely retry. That means we will not retry in some instances, including: 1. If we are using gzip. However, we only do so when calling git-upload-pack, so it does not apply to pushes. 2. If we have a large request, the probe succeeds, but then the real POST wants authentication. This is an extremely unlikely configuration and not worth worrying about. While it might be nice to cover those instances, doing so would be significantly more complex for very little real-world gain. In the long run, we will be much better off when curl learns to internally handle authentication as a callback, and we can cleanly handle all cases that way. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2012-08-27 21:27:15 +08:00
if (err != HTTP_OK && err != HTTP_REAUTH) {
struct strbuf msg = STRBUF_INIT;
if (results->http_code && results->http_code != 200)
strbuf_addf(&msg, "HTTP %ld", results->http_code);
if (results->curl_result != CURLE_OK) {
if (msg.len)
strbuf_addch(&msg, ' ');
strbuf_addf(&msg, "curl %d", results->curl_result);
if (curl_errorstr[0]) {
strbuf_addch(&msg, ' ');
strbuf_addstr(&msg, curl_errorstr);
}
}
error(_("RPC failed; %s"), msg.buf);
strbuf_release(&msg);
}
return err;
}
static int probe_rpc(struct rpc_state *rpc, struct slot_results *results)
{
struct active_request_slot *slot;
struct curl_slist *headers = http_copy_default_headers();
struct strbuf buf = STRBUF_INIT;
int err;
slot = get_active_slot();
headers = curl_slist_append(headers, rpc->hdr_content_type);
headers = curl_slist_append(headers, rpc->hdr_accept);
curl_easy_setopt(slot->curl, CURLOPT_NOBODY, 0);
curl_easy_setopt(slot->curl, CURLOPT_POST, 1);
curl_easy_setopt(slot->curl, CURLOPT_URL, rpc->service_url);
curl_easy_setopt(slot->curl, CURLOPT_ENCODING, NULL);
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDS, "0000");
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDSIZE, 4);
curl_easy_setopt(slot->curl, CURLOPT_HTTPHEADER, headers);
curl_easy_setopt(slot->curl, CURLOPT_WRITEFUNCTION, fwrite_buffer);
curl_easy_setopt(slot->curl, CURLOPT_WRITEDATA, &buf);
err = run_slot(slot, results);
curl_slist_free_all(headers);
strbuf_release(&buf);
return err;
}
static curl_off_t xcurl_off_t(size_t len)
{
remote-curl.c: xcurl_off_t is not portable (on 32 bit platfoms) When setting DEVELOPER = 1 DEVOPTS = extra-all "gcc (Raspbian 6.3.0-18+rpi1+deb9u1) 6.3.0 20170516" errors out with "comparison is always false due to limited range of data type" "[-Werror=type-limits]" It turns out that the function xcurl_off_t() has 2 flavours: - It gives a warning 32 bit systems, like Linux - It takes the signed ssize_t as a paramter, but the only caller is using a size_t (which is typically unsigned these days) The original motivation of this function is to make sure that sizes > 2GiB are handled correctly. The curl documentation says: "For any given platform/compiler curl_off_t must be typedef'ed to a 64-bit wide signed integral data type" On a 32 bit system "size_t" can be promoted into a 64 bit signed value without loss of data, and therefore we may see the "comparison is always false" warning. On a 64 bit system it may happen, at least in theory, that size_t is > 2^63, and then the promotion from an unsigned "size_t" into a signed "curl_off_t" may be a problem. One solution to suppress a possible compiler warning could be to remove the function xcurl_off_t(). However, to be on the very safe side, we keep it and improve it: - The len parameter is changed from ssize_t to size_t - A temporally variable "size" is used, promoted int uintmax_t and the compared with "maximum_signed_value_of_type(curl_off_t)". Thanks to Junio C Hamano for this hint. Signed-off-by: Torsten Bögershausen <tboegi@web.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-11-10 01:41:10 +08:00
uintmax_t size = len;
if (size > maximum_signed_value_of_type(curl_off_t))
die(_("cannot handle pushes this big"));
remote-curl.c: xcurl_off_t is not portable (on 32 bit platfoms) When setting DEVELOPER = 1 DEVOPTS = extra-all "gcc (Raspbian 6.3.0-18+rpi1+deb9u1) 6.3.0 20170516" errors out with "comparison is always false due to limited range of data type" "[-Werror=type-limits]" It turns out that the function xcurl_off_t() has 2 flavours: - It gives a warning 32 bit systems, like Linux - It takes the signed ssize_t as a paramter, but the only caller is using a size_t (which is typically unsigned these days) The original motivation of this function is to make sure that sizes > 2GiB are handled correctly. The curl documentation says: "For any given platform/compiler curl_off_t must be typedef'ed to a 64-bit wide signed integral data type" On a 32 bit system "size_t" can be promoted into a 64 bit signed value without loss of data, and therefore we may see the "comparison is always false" warning. On a 64 bit system it may happen, at least in theory, that size_t is > 2^63, and then the promotion from an unsigned "size_t" into a signed "curl_off_t" may be a problem. One solution to suppress a possible compiler warning could be to remove the function xcurl_off_t(). However, to be on the very safe side, we keep it and improve it: - The len parameter is changed from ssize_t to size_t - A temporally variable "size" is used, promoted int uintmax_t and the compared with "maximum_signed_value_of_type(curl_off_t)". Thanks to Junio C Hamano for this hint. Signed-off-by: Torsten Bögershausen <tboegi@web.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-11-10 01:41:10 +08:00
return (curl_off_t)size;
}
/*
* If flush_received is true, do not attempt to read any more; just use what's
* in rpc->buf.
*/
static int post_rpc(struct rpc_state *rpc, int stateless_connect, int flush_received)
{
struct active_request_slot *slot;
struct curl_slist *headers = NULL;
int use_gzip = rpc->gzip_request;
char *gzip_body = NULL;
size_t gzip_size = 0;
int err, large_request = 0;
int needs_100_continue = 0;
struct rpc_in_data rpc_in_data;
/* Try to load the entire request, if we can fit it into the
* allocated buffer space we can use HTTP/1.0 and avoid the
* chunked encoding mess.
