mirror of
https://gcc.gnu.org/git/gcc.git
synced 2025-01-06 02:53:52 +08:00
a554497024
From-SVN: r267494
1647 lines
37 KiB
C
1647 lines
37 KiB
C
/* This is a software floating point library which can be used
|
|
for targets without hardware floating point.
|
|
Copyright (C) 1994-2019 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* This implements IEEE 754 format arithmetic, but does not provide a
|
|
mechanism for setting the rounding mode, or for generating or handling
|
|
exceptions.
|
|
|
|
The original code by Steve Chamberlain, hacked by Mark Eichin and Jim
|
|
Wilson, all of Cygnus Support. */
|
|
|
|
/* The intended way to use this file is to make two copies, add `#define FLOAT'
|
|
to one copy, then compile both copies and add them to libgcc.a. */
|
|
|
|
#include "tconfig.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "libgcc_tm.h"
|
|
#include "fp-bit.h"
|
|
|
|
/* The following macros can be defined to change the behavior of this file:
|
|
FLOAT: Implement a `float', aka SFmode, fp library. If this is not
|
|
defined, then this file implements a `double', aka DFmode, fp library.
|
|
FLOAT_ONLY: Used with FLOAT, to implement a `float' only library, i.e.
|
|
don't include float->double conversion which requires the double library.
|
|
This is useful only for machines which can't support doubles, e.g. some
|
|
8-bit processors.
|
|
CMPtype: Specify the type that floating point compares should return.
|
|
This defaults to SItype, aka int.
|
|
_DEBUG_BITFLOAT: This makes debugging the code a little easier, by adding
|
|
two integers to the FLO_union_type.
|
|
NO_DENORMALS: Disable handling of denormals.
|
|
NO_NANS: Disable nan and infinity handling
|
|
SMALL_MACHINE: Useful when operations on QIs and HIs are faster
|
|
than on an SI */
|
|
|
|
/* We don't currently support extended floats (long doubles) on machines
|
|
without hardware to deal with them.
|
|
|
|
These stubs are just to keep the linker from complaining about unresolved
|
|
references which can be pulled in from libio & libstdc++, even if the
|
|
user isn't using long doubles. However, they may generate an unresolved
|
|
external to abort if abort is not used by the function, and the stubs
|
|
are referenced from within libc, since libgcc goes before and after the
|
|
system library. */
|
|
|
|
#ifdef DECLARE_LIBRARY_RENAMES
|
|
DECLARE_LIBRARY_RENAMES
|
|
#endif
|
|
|
|
#ifdef EXTENDED_FLOAT_STUBS
|
|
extern void abort (void);
|
|
void __extendsfxf2 (void) { abort(); }
|
|
void __extenddfxf2 (void) { abort(); }
|
|
void __truncxfdf2 (void) { abort(); }
|
|
void __truncxfsf2 (void) { abort(); }
|
|
void __fixxfsi (void) { abort(); }
|
|
void __floatsixf (void) { abort(); }
|
|
void __addxf3 (void) { abort(); }
|
|
void __subxf3 (void) { abort(); }
|
|
void __mulxf3 (void) { abort(); }
|
|
void __divxf3 (void) { abort(); }
|
|
void __negxf2 (void) { abort(); }
|
|
void __eqxf2 (void) { abort(); }
|
|
void __nexf2 (void) { abort(); }
|
|
void __gtxf2 (void) { abort(); }
|
|
void __gexf2 (void) { abort(); }
|
|
void __lexf2 (void) { abort(); }
