gcc/libsanitizer/sanitizer_common/sanitizer_addrhashmap.h
H.J. Lu 86289a4ff4 libsanitizer: Merge with upstream
Merged revision: 82bc6a094e85014f1891ef9407496f44af8fe442

with the fix for PR sanitizer/102911
2021-11-13 05:15:24 -08:00

392 lines
11 KiB
C++

//===-- sanitizer_addrhashmap.h ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Concurrent uptr->T hashmap.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_ADDRHASHMAP_H
#define SANITIZER_ADDRHASHMAP_H
#include "sanitizer_common.h"
#include "sanitizer_mutex.h"
#include "sanitizer_atomic.h"
#include "sanitizer_allocator_internal.h"
namespace __sanitizer {
// Concurrent uptr->T hashmap.
// T must be a POD type, kSize is preferably a prime but can be any number.
// Usage example:
//
// typedef AddrHashMap<uptr, 11> Map;
// Map m;
// {
// Map::Handle h(&m, addr);
// use h.operator->() to access the data
// if h.created() then the element was just created, and the current thread
// has exclusive access to it
// otherwise the current thread has only read access to the data
// }
// {
// Map::Handle h(&m, addr, true);
// this will remove the data from the map in Handle dtor
// the current thread has exclusive access to the data
// if !h.exists() then the element never existed
// }
// {
// Map::Handle h(&m, addr, false, true);
// this will create a new element or return a handle to an existing element
// if !h.created() this thread does *not* have exclusive access to the data
// }
template<typename T, uptr kSize>
class AddrHashMap {
private:
struct Cell {
atomic_uintptr_t addr;
T val;
};
struct AddBucket {
uptr cap;
uptr size;
Cell cells[1]; // variable len
};
static const uptr kBucketSize = 3;
struct Bucket {
Mutex mtx;
atomic_uintptr_t add;
Cell cells[kBucketSize];
};
public:
AddrHashMap();
class Handle {
public:
Handle(AddrHashMap<T, kSize> *map, uptr addr);
Handle(AddrHashMap<T, kSize> *map, uptr addr, bool remove);
Handle(AddrHashMap<T, kSize> *map, uptr addr, bool remove, bool create);
~Handle();
T *operator->();
T &operator*();
const T &operator*() const;
bool created() const;
bool exists() const;
private:
friend AddrHashMap<T, kSize>;
AddrHashMap<T, kSize> *map_;
Bucket *bucket_;
Cell *cell_;
uptr addr_;
uptr addidx_;
bool created_;
bool remove_;
bool create_;
};
typedef void (*ForEachCallback)(const uptr key, const T &val, void *arg);
// ForEach acquires a lock on each bucket while iterating over
// elements. Note that this only ensures that the structure of the hashmap is
// unchanged, there may be a data race to the element itself.
void ForEach(ForEachCallback cb, void *arg);
private:
friend class Handle;
Bucket *table_;
void acquire(Handle *h);
void release(Handle *h);
uptr calcHash(uptr addr);
};
template <typename T, uptr kSize>
void AddrHashMap<T, kSize>::ForEach(ForEachCallback cb, void *arg) {
for (uptr n = 0; n < kSize; n++) {
Bucket *bucket = &table_[n];
ReadLock lock(&bucket->mtx);
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &bucket->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 != 0)
cb(addr1, c->val, arg);
}
// Iterate over any additional cells.
if (AddBucket *add =
(AddBucket *)atomic_load(&bucket->add, memory_order_acquire)) {
for (uptr i = 0; i < add->size; i++) {
Cell *c = &add->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 != 0)
cb(addr1, c->val, arg);
}
}
}
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr) {
map_ = map;
addr_ = addr;
remove_ = false;
create_ = true;
map_->acquire(this);
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr,
bool remove) {
map_ = map;
addr_ = addr;
remove_ = remove;
create_ = true;
map_->acquire(this);
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::Handle(AddrHashMap<T, kSize> *map, uptr addr,
bool remove, bool create) {
map_ = map;
addr_ = addr;
remove_ = remove;
create_ = create;
map_->acquire(this);
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::Handle::~Handle() {
map_->release(this);
}
template <typename T, uptr kSize>
T *AddrHashMap<T, kSize>::Handle::operator->() {
return &cell_->val;
}
template <typename T, uptr kSize>
const T &AddrHashMap<T, kSize>::Handle::operator*() const {
return cell_->val;
}
template <typename T, uptr kSize>
T &AddrHashMap<T, kSize>::Handle::operator*() {
return cell_->val;
}
template<typename T, uptr kSize>
bool AddrHashMap<T, kSize>::Handle::created() const {
return created_;
}
template<typename T, uptr kSize>
bool AddrHashMap<T, kSize>::Handle::exists() const {
return cell_ != nullptr;
}
template<typename T, uptr kSize>
AddrHashMap<T, kSize>::AddrHashMap() {
table_ = (Bucket*)MmapOrDie(kSize * sizeof(table_[0]), "AddrHashMap");