*/
if (!flush_received) {
while (1) {
size_t n;
enum packet_read_status status;
if (!rpc_read_from_out(rpc, 0, &n, &status)) {
large_request = 1;
use_gzip = 0;
break;
}
if (status == PACKET_READ_FLUSH)
break;
}
}
if (large_request) {
struct slot_results results;
http: prompt for credentials on failed POST All of the smart-http GET requests go through the http_get_* functions, which will prompt for credentials and retry if we see an HTTP 401. POST requests, however, do not go through any central point. Moreover, it is difficult to retry in the general case; we cannot assume the request body fits in memory or is even seekable, and we don't know how much of it was consumed during the attempt. Most of the time, this is not a big deal; for both fetching and pushing, we make a GET request before doing any POSTs, so typically we figure out the credentials during the first request, then reuse them during the POST. However, some servers may allow a client to get the list of refs from receive-pack without authentication, and then require authentication when the client actually tries to POST the pack. This is not ideal, as the client may do a non-trivial amount of work to generate the pack (e.g., delta-compressing objects). However, for a long time it has been the recommended example configuration in git-http-backend(1) for setting up a repository with anonymous fetch and authenticated push. This setup has always been broken without putting a username into the URL. Prior to commit 986bbc0, it did work with a username in the URL, because git would prompt for credentials before making any requests at all. However, post-986bbc0, it is totally broken. Since it has been advertised in the manpage for some time, we should make sure it works. Unfortunately, it is not as easy as simply calling post_rpc again when it fails, due to the input issue mentioned above. However, we can still make this specific case work by retrying in two specific instances: 1. If the request is large (bigger than LARGE_PACKET_MAX), we will first send a probe request with a single flush packet. Since this request is static, we can freely retry it. 2. If the request is small and we are not using gzip, then we have the whole thing in-core, and we can freely retry. That means we will not retry in some instances, including: 1. If we are using gzip. However, we only do so when calling git-upload-pack, so it does not apply to pushes. 2. If we have a large request, the probe succeeds, but then the real POST wants authentication. This is an extremely unlikely configuration and not worth worrying about. While it might be nice to cover those instances, doing so would be significantly more complex for very little real-world gain. In the long run, we will be much better off when curl learns to internally handle authentication as a callback, and we can cleanly handle all cases that way. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2012-08-27 21:27:15 +08:00
do {
err = probe_rpc(rpc, &results);
http: hoist credential request out of handle_curl_result When we are handling a curl response code in http_request or in the remote-curl RPC code, we use the handle_curl_result helper to translate curl's response into an easy-to-use code. When we see an HTTP 401, we do one of two things: 1. If we already had a filled-in credential, we mark it as rejected, and then return HTTP_NOAUTH to indicate to the caller that we failed. 2. If we didn't, then we ask for a new credential and tell the caller HTTP_REAUTH to indicate that they may want to try again. Rejecting in the first case makes sense; it is the natural result of the request we just made. However, prompting for more credentials in the second step does not always make sense. We do not know for sure that the caller is going to make a second request, and nor are we sure that it will be to the same URL. Logically, the prompt belongs not to the request we just finished, but to the request we are (maybe) about to make. In practice, it is very hard to trigger any bad behavior. Currently, if we make a second request, it will always be to the same URL (even in the face of redirects, because curl handles the redirects internally). And we almost always retry on HTTP_REAUTH these days. The one exception is if we are streaming a large RPC request to the server (e.g., a pushed packfile), in which case we cannot restart. It's extremely unlikely to see a 401 response at this stage, though, as we would typically have seen it when we sent a probe request, before streaming the data. This patch drops the automatic prompt out of case 2, and instead requires the caller to do it. This is a few extra lines of code, and the bug it fixes is unlikely to come up in practice. But it is conceptually cleaner, and paves the way for better handling of credentials across redirects. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
2013-09-28 16:31:45 +08:00
if (err == HTTP_REAUTH)
credential: gate new fields on capability We support the new credential and authtype fields, but we lack a way to indicate to a credential helper that we'd like them to be used. Without some sort of indication, the credential helper doesn't know if it should try to provide us a username and password, or a pre-encoded credential. For example, the helper might prefer a more restricted Bearer token if pre-encoded credentials are possible, but might have to fall back to more general username and password if not. Let's provide a simple way to indicate whether Git (or, for that matter, the helper) is capable of understanding the authtype and credential fields. We send this capability when we generate a request, and the other side may reply to indicate to us that it does, too. For now, don't enable sending capabilities for the HTTP code. In a future commit, we'll introduce appropriate handling for that code, which requires more in-depth work. The logic for determining whether a capability is supported may seem complex, but it is not. At each stage, we emit the capability to the following stage if all preceding stages have declared it. Thus, if the caller to git credential fill didn't declare it, then we won't send it to the helper, and if fill's caller did send but the helper doesn't understand it, then we won't send it on in the response. If we're an internal user, then we know about all capabilities and will request them. For "git credential approve" and "git credential reject", we set the helper capability before calling the helper, since we assume that the input we're getting from the external program comes from a previous call to "git credential fill", and thus we'll invoke send a capability to the helper if and only if we got one from the standard input, which is the correct behavior. Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-04-17 08:02:29 +08:00
credential_fill(&http_auth, 0);
http: prompt for credentials on failed POST All of the smart-http GET requests go through the http_get_* functions, which will prompt for credentials and retry if we see an HTTP 401. POST requests, however, do not go through any central point. Moreover, it is difficult to retry in the general case; we cannot assume the request body fits in memory or is even seekable, and we don't know how much of it was consumed during the attempt. Most of the time, this is not a big deal; for both fetching and pushing, we make a GET request before doing any POSTs, so typically we figure out the credentials during the first request, then reuse them during the POST. However, some servers may allow a client to get the list of refs from receive-pack without authentication, and then require authentication when the client actually tries to POST the pack. This is not ideal, as the client may do a non-trivial amount of work to generate the pack (e.g., delta-compressing objects). However, for a long time it has been the recommended example configuration in git-http-backend(1) for setting up a repository with anonymous fetch and authenticated push. This setup has always been broken without putting a username into the URL. Prior to commit 986bbc0, it did work with a username in the URL, because git would prompt for credentials before making any requests at all. However, post-986bbc0, it is totally broken. Since it has been advertised in the manpage for some time, we should make sure it works. Unfortunately, it is not as easy as simply calling post_rpc again when it fails, due to the input issue mentioned above. However, we can still make this specific case work by retrying in two specific instances: 1. If the request is large (bigger than LARGE_PACKET_MAX), we will first send a probe request with a single flush packet. Since this request is static, we can freely retry it. 2. If the request is small and we are not using gzip, then we have the whole thing in-core, and we can freely retry. That means we will not retry in some instances, including: 1. If we are using gzip. However, we only do so when calling git-upload-pack, so it does not apply to pushes. 2. If we have a large request, the probe succeeds, but then the real POST wants authentication. This is an extremely unlikely configuration and not worth worrying about. While it might be nice to cover those instances, doing so would be significantly more complex for very little real-world gain. In the long run, we will be much better off when curl learns to internally handle authentication as a callback, and we can cleanly handle all cases that way. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2012-08-27 21:27:15 +08:00
} while (err == HTTP_REAUTH);
if (err != HTTP_OK)
return -1;
if (results.auth_avail & CURLAUTH_GSSNEGOTIATE || http_auth.authtype)
needs_100_continue = 1;
}
retry:
headers = http_copy_default_headers();
headers = curl_slist_append(headers, rpc->hdr_content_type);
headers = curl_slist_append(headers, rpc->hdr_accept);
headers = curl_slist_append(headers, needs_100_continue ?