|
|
void __ltxf2 (void) { abort(); }
|
|
|
|
void __extendsftf2 (void) { abort(); }
|
|
void __extenddftf2 (void) { abort(); }
|
|
void __trunctfdf2 (void) { abort(); }
|
|
void __trunctfsf2 (void) { abort(); }
|
|
void __fixtfsi (void) { abort(); }
|
|
void __floatsitf (void) { abort(); }
|
|
void __addtf3 (void) { abort(); }
|
|
void __subtf3 (void) { abort(); }
|
|
void __multf3 (void) { abort(); }
|
|
void __divtf3 (void) { abort(); }
|
|
void __negtf2 (void) { abort(); }
|
|
void __eqtf2 (void) { abort(); }
|
|
void __netf2 (void) { abort(); }
|
|
void __gttf2 (void) { abort(); }
|
|
void __getf2 (void) { abort(); }
|
|
void __letf2 (void) { abort(); }
|
|
void __lttf2 (void) { abort(); }
|
|
#else /* !EXTENDED_FLOAT_STUBS, rest of file */
|
|
|
|
/* IEEE "special" number predicates */
|
|
|
|
#ifdef NO_NANS
|
|
|
|
#define nan() 0
|
|
#define isnan(x) 0
|
|
#define isinf(x) 0
|
|
#else
|
|
|
|
#if defined L_thenan_sf
|
|
const fp_number_type __thenan_sf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
|
|
#elif defined L_thenan_df
|
|
const fp_number_type __thenan_df = { CLASS_SNAN, 0, 0, {(fractype) 0} };
|
|
#elif defined L_thenan_tf
|
|
const fp_number_type __thenan_tf = { CLASS_SNAN, 0, 0, {(fractype) 0} };
|
|
#elif defined TFLOAT
|
|
extern const fp_number_type __thenan_tf;
|
|
#elif defined FLOAT
|
|
extern const fp_number_type __thenan_sf;
|
|
#else
|
|
extern const fp_number_type __thenan_df;
|
|
#endif
|
|
|
|
INLINE
|
|
static const fp_number_type *
|
|
makenan (void)
|
|
{
|
|
#ifdef TFLOAT
|
|
return & __thenan_tf;
|
|
#elif defined FLOAT
|
|
return & __thenan_sf;
|
|
#else
|
|
return & __thenan_df;
|
|
#endif
|
|
}
|
|
|
|
INLINE
|
|
static int
|
|
isnan (const fp_number_type *x)
|
|
{
|
|
return __builtin_expect (x->class == CLASS_SNAN || x->class == CLASS_QNAN,
|
|
0);
|
|
}
|
|
|
|
INLINE
|
|
static int
|
|
isinf (const fp_number_type * x)
|
|
{
|
|
return __builtin_expect (x->class == CLASS_INFINITY, 0);
|
|
}
|
|
|
|
#endif /* NO_NANS */
|
|
|
|
INLINE
|
|
static int
|
|
iszero (const fp_number_type * x)
|
|
{
|
|
return x->class == CLASS_ZERO;
|
|
}
|
|
|
|
INLINE
|
|
static void
|
|
flip_sign ( fp_number_type * x)
|
|
{
|
|
x->sign = !x->sign;
|
|
}
|
|
|
|
/* Count leading zeroes in N. */
|
|
INLINE
|
|
static int
|
|
clzusi (USItype n)
|
|
{
|
|
extern int __clzsi2 (USItype);
|
|
if (sizeof (USItype) == sizeof (unsigned int))
|
|
return __builtin_clz (n);
|
|
else if (sizeof (USItype) == sizeof (unsigned long))
|
|
return __builtin_clzl (n);
|
|
else if (sizeof (USItype) == sizeof (unsigned long long))
|
|
return __builtin_clzll (n);
|
|
else
|
|
return __clzsi2 (n);
|
|
}
|
|
|
|
extern FLO_type pack_d (const fp_number_type * );
|
|
|
|
#if defined(L_pack_df) || defined(L_pack_sf) || defined(L_pack_tf)
|
|
FLO_type
|
|
pack_d (const fp_number_type *src)
|
|
{
|
|
FLO_union_type dst;
|
|
fractype fraction = src->fraction.ll; /* wasn't unsigned before? */
|
|
int sign = src->sign;
|
|
int exp = 0;
|
|
|
|
if (isnan (src))
|
|
{
|
|
exp = EXPMAX;
|
|
/* Restore the NaN's payload. */
|
|