}
template <typename T, uptr kSize>
void AddrHashMap<T, kSize>::acquire(Handle *h) NO_THREAD_SAFETY_ANALYSIS {
uptr addr = h->addr_;
uptr hash = calcHash(addr);
Bucket *b = &table_[hash];
h->created_ = false;
h->addidx_ = -1U;
h->bucket_ = b;
h->cell_ = nullptr;
// If we want to remove the element, we need exclusive access to the bucket,
// so skip the lock-free phase.
if (h->remove_)
goto locked;
retry:
// First try to find an existing element w/o read mutex.
CHECK(!h->remove_);
// Check the embed cells.
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &b->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_acquire);
if (addr1 == addr) {
h->cell_ = c;
return;
}
}
// Check the add cells with read lock.
if (atomic_load(&b->add, memory_order_relaxed)) {
b->mtx.ReadLock();
AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
for (uptr i = 0; i < add->size; i++) {
Cell *c = &add->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == addr) {
h->addidx_ = i;
h->cell_ = c;
return;
}
}
b->mtx.ReadUnlock();
}
locked:
// Re-check existence under write lock.
// Embed cells.
b->mtx.Lock();
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &b->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == addr) {
if (h->remove_) {
h->cell_ = c;
return;
}
b->mtx.Unlock();
goto retry;
}
}
// Add cells.
AddBucket *add = (AddBucket*)atomic_load(&b->add, memory_order_relaxed);
if (add) {
for (uptr i = 0; i < add->size; i++) {
Cell *c = &add->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == addr) {
if (h->remove_) {
h->addidx_ = i;
h->cell_ = c;
return;
}
b->mtx.Unlock();
goto retry;
}
}
}
// The element does not exist, no need to create it if we want to remove.
if (h->remove_ || !h->create_) {
b->mtx.Unlock();
return;
}
// Now try to create it under the mutex.
h->created_ = true;
// See if we have a free embed cell.
for (uptr i = 0; i < kBucketSize; i++) {
Cell *c = &b->cells[i];
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (addr1 == 0) {
h->cell_ = c;
return;
}
}
// Store in the add cells.
if (!add) {
// Allocate a new add array.
const uptr kInitSize = 64;
add = (AddBucket*)InternalAlloc(kInitSize);
internal_memset(add, 0, kInitSize);
add->cap = (kInitSize - sizeof(*add)) / sizeof(add->cells[0]) + 1;
add->size = 0;
atomic_store(&b->add, (uptr)add, memory_order_relaxed);
}
if (add->size == add->cap) {
// Grow existing add array.
uptr oldsize = sizeof(*add) + (add->cap - 1) * sizeof(add->cells[0]);
uptr newsize = oldsize * 2;
AddBucket *add1 = (AddBucket*)InternalAlloc(newsize);
internal_memset(add1, 0, newsize);
add1->cap = (newsize - sizeof(*add)) / sizeof(add->cells[0]) + 1;
add1->size = add->size;
internal_memcpy(add1->cells, add->cells, add->size * sizeof(add->cells[0]));
InternalFree(add);
atomic_store(&b->add, (uptr)add1, memory_order_relaxed);
add = add1;
}
// Store.
uptr i = add->size++;
Cell *c = &add->cells[i];
CHECK_EQ(atomic_load(&c->addr, memory_order_relaxed), 0);
h->addidx_ = i;
h->cell_ = c;
}
template <typename T, uptr kSize>
void AddrHashMap<T, kSize>::release(Handle *h) NO_THREAD_SAFETY_ANALYSIS {
if (!h->cell_)
return;
Bucket *b = h->bucket_;
Cell *c = h->cell_;
uptr addr1 = atomic_load(&c->addr, memory_order_relaxed);
if (h->created_) {
// Denote completion of insertion.
CHECK_EQ(addr1, 0);
// After the following store, the element becomes available
// for lock-free reads.
atomic_store(&c->addr, h->addr_, memory_order_release);
b->mtx.Unlock();
} else if (h->remove_) {
// Denote that the cell is empty now.
CHECK_EQ(addr1, h->addr_);
atomic_store(&c->addr, 0, memory_order_release);
// See if we need to compact the bucket.
AddBucket *add = (AddBucket *)atomic_load(&b->add, memory_order_relaxed);
if (h->addidx_ == -1U) {
// Removed from embed array, move an add element into the freed cell.
if (add && add->size != 0) {
uptr last = --add->size;
Cell *c1 = &add->cells[last];
c->val = c1->val;
uptr addr1 = atomic_load(&c1->addr, memory_order_relaxed);
atomic_store(&c->addr, addr1, memory_order_release);
atomic_store(&c1->addr, 0, memory_order_release);
}
} else {
// Removed from add array, compact it.
uptr last = --add->size;
Cell *c1 = &add->cells[last];
if (c != c1) {
*c = *c1;
atomic_store(&c1->addr, 0, memory_order_relaxed);
}
}
if (add && add->size == 0) {
// FIXME(dvyukov): free add?
}
b->mtx.Unlock();
} else {
CHECK_EQ(addr1, h->addr_);
if (h->addidx_ != -1U)
b->mtx.ReadUnlock();
}
}
template<typename T, uptr kSize>
uptr AddrHashMap<T, kSize>::calcHash(uptr addr) {
addr += addr << 10;
addr ^= addr >> 6;
return addr % kSize;
}
} // namespace __sanitizer
#endif // SANITIZER_ADDRHASHMAP_H