"Expect: 100-continue" : "Expect:");
headers = http_append_auth_header(&http_auth, headers);
/* Add Accept-Language header */
if (rpc->hdr_accept_language)
headers = curl_slist_append(headers, rpc->hdr_accept_language);
/* Add the extra Git-Protocol header */
if (rpc->protocol_header)
headers = curl_slist_append(headers, rpc->protocol_header);
slot = get_active_slot();
curl_easy_setopt(slot->curl, CURLOPT_NOBODY, 0);
curl_easy_setopt(slot->curl, CURLOPT_POST, 1);
curl_easy_setopt(slot->curl, CURLOPT_URL, rpc->service_url);
curl_easy_setopt(slot->curl, CURLOPT_ENCODING, "");
if (large_request) {
/* The request body is large and the size cannot be predicted.
* We must use chunked encoding to send it.
*/
#ifdef GIT_CURL_NEED_TRANSFER_ENCODING_HEADER
headers = curl_slist_append(headers, "Transfer-Encoding: chunked");
#endif
rpc->initial_buffer = 1;
curl_easy_setopt(slot->curl, CURLOPT_READFUNCTION, rpc_out);
curl_easy_setopt(slot->curl, CURLOPT_INFILE, rpc);
http: prefer CURLOPT_SEEKFUNCTION to CURLOPT_IOCTLFUNCTION The IOCTLFUNCTION option has been deprecated, and generates a compiler warning in recent versions of curl. We can switch to using SEEKFUNCTION instead. It was added in 2008 via curl 7.18.0; our INSTALL file already indicates we require at least curl 7.19.4. But there's one catch: curl says we should use CURL_SEEKFUNC_{OK,FAIL}, and those didn't arrive until 7.19.5. One workaround would be to use a bare 0/1 here (or define our own macros). But let's just bump the minimum required version to 7.19.5. That version is only a minor version bump from our existing requirement, and is only a 2 month time bump for versions that are almost 13 years old. So it's not likely that anybody cares about the distinction. Switching means we have to rewrite the ioctl functions into seek functions. In some ways they are simpler (seeking is the only operation), but in some ways more complex (the ioctl allowed only a full rewind, but now we can seek to arbitrary offsets). Curl will only ever use SEEK_SET (per their documentation), so I didn't bother implementing anything else, since it would naturally be completely untested. This seems unlikely to change, but I added an assertion just in case. Likewise, I doubt curl will ever try to seek outside of the buffer sizes we've told it, but I erred on the defensive side here, rather than do an out-of-bounds read. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-01-17 11:04:44 +08:00
curl_easy_setopt(slot->curl, CURLOPT_SEEKFUNCTION, rpc_seek);
curl_easy_setopt(slot->curl, CURLOPT_SEEKDATA, rpc);
if (options.verbosity > 1) {
fprintf(stderr, "POST %s (chunked)\n", rpc->service_name);
fflush(stderr);
}
} else if (gzip_body) {
/*
* If we are looping to retry authentication, then the previous
* run will have set up the headers and gzip buffer already,
* and we just need to send it.
*/
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDS, gzip_body);
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDSIZE_LARGE, xcurl_off_t(gzip_size));
} else if (use_gzip && 1024 < rpc->len) {
/* The client backend isn't giving us compressed data so
* we can try to deflate it ourselves, this may save on
* the transfer time.
*/
2011-06-11 02:52:15 +08:00
git_zstream stream;
int ret;
git_deflate_init_gzip(&stream, Z_BEST_COMPRESSION);
gzip_size = git_deflate_bound(&stream, rpc->len);
gzip_body = xmalloc(gzip_size);
stream.next_in = (unsigned char *)rpc->buf;
stream.avail_in = rpc->len;
stream.next_out = (unsigned char *)gzip_body;
stream.avail_out = gzip_size;
ret = git_deflate(&stream, Z_FINISH);
if (ret != Z_STREAM_END)
die(_("cannot deflate request; zlib deflate error %d"), ret);
ret = git_deflate_end_gently(&stream);
if (ret != Z_OK)
die(_("cannot deflate request; zlib end error %d"), ret);
gzip_size = stream.total_out;
headers = curl_slist_append(headers, "Content-Encoding: gzip");
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDS, gzip_body);
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDSIZE_LARGE, xcurl_off_t(gzip_size));
if (options.verbosity > 1) {
fprintf(stderr, "POST %s (gzip %lu to %lu bytes)\n",
rpc->service_name,
(unsigned long)rpc->len, (unsigned long)gzip_size);
fflush(stderr);
}
} else {
/* We know the complete request size in advance, use the
* more normal Content-Length approach.
*/
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDS, rpc->buf);
curl_easy_setopt(slot->curl, CURLOPT_POSTFIELDSIZE_LARGE, xcurl_off_t(rpc->len));
if (options.verbosity > 1) {
fprintf(stderr, "POST %s (%lu bytes)\n",
rpc->service_name, (unsigned long)rpc->len);
fflush(stderr);
}
}
curl_easy_setopt(slot->curl, CURLOPT_HTTPHEADER, headers);
curl_easy_setopt(slot->curl, CURLOPT_WRITEFUNCTION, rpc_in);
rpc_in_data.rpc = rpc;
rpc_in_data.slot = slot;
rpc_in_data.check_pktline = stateless_connect;
memset(&rpc_in_data.pktline_state, 0, sizeof(rpc_in_data.pktline_state));
curl_easy_setopt(slot->curl, CURLOPT_WRITEDATA, &rpc_in_data);
curl_easy_setopt(slot->curl, CURLOPT_FAILONERROR, 0);
remote-curl: don't hang when a server dies before any output In the event that a HTTP server closes the connection after giving a 200 but before giving any packets, we don't want to hang forever waiting for a response that will never come. Instead, we should die immediately. One case where this happens is when attempting to fetch a dangling object by its object name. In this case, the server dies before sending any data. Prior to this patch, fetch-pack would wait for data from the server, and remote-curl would wait for fetch-pack, causing a deadlock. Despite this patch, there is other possible malformed input that could cause the same deadlock (e.g. a half-finished pktline, or a pktline but no trailing flush). There are a few possible solutions to this: 1. Allowing remote-curl to tell fetch-pack about the EOF (so that fetch-pack could know that no more data is coming until it says something else). This is tricky because an out-of-band signal would be required, or the http response would have to be re-framed inside another layer of pkt-line or something. 2. Make remote-curl understand some of the protocol. It turns out that in addition to understanding pkt-line, it would need to watch for ack/nak. This is somewhat fragile, as information about the protocol would end up in two places. Also, pkt-lines which are already at the length limit would need special handling. Both of these solutions would require a fair amount of work, whereas this hack is easy and solves at least some of the problem. Still to do: it would be good to give a better error message than "fatal: The remote end hung up unexpectedly". Signed-off-by: David Turner <dturner@twosigma.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-11-19 04:30:49 +08:00
rpc->any_written = 0;
err = run_slot(slot, NULL);