fraction >>= NGARDS;
|
|
fraction &= QUIET_NAN - 1;
|
|
if (src->class == CLASS_QNAN || 1)
|
|
{
|
|
#ifdef QUIET_NAN_NEGATED
|
|
/* The quiet/signaling bit remains unset. */
|
|
/* Make sure the fraction has a non-zero value. */
|
|
if (fraction == 0)
|
|
fraction |= QUIET_NAN - 1;
|
|
#else
|
|
/* Set the quiet/signaling bit. */
|
|
fraction |= QUIET_NAN;
|
|
#endif
|
|
}
|
|
}
|
|
else if (isinf (src))
|
|
{
|
|
exp = EXPMAX;
|
|
fraction = 0;
|
|
}
|
|
else if (iszero (src))
|
|
{
|
|
exp = 0;
|
|
fraction = 0;
|
|
}
|
|
else if (fraction == 0)
|
|
{
|
|
exp = 0;
|
|
}
|
|
else
|
|
{
|
|
if (__builtin_expect (src->normal_exp < NORMAL_EXPMIN, 0))
|
|
{
|
|
#ifdef NO_DENORMALS
|
|
/* Go straight to a zero representation if denormals are not
|
|
supported. The denormal handling would be harmless but
|
|
isn't unnecessary. */
|
|
exp = 0;
|
|
fraction = 0;
|
|
#else /* NO_DENORMALS */
|
|
/* This number's exponent is too low to fit into the bits
|
|
available in the number, so we'll store 0 in the exponent and
|
|
shift the fraction to the right to make up for it. */
|
|
|
|
int shift = NORMAL_EXPMIN - src->normal_exp;
|
|
|
|
exp = 0;
|
|
|
|
if (shift > FRAC_NBITS - NGARDS)
|
|
{
|
|
/* No point shifting, since it's more that 64 out. */
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
int lowbit = (fraction & (((fractype)1 << shift) - 1)) ? 1 : 0;
|
|
fraction = (fraction >> shift) | lowbit;
|
|
}
|
|
if ((fraction & GARDMASK) == GARDMSB)
|
|
{
|
|
if ((fraction & (1 << NGARDS)))
|
|
fraction += GARDROUND + 1;
|
|
}
|
|
else
|
|
{
|
|
/* Add to the guards to round up. */
|
|
fraction += GARDROUND;
|
|
}
|
|
/* Perhaps the rounding means we now need to change the
|
|
exponent, because the fraction is no longer denormal. */
|
|
if (fraction >= IMPLICIT_1)
|
|
{
|
|
exp += 1;
|
|
}
|
|
fraction >>= NGARDS;
|
|
#endif /* NO_DENORMALS */
|
|
}
|
|
else if (__builtin_expect (src->normal_exp > EXPBIAS, 0))
|
|
{
|
|
exp = EXPMAX;
|
|
fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
exp = src->normal_exp + EXPBIAS;
|
|
/* IF the gard bits are the all zero, but the first, then we're
|
|
half way between two numbers, choose the one which makes the
|
|
lsb of the answer 0. */
|
|
if ((fraction & GARDMASK) == GARDMSB)
|
|
{
|
|
if (fraction & (1 << NGARDS))
|
|
fraction += GARDROUND + 1;
|
|
}
|
|
else
|
|
{
|
|
/* Add a one to the guards to round up */
|
|
fraction += GARDROUND;
|
|
}
|
|
if (fraction >= IMPLICIT_2)
|
|
{
|
|
fraction >>= 1;
|
|
exp += 1;
|
|
}
|
|
fraction >>= NGARDS;
|
|
}
|
|
}
|
|
|
|
/* We previously used bitfields to store the number, but this doesn't
|
|
handle little/big endian systems conveniently, so use shifts and
|
|
masks */
|
|
#ifdef FLOAT_BIT_ORDER_MISMATCH
|
|
dst.bits.fraction = fraction;
|
|
dst.bits.exp = exp;
|
|
dst.bits.sign = sign;
|
|
#else
|
|
# if defined TFLOAT && defined HALFFRACBITS
|
|
{
|
|
halffractype high, low, unity;
|
|
int lowsign, lowexp;
|
|
|
|
unity = (halffractype) 1 << HALFFRACBITS;
|
|
|
|
/* Set HIGH to the high double's significand, masking out the implicit 1.