http: hoist credential request out of handle_curl_result When we are handling a curl response code in http_request or in the remote-curl RPC code, we use the handle_curl_result helper to translate curl's response into an easy-to-use code. When we see an HTTP 401, we do one of two things: 1. If we already had a filled-in credential, we mark it as rejected, and then return HTTP_NOAUTH to indicate to the caller that we failed. 2. If we didn't, then we ask for a new credential and tell the caller HTTP_REAUTH to indicate that they may want to try again. Rejecting in the first case makes sense; it is the natural result of the request we just made. However, prompting for more credentials in the second step does not always make sense. We do not know for sure that the caller is going to make a second request, and nor are we sure that it will be to the same URL. Logically, the prompt belongs not to the request we just finished, but to the request we are (maybe) about to make. In practice, it is very hard to trigger any bad behavior. Currently, if we make a second request, it will always be to the same URL (even in the face of redirects, because curl handles the redirects internally). And we almost always retry on HTTP_REAUTH these days. The one exception is if we are streaming a large RPC request to the server (e.g., a pushed packfile), in which case we cannot restart. It's extremely unlikely to see a 401 response at this stage, though, as we would typically have seen it when we sent a probe request, before streaming the data. This patch drops the automatic prompt out of case 2, and instead requires the caller to do it. This is a few extra lines of code, and the bug it fixes is unlikely to come up in practice. But it is conceptually cleaner, and paves the way for better handling of credentials across redirects. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
2013-09-28 16:31:45 +08:00
if (err == HTTP_REAUTH && !large_request) {
credential: gate new fields on capability We support the new credential and authtype fields, but we lack a way to indicate to a credential helper that we'd like them to be used. Without some sort of indication, the credential helper doesn't know if it should try to provide us a username and password, or a pre-encoded credential. For example, the helper might prefer a more restricted Bearer token if pre-encoded credentials are possible, but might have to fall back to more general username and password if not. Let's provide a simple way to indicate whether Git (or, for that matter, the helper) is capable of understanding the authtype and credential fields. We send this capability when we generate a request, and the other side may reply to indicate to us that it does, too. For now, don't enable sending capabilities for the HTTP code. In a future commit, we'll introduce appropriate handling for that code, which requires more in-depth work. The logic for determining whether a capability is supported may seem complex, but it is not. At each stage, we emit the capability to the following stage if all preceding stages have declared it. Thus, if the caller to git credential fill didn't declare it, then we won't send it to the helper, and if fill's caller did send but the helper doesn't understand it, then we won't send it on in the response. If we're an internal user, then we know about all capabilities and will request them. For "git credential approve" and "git credential reject", we set the helper capability before calling the helper, since we assume that the input we're getting from the external program comes from a previous call to "git credential fill", and thus we'll invoke send a capability to the helper if and only if we got one from the standard input, which is the correct behavior. Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2024-04-17 08:02:29 +08:00
credential_fill(&http_auth, 0);
curl_slist_free_all(headers);
goto retry;
http: hoist credential request out of handle_curl_result When we are handling a curl response code in http_request or in the remote-curl RPC code, we use the handle_curl_result helper to translate curl's response into an easy-to-use code. When we see an HTTP 401, we do one of two things: 1. If we already had a filled-in credential, we mark it as rejected, and then return HTTP_NOAUTH to indicate to the caller that we failed. 2. If we didn't, then we ask for a new credential and tell the caller HTTP_REAUTH to indicate that they may want to try again. Rejecting in the first case makes sense; it is the natural result of the request we just made. However, prompting for more credentials in the second step does not always make sense. We do not know for sure that the caller is going to make a second request, and nor are we sure that it will be to the same URL. Logically, the prompt belongs not to the request we just finished, but to the request we are (maybe) about to make. In practice, it is very hard to trigger any bad behavior. Currently, if we make a second request, it will always be to the same URL (even in the face of redirects, because curl handles the redirects internally). And we almost always retry on HTTP_REAUTH these days. The one exception is if we are streaming a large RPC request to the server (e.g., a pushed packfile), in which case we cannot restart. It's extremely unlikely to see a 401 response at this stage, though, as we would typically have seen it when we sent a probe request, before streaming the data. This patch drops the automatic prompt out of case 2, and instead requires the caller to do it. This is a few extra lines of code, and the bug it fixes is unlikely to come up in practice. But it is conceptually cleaner, and paves the way for better handling of credentials across redirects. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
2013-09-28 16:31:45 +08:00
}
http: prompt for credentials on failed POST All of the smart-http GET requests go through the http_get_* functions, which will prompt for credentials and retry if we see an HTTP 401. POST requests, however, do not go through any central point. Moreover, it is difficult to retry in the general case; we cannot assume the request body fits in memory or is even seekable, and we don't know how much of it was consumed during the attempt. Most of the time, this is not a big deal; for both fetching and pushing, we make a GET request before doing any POSTs, so typically we figure out the credentials during the first request, then reuse them during the POST. However, some servers may allow a client to get the list of refs from receive-pack without authentication, and then require authentication when the client actually tries to POST the pack. This is not ideal, as the client may do a non-trivial amount of work to generate the pack (e.g., delta-compressing objects). However, for a long time it has been the recommended example configuration in git-http-backend(1) for setting up a repository with anonymous fetch and authenticated push. This setup has always been broken without putting a username into the URL. Prior to commit 986bbc0, it did work with a username in the URL, because git would prompt for credentials before making any requests at all. However, post-986bbc0, it is totally broken. Since it has been advertised in the manpage for some time, we should make sure it works. Unfortunately, it is not as easy as simply calling post_rpc again when it fails, due to the input issue mentioned above. However, we can still make this specific case work by retrying in two specific instances: 1. If the request is large (bigger than LARGE_PACKET_MAX), we will first send a probe request with a single flush packet. Since this request is static, we can freely retry it. 2. If the request is small and we are not using gzip, then we have the whole thing in-core, and we can freely retry. That means we will not retry in some instances, including: 1. If we are using gzip. However, we only do so when calling git-upload-pack, so it does not apply to pushes. 2. If we have a large request, the probe succeeds, but then the real POST wants authentication. This is an extremely unlikely configuration and not worth worrying about. While it might be nice to cover those instances, doing so would be significantly more complex for very little real-world gain. In the long run, we will be much better off when curl learns to internally handle authentication as a callback, and we can cleanly handle all cases that way. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2012-08-27 21:27:15 +08:00
if (err != HTTP_OK)
err = -1;
remote-curl: don't hang when a server dies before any output In the event that a HTTP server closes the connection after giving a 200 but before giving any packets, we don't want to hang forever waiting for a response that will never come. Instead, we should die immediately. One case where this happens is when attempting to fetch a dangling object by its object name. In this case, the server dies before sending any data. Prior to this patch, fetch-pack would wait for data from the server, and remote-curl would wait for fetch-pack, causing a deadlock. Despite this patch, there is other possible malformed input that could cause the same deadlock (e.g. a half-finished pktline, or a pktline but no trailing flush). There are a few possible solutions to this: 1. Allowing remote-curl to tell fetch-pack about the EOF (so that fetch-pack could know that no more data is coming until it says something else). This is tricky because an out-of-band signal would be required, or the http response would have to be re-framed inside another layer of pkt-line or something. 2. Make remote-curl understand some of the protocol. It turns out that in addition to understanding pkt-line, it would need to watch for ack/nak. This is somewhat fragile, as information about the protocol would end up in two places. Also, pkt-lines which are already at the length limit would need special handling. Both of these solutions would require a fair amount of work, whereas this hack is easy and solves at least some of the problem. Still to do: it would be good to give a better error message than "fatal: The remote end hung up unexpectedly". Signed-off-by: David Turner <dturner@twosigma.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-11-19 04:30:49 +08:00
if (!rpc->any_written)
err = -1;
if (rpc_in_data.pktline_state.len_filled)
err = error(_("%d bytes of length header were received"), rpc_in_data.pktline_state.len_filled);
if (rpc_in_data.pktline_state.remaining)
err = error(_("%d bytes of body are still expected"), rpc_in_data.pktline_state.remaining);
stateless-connect: send response end packet Currently, remote-curl acts as a proxy and blindly forwards packets between an HTTP server and fetch-pack. In the case of a stateless RPC connection where the connection is terminated before the transaction is complete, remote-curl will blindly forward the packets before waiting on more input from fetch-pack. Meanwhile, fetch-pack will read the transaction and continue reading, expecting more input to continue the transaction. This results in a deadlock between the two processes. This can be seen in the following command which does not terminate: $ git -c protocol.version=2 clone https://github.com/git/git.git --shallow-since=20151012 Cloning into 'git'... whereas the v1 version does terminate as expected: $ git -c protocol.version=1 clone https://github.com/git/git.git --shallow-since=20151012 Cloning into 'git'... fatal: the remote end hung up unexpectedly Instead of blindly forwarding packets, make remote-curl insert a response end packet after proxying the responses from the remote server when using stateless_connect(). On the RPC client side, ensure that each response ends as described. A separate control packet is chosen because we need to be able to differentiate between what the remote server sends and remote-curl's control packets. By ensuring in the remote-curl code that a server cannot send response end packets, we prevent a malicious server from being able to perform a denial of service attack in which they spoof a response end packet and cause the described deadlock to happen. Reported-by: Force Charlie <charlieio@outlook.com> Helped-by: Jeff King <peff@peff.net> Signed-off-by: Denton Liu <liu.denton@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-05-19 18:54:00 +08:00
if (stateless_connect)
packet_response_end(rpc->in);
curl_slist_free_all(headers);
free(gzip_body);
return err;
}
static int rpc_service(struct rpc_state *rpc, struct discovery *heads,
const char **client_argv, const struct strbuf *preamble,
struct strbuf *rpc_result)
{
const char *svc = rpc->service_name;
struct strbuf buf = STRBUF_INIT;
struct child_process client = CHILD_PROCESS_INIT;
int err = 0;
client.in = -1;
client.out = -1;
client.git_cmd = 1;
strvec_pushv(&client.args, client_argv);
if (start_command(&client))
exit(1);
write_or_die(client.in, preamble->buf, preamble->len);
if (heads)
write_or_die(client.in, heads->buf, heads->len);
rpc->alloc = http_post_buffer;
rpc->buf = xmalloc(rpc->alloc);
rpc->in = client.in;
rpc->out = client.out;
strbuf_addf(&buf, "%s%s", url.buf, svc);
rpc->service_url = strbuf_detach(&buf, NULL);
rpc->hdr_accept_language = xstrdup_or_null(http_get_accept_language_header());
strbuf_addf(&buf, "Content-Type: application/x-%s-request", svc);
rpc->hdr_content_type = strbuf_detach(&buf, NULL);
strbuf_addf(&buf, "Accept: application/x-%s-result", svc);
rpc->hdr_accept = strbuf_detach(&buf, NULL);
if (get_protocol_http_header(heads->version, &buf))
rpc->protocol_header = strbuf_detach(&buf, NULL);
else
rpc->protocol_header = NULL;
while (!err) {
int n = packet_read(rpc->out, rpc->buf, rpc->alloc, 0);
if (!n)
break;
rpc->pos = 0;
rpc->len = n;
err |= post_rpc(rpc, 0, 0);
}
close(client.in);
client.in = -1;
if (!err) {
strbuf_read(rpc_result, client.out, 0);
} else {
char buf[4096];
for (;;)
if (xread(client.out, buf, sizeof(buf)) <= 0)
break;
}
close(client.out);
client.out = -1;
err |= finish_command(&client);
free(rpc->service_url);
free(rpc->hdr_content_type);
free(rpc->hdr_accept);
free(rpc->hdr_accept_language);
free(rpc->protocol_header);
free(rpc->buf);
strbuf_release(&buf);
return err;
}
static int fetch_dumb(int nr_heads, struct ref **to_fetch)
{
struct walker *walker;
char **targets;
int ret, i;
ALLOC_ARRAY(targets, nr_heads);
if (options.depth || options.deepen_since)
die(_("dumb http transport does not support shallow capabilities"));
for (i = 0; i < nr_heads; i++)
targets[i] = xstrdup(oid_to_hex(&to_fetch[i]->old_oid));
walker = get_http_walker(url.buf);
walker->get_verbosely = options.verbosity >= 3;