|
|
Set LOW to the low double's full significand. */
|
|
high = (fraction >> (FRACBITS - HALFFRACBITS)) & (unity - 1);
|
|
low = fraction & (unity * 2 - 1);
|
|
|
|
/* Get the initial sign and exponent of the low double. */
|
|
lowexp = exp - HALFFRACBITS - 1;
|
|
lowsign = sign;
|
|
|
|
/* HIGH should be rounded like a normal double, making |LOW| <=
|
|
0.5 ULP of HIGH. Assume round-to-nearest. */
|
|
if (exp < EXPMAX)
|
|
if (low > unity || (low == unity && (high & 1) == 1))
|
|
{
|
|
/* Round HIGH up and adjust LOW to match. */
|
|
high++;
|
|
if (high == unity)
|
|
{
|
|
/* May make it infinite, but that's OK. */
|
|
high = 0;
|
|
exp++;
|
|
}
|
|
low = unity * 2 - low;
|
|
lowsign ^= 1;
|
|
}
|
|
|
|
high |= (halffractype) exp << HALFFRACBITS;
|
|
high |= (halffractype) sign << (HALFFRACBITS + EXPBITS);
|
|
|
|
if (exp == EXPMAX || exp == 0 || low == 0)
|
|
low = 0;
|
|
else
|
|
{
|
|
while (lowexp > 0 && low < unity)
|
|
{
|
|
low <<= 1;
|
|
lowexp--;
|
|
}
|
|
|
|
if (lowexp <= 0)
|
|
{
|
|
halffractype roundmsb, round;
|
|
int shift;
|
|
|
|
shift = 1 - lowexp;
|
|
roundmsb = (1 << (shift - 1));
|
|
round = low & ((roundmsb << 1) - 1);
|
|
|
|
low >>= shift;
|
|
lowexp = 0;
|
|
|
|
if (round > roundmsb || (round == roundmsb && (low & 1) == 1))
|
|
{
|
|
low++;
|
|
if (low == unity)
|
|
/* LOW rounds up to the smallest normal number. */
|
|
lowexp++;
|
|
}
|
|
}
|
|
|
|
low &= unity - 1;
|
|
low |= (halffractype) lowexp << HALFFRACBITS;
|
|
low |= (halffractype) lowsign << (HALFFRACBITS + EXPBITS);
|
|
}
|
|
dst.value_raw = ((fractype) high << HALFSHIFT) | low;
|
|
}
|
|
# else
|
|
dst.value_raw = fraction & ((((fractype)1) << FRACBITS) - (fractype)1);
|
|
dst.value_raw |= ((fractype) (exp & ((1 << EXPBITS) - 1))) << FRACBITS;
|
|
dst.value_raw |= ((fractype) (sign & 1)) << (FRACBITS | EXPBITS);
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
|
|
#ifdef TFLOAT
|
|
{
|
|
qrtrfractype tmp1 = dst.words[0];
|
|
qrtrfractype tmp2 = dst.words[1];
|
|
dst.words[0] = dst.words[3];
|
|
dst.words[1] = dst.words[2];
|
|
dst.words[2] = tmp2;
|
|
dst.words[3] = tmp1;
|
|
}
|
|
#else
|
|
{
|
|
halffractype tmp = dst.words[0];
|
|
dst.words[0] = dst.words[1];
|
|
dst.words[1] = tmp;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
return dst.value;
|
|
}
|
|
#endif
|
|
|
|
#if defined(L_unpack_df) || defined(L_unpack_sf) || defined(L_unpack_tf)
|
|
void
|
|
unpack_d (FLO_union_type * src, fp_number_type * dst)
|
|
{
|
|
/* We previously used bitfields to store the number, but this doesn't
|
|
handle little/big endian systems conveniently, so use shifts and
|
|
masks */
|
|
fractype