walker->get_progress = options.progress;
walker->get_recover = 0;
ret = walker_fetch(walker, nr_heads, targets, NULL, NULL);
walker_free(walker);
for (i = 0; i < nr_heads; i++)
free(targets[i]);
free(targets);
return ret ? error(_("fetch failed.")) : 0;
}
static int fetch_git(struct discovery *heads,
int nr_heads, struct ref **to_fetch)
{
struct rpc_state rpc = RPC_STATE_INIT;
struct strbuf preamble = STRBUF_INIT;
int i, err;
struct strvec args = STRVEC_INIT;
struct strbuf rpc_result = STRBUF_INIT;
strvec_pushl(&args, "fetch-pack", "--stateless-rpc",
"--stdin", "--lock-pack", NULL);
if (options.followtags)
strvec_push(&args, "--include-tag");
if (options.thin)
strvec_push(&args, "--thin");
if (options.verbosity >= 3)
strvec_pushl(&args, "-v", "-v", NULL);
if (options.check_self_contained_and_connected)
strvec_push(&args, "--check-self-contained-and-connected");
if (options.cloning)
strvec_push(&args, "--cloning");
if (options.update_shallow)
strvec_push(&args, "--update-shallow");
if (!options.progress)
strvec_push(&args, "--no-progress");
if (options.depth)
strvec_pushf(&args, "--depth=%lu", options.depth);
if (options.deepen_since)
strvec_pushf(&args, "--shallow-since=%s", options.deepen_since);
for (i = 0; i < options.deepen_not.nr; i++)
strvec_pushf(&args, "--shallow-exclude=%s",
options.deepen_not.items[i].string);
fetch, upload-pack: --deepen=N extends shallow boundary by N commits In git-fetch, --depth argument is always relative with the latest remote refs. This makes it a bit difficult to cover this use case, where the user wants to make the shallow history, say 3 levels deeper. It would work if remote refs have not moved yet, but nobody can guarantee that, especially when that use case is performed a couple months after the last clone or "git fetch --depth". Also, modifying shallow boundary using --depth does not work well with clones created by --since or --not. This patch fixes that. A new argument --deepen=<N> will add <N> more (*) parent commits to the current history regardless of where remote refs are. Have/Want negotiation is still respected. So if remote refs move, the server will send two chunks: one between "have" and "want" and another to extend shallow history. In theory, the client could send no "want"s in order to get the second chunk only. But the protocol does not allow that. Either you send no want lines, which means ls-remote; or you have to send at least one want line that carries deep-relative to the server.. The main work was done by Dongcan Jiang. I fixed it up here and there. And of course all the bugs belong to me. (*) We could even support --deepen=<N> where <N> is negative. In that case we can cut some history from the shallow clone. This operation (and --depth=<shorter depth>) does not require interaction with remote side (and more complicated to implement as a result). Helped-by: Duy Nguyen <pclouds@gmail.com> Helped-by: Eric Sunshine <sunshine@sunshineco.com> Helped-by: Junio C Hamano <gitster@pobox.com> Signed-off-by: Dongcan Jiang <dongcan.jiang@gmail.com> Signed-off-by: Nguyễn Thái Ngọc Duy <pclouds@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-12 18:54:09 +08:00
if (options.deepen_relative && options.depth)
strvec_push(&args, "--deepen-relative");
if (options.from_promisor)
strvec_push(&args, "--from-promisor");
if (options.refetch)
strvec_push(&args, "--refetch");
if (options.filter)
strvec_pushf(&args, "--filter=%s", options.filter);
strvec_push(&args, url.buf);
for (i = 0; i < nr_heads; i++) {
struct ref *ref = to_fetch[i];
if (!*ref->name)
die(_("cannot fetch by sha1 over smart http"));
packet_buf_write(&preamble, "%s %s\n",
oid_to_hex(&ref->old_oid), ref->name);
}
packet_buf_flush(&preamble);
memset(&rpc, 0, sizeof(rpc));
rpc.service_name = "git-upload-pack",
rpc.gzip_request = 1;
err = rpc_service(&rpc, heads, args.v, &preamble, &rpc_result);
if (rpc_result.len)
write_or_die(1, rpc_result.buf, rpc_result.len);
strbuf_release(&rpc_result);
strbuf_release(&preamble);
strvec_clear(&args);
return err;
}
static int fetch(int nr_heads, struct ref **to_fetch)
{
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
struct discovery *d = discover_refs("git-upload-pack", 0);
if (d->proto_git)
return fetch_git(d, nr_heads, to_fetch);
else
return fetch_dumb(nr_heads, to_fetch);
}
static void parse_fetch(struct strbuf *buf)
{
struct ref **to_fetch = NULL;
struct ref *list_head = NULL;
struct ref **list = &list_head;
int alloc_heads = 0, nr_heads = 0;
do {
const char *p;
if (skip_prefix(buf->buf, "fetch ", &p)) {
const char *name;
struct ref *ref;
struct object_id old_oid;
const char *q;
if (parse_oid_hex(p, &old_oid, &q))
die(_("protocol error: expected sha/ref, got '%s'"), p);
if (*q == ' ')
name = q + 1;
else if (!*q)
name = "";
else
die(_("protocol error: expected sha/ref, got '%s'"), p);
ref = alloc_ref(name);
oidcpy(&ref->old_oid, &old_oid);
*list = ref;
list = &ref->next;
ALLOC_GROW(to_fetch, nr_heads + 1, alloc_heads);
to_fetch[nr_heads++] = ref;
}
else
die(_("http transport does not support %s"), buf->buf);
strbuf_reset(buf);
if (strbuf_getline_lf(buf, stdin) == EOF)
return;
if (!*buf->buf)
break;
} while (1);
if (fetch(nr_heads, to_fetch))
exit(128); /* error already reported */
free_refs(list_head);
free(to_fetch);
printf("\n");
fflush(stdout);
strbuf_reset(buf);
}
static void parse_get(const char *arg)
{
struct strbuf url = STRBUF_INIT;
struct strbuf path = STRBUF_INIT;
const char *space;
space = strchr(arg, ' ');
if (!space)
die(_("protocol error: expected '<url> <path>', missing space"));
strbuf_add(&url, arg, space - arg);
strbuf_addstr(&path, space + 1);
if (http_get_file(url.buf, path.buf, NULL))
die(_("failed to download file at URL '%s'"), url.buf);
strbuf_release(&url);
strbuf_release(&path);
printf("\n");
fflush(stdout);
}
static int push_dav(int nr_spec, const char **specs)
{
struct child_process child = CHILD_PROCESS_INIT;
size_t i;
child.git_cmd = 1;
strvec_push(&child.args, "http-push");
strvec_push(&child.args, "--helper-status");
if (options.dry_run)
strvec_push(&child.args, "--dry-run");
if (options.verbosity > 1)
strvec_push(&child.args, "--verbose");
strvec_push(&child.args, url.buf);
for (i = 0; i < nr_spec; i++)
strvec_push(&child.args, specs[i]);
if (run_command(&child))
die(_("git-http-push failed"));
return 0;
}
static int push_git(struct discovery *heads, int nr_spec, const char **specs)
{
struct rpc_state rpc = RPC_STATE_INIT;
int i, err;
struct strvec args;
struct string_list_item *cas_option;
struct strbuf preamble = STRBUF_INIT;
struct strbuf rpc_result = STRBUF_INIT;
strvec_init(&args);
strvec_pushl(&args, "send-pack", "--stateless-rpc", "--helper-status",
NULL);
if (options.thin)
strvec_push(&args, "--thin");
if (options.dry_run)
strvec_push(&args, "--dry-run");
if (options.push_cert == SEND_PACK_PUSH_CERT_ALWAYS)
strvec_push(&args, "--signed=yes");
else if (options.push_cert == SEND_PACK_PUSH_CERT_IF_ASKED)
strvec_push(&args, "--signed=if-asked");
remote-curl: pass on atomic capability to remote side When pushing more than one reference with the --atomic option, the server is supposed to perform a single atomic transaction to update the references, leaving them either all to succeed or all to fail. This works fine when pushing locally or over SSH, but when pushing over HTTP, we fail to pass the atomic capability to the remote side. In fact, we have not reported this capability to any remote helpers during the life of the feature. Now normally, things happen to work nevertheless, since we actually check for most types of failures, such as non-fast-forward updates, on the client side, and just abort the entire attempt. However, if the server side reports a problem, such as the inability to lock a ref, the transaction isn't atomic, because we haven't passed the appropriate capability over and the remote side has no way of knowing that we wanted atomic behavior. Fix this by passing the option from the transport code through to remote helpers, and from the HTTP remote helper down to send-pack. With this change, we can detect if the server side rejects the push and report back appropriately. Note the difference in the messages: the remote side reports "atomic transaction failed", while our own checking rejects pushes with the message "atomic push failed". Document the atomic option in the remote helper documentation, so other implementers can implement it if they like. Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-10-17 07:45:34 +08:00
if (options.atomic)
strvec_push(&args, "--atomic");
if (options.verbosity == 0)
strvec_push(&args, "--quiet");
else if (options.verbosity > 1)
strvec_push(&args, "--verbose");
for (i = 0; i < options.push_options.nr; i++)
strvec_pushf(&args, "--push-option=%s",
options.push_options.items[i].string);
strvec_push(&args, options.progress ? "--progress" : "--no-progress");
for_each_string_list_item(cas_option, &cas_options)
strvec_push(&args, cas_option->string);
strvec_push(&args, url.buf);
if (options.force_if_includes)
strvec_push(&args, "--force-if-includes");
strvec_push(&args, "--stdin");
for (i = 0; i < nr_spec; i++)
packet_buf_write(&preamble, "%s\n", specs[i]);
packet_buf_flush(&preamble);
memset(&rpc, 0, sizeof(rpc));
rpc.service_name = "git-receive-pack",
err = rpc_service(&rpc, heads, args.v, &preamble, &rpc_result);
if (rpc_result.len)
write_or_die(1, rpc_result.buf, rpc_result.len);
strbuf_release(&rpc_result);
strbuf_release(&preamble);
strvec_clear(&args);
return err;
}
static int push(int nr_spec, const char **specs)
{
remote-curl: always parse incoming refs When remote-curl receives a list of refs from a server, it keeps the whole buffer intact. When we get a "list" command, we feed the result to get_remote_heads, and when we get a "fetch" or "push" command, we feed it to fetch-pack or send-pack, respectively. If the HTTP response from the server is truncated for any reason, we will get an incomplete ref advertisement. If we then feed this incomplete list to fetch-pack, one of a few things may happen: 1. If the truncation is in a packet header, fetch-pack will notice the bogus line and complain. 2. If the truncation is inside a packet, fetch-pack will keep waiting for us to send the rest of the packet, which we never will. 3. If the truncation is at a packet boundary, fetch-pack will keep waiting for us to send the next packet, which we never will. As a result, fetch-pack hangs, waiting for input. However, remote-curl believes it has sent all of the advertisement, and therefore waits for fetch-pack to speak. The two processes end up in a deadlock. We do notice the broken ref list if we feed it to get_remote_heads. So if git asks the helper to do a "list" followed by a "fetch", we are safe; we'll abort during the list operation, which parses the refs. This patch teaches remote-curl to always parse and save the incoming ref list when we read the ref advertisement from a server. That means that we will always verify and abort before even running fetch-pack (or send-pack) when reading a corrupted list, even if we do not run the "list" command explicitly. Since we save the result, in the common case of running "list" then "fetch", we do not do any extra parsing at all. In the case of just a "fetch", we do an extra round of parsing, but only once. Note also that the "fetch" case will now also initialize server_capabilities from the remote (in remote-curl; we already would do so inside fetch-pack). Doing "list+fetch" already does this. It doesn't actually matter now, but the new behavior is arguably more correct, should remote-curl ever start caring about the server's capability list. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-21 04:07:19 +08:00
struct discovery *heads = discover_refs("git-receive-pack", 1);
int ret;
if (heads->proto_git)
ret = push_git(heads, nr_spec, specs);
else
ret = push_dav(nr_spec, specs);
free_discovery(heads);
return ret;
}
static void parse_push(struct strbuf *buf)
{
struct strvec specs = STRVEC_INIT;
int ret;
do {
const char *arg;
if (skip_prefix(buf->buf, "push ", &arg))
strvec_push(&specs, arg);
else
die(_("http transport does not support %s"), buf->buf);
strbuf_reset(buf);
if (strbuf_getline_lf(buf, stdin) == EOF)
goto free_specs;
if (!*buf->buf)
break;
} while (1);
ret = push(specs.nr, specs.v);
printf("\n");
fflush(stdout);
if (ret)
exit(128); /* error already reported */
free_specs:
strvec_clear(&specs);
}
static int stateless_connect(const char *service_name)
{
struct discovery *discover;
struct rpc_state rpc = RPC_STATE_INIT;
struct strbuf buf = STRBUF_INIT;
const char *accept_language;
/*
* Run the info/refs request and see if the server supports protocol
* v2. If and only if the server supports v2 can we successfully
* establish a stateless connection, otherwise we need to tell the
* client to fallback to using other transport helper functions to
* complete their request.
*
* The "git-upload-archive" service is a read-only operation. Fallback
* to use "git-upload-pack" service to discover protocol version.
*/
if (!strcmp(service_name, "git-upload-archive"))
discover = discover_refs("git-upload-pack", 0);
else
discover = discover_refs(service_name, 0);
if (discover->version != protocol_v2) {
printf("fallback\n");
fflush(stdout);
return -1;
} else {
/* Stateless Connection established */
printf("\n");
fflush(stdout);
}
accept_language = http_get_accept_language_header();
if (accept_language)
rpc.hdr_accept_language = xstrfmt("%s", accept_language);
rpc.service_name = service_name;
rpc.service_url = xstrfmt("%s%s", url.buf, rpc.service_name);
rpc.hdr_content_type = xstrfmt("Content-Type: application/x-%s-request", rpc.service_name);
rpc.hdr_accept = xstrfmt("Accept: application/x-%s-result", rpc.service_name);
if (get_protocol_http_header(discover->version, &buf)) {
rpc.protocol_header = strbuf_detach(&buf, NULL);
} else {
rpc.protocol_header = NULL;
strbuf_release(&buf);
}
rpc.buf = xmalloc(http_post_buffer);
rpc.alloc = http_post_buffer;
rpc.len = 0;
rpc.pos = 0;
rpc.in = 1;
rpc.out = 0;
rpc.any_written = 0;
rpc.gzip_request = 1;
rpc.initial_buffer = 0;
rpc.write_line_lengths = 1;
rpc.flush_read_but_not_sent = 0;
/*
* Dump the capability listing that we got from the server earlier
* during the info/refs request. This does not work with the
* "git-upload-archive" service.
*/
if (strcmp(service_name, "git-upload-archive"))
write_or_die(rpc.in, discover->buf, discover->len);
/* Until we see EOF keep sending POSTs */
while (1) {
size_t avail;
enum packet_read_status status;
if (!rpc_read_from_out(&rpc, PACKET_READ_GENTLE_ON_EOF, &avail,
&status))
BUG("The entire rpc->buf should be larger than LARGE_PACKET_MAX");
if (status == PACKET_READ_EOF)
break;
if (post_rpc(&rpc, 1, status == PACKET_READ_FLUSH))
/* We would have an err here */
break;
/* Reset the buffer for next request */
rpc.len = 0;
}
free(rpc.service_url);
free(rpc.hdr_content_type);
free(rpc.hdr_accept);
free(rpc.hdr_accept_language);
free(rpc.protocol_header);
free(rpc.buf);
strbuf_release(&buf);
return 0;
}
add an extra level of indirection to main() There are certain startup tasks that we expect every git process to do. In some cases this is just to improve the quality of the program (e.g., setting up gettext()). In others it is a requirement for using certain functions in libgit.a (e.g., system_path() expects that you have called git_extract_argv0_path()). Most commands are builtins and are covered by the git.c version of main(). However, there are still a few external commands that use their own main(). Each of these has to remember to include the correct startup sequence, and we are not always consistent. Rather than just fix the inconsistencies, let's make this harder to get wrong by providing a common main() that can run this standard startup. We basically have two options to do this: - the compat/mingw.h file already does something like this by adding a #define that replaces the definition of main with a wrapper that calls mingw_startup(). The upside is that the code in each program doesn't need to be changed at all; it's rewritten on the fly by the preprocessor. The downside is that it may make debugging of the startup sequence a bit more confusing, as the preprocessor is quietly inserting new code. - the builtin functions are all of the form cmd_foo(), and git.c's main() calls them. This is much more explicit, which may make things more obvious to somebody reading the code. It's also more flexible (because of course we have to figure out _which_ cmd_foo() to call). The downside is that each of the builtins must define cmd_foo(), instead of just main(). This patch chooses the latter option, preferring the more explicit approach, even though it is more invasive. We introduce a new file common-main.c, with the "real" main. It expects to call cmd_main() from whatever other objects it is linked against. We link common-main.o against anything that links against libgit.a, since we know that such programs will need to do this setup. Note that common-main.o can't actually go inside libgit.a, as the linker would not pick up its main() function automatically (it has no callers). The rest of the patch is just adjusting all of the various external programs (mostly in t/helper) to use cmd_main(). I've provided a global declaration for cmd_main(), which means that all of the programs also need to match its signature. In particular, many functions need to switch to "const char **" instead of "char **" for argv. This effect ripples out to a few other variables and functions, as well. This makes the patch even more invasive, but the end result is much better. We should be treating argv strings as const anyway, and now all programs conform to the same signature (which also matches the way builtins are defined). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-07-01 13:58:58 +08:00
int cmd_main(int argc, const char **argv)
{
struct strbuf buf = STRBUF_INIT;
int nongit;
int ret = 1;
setup_git_directory_gently(&nongit);
if (argc < 2) {
error(_("remote-curl: usage: git remote-curl <remote> [<url>]"));
goto cleanup;
}
options.verbosity = 1;
options.progress = !!isatty(2);
options.thin = 1;
string_list_init_dup(&options.deepen_not);
string_list_init_dup(&options.push_options);
/*
* Just report "remote-curl" here (folding all the various aliases
* ("git-remote-http", "git-remote-https", and etc.) here since they
* are all just copies of the same actual executable.
*/
trace2_cmd_name("remote-curl");
remote = remote_get(argv[1]);
if (argc > 2) {
end_url_with_slash(&url, argv[2]);
} else {
end_url_with_slash(&url, remote->url.v[0]);
}
http_init(remote, url.buf, 0);
do {
const char *arg;
if (strbuf_getline_lf(&buf, stdin) == EOF) {
if (ferror(stdin))
error(_("remote-curl: error reading command stream from git"));
goto cleanup;
}
if (buf.len == 0)
break;
if (starts_with(buf.buf, "fetch ")) {
remote-curl: rediscover repository when fetching refs The reftable format encodes the hash function used by the repository inside of its tables. The reftable backend thus needs to be initialized with the correct hash function right from the start, or otherwise we may end up writing tables with the wrong hash function. But git-clone(1) initializes the reference database before learning about the hash function used by the remote repository, which has never been a problem with the reffiles backend. To fix this, we'll have to change git-clone(1) to be more careful and only create the reference backend once it learned about the remote hash function. This creates a problem for git-remote-curl(1), which will then be spawned at a time where the repository is not yet fully-initialized. Consequentially, git-remote-curl(1) will fail to detect the repository, which eventually causes it to error out once it is asked to fetch remote objects. We can address this issue by trying to re-discover the Git repository in case none was detected at startup time. With this change, the clone will look as following: 1. git-clone(1) sets up the initial repository, excluding the reference database. 2. git-clone(1) spawns git-remote-curl(1), which will be unable to detect the repository due to a missing "HEAD". 3. git-clone(1) asks git-remote-curl(1) to list remote references. This works just fine as this step does not require a local repository 4. git-clone(1) creates the reference database as it has now learned about the hash function. 5. git-clone(1) asks git-remote-curl(1) to fetch the remote packfile. The latter notices that it doesn't have a repository available, but it now knows to try and re-discover it. If the re-discovery succeeds in the last step we can continue with the clone. Signed-off-by: Patrick Steinhardt <ps@pks.im> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2023-12-12 15:00:50 +08:00
if (nongit) {
setup_git_directory_gently(&nongit);
if (nongit)
die(_("remote-curl: fetch attempted without a local repo"));
}
parse_fetch(&buf);
} else if (!strcmp(buf.buf, "list") || starts_with(buf.buf, "list ")) {
int for_push = !!strstr(buf.buf + 4, "for-push");
output_refs(get_refs(for_push));
} else if (starts_with(buf.buf, "push ")) {
parse_push(&buf);
} else if (skip_prefix(buf.buf, "option ", &arg)) {
const char *value = strchrnul(arg, ' ');
size_t arglen = value - arg;
int result;
if (*value)
value++; /* skip over SP */
else
value = "true";
result = set_option(arg, arglen, value);
if (!result)
printf("ok\n");
else if (result < 0)
printf("error invalid value\n");
else
printf("unsupported\n");
fflush(stdout);
} else if (skip_prefix(buf.buf, "get ", &arg)) {
parse_get(arg);
fflush(stdout);
} else if (!strcmp(buf.buf, "capabilities")) {
printf("stateless-connect\n");
printf("fetch\n");
printf("get\n");
printf("option\n");
printf("push\n");
printf("check-connectivity\n");
printf("object-format\n");
printf("\n");
fflush(stdout);
} else if (skip_prefix(buf.buf, "stateless-connect ", &arg)) {
if (!stateless_connect(arg))
break;
} else {
error(_("remote-curl: unknown command '%s' from git"), buf.buf);
goto cleanup;
}
strbuf_reset(&buf);
} while (1);
http_cleanup();
ret = 0;
cleanup:
strbuf_release(&buf);
return ret;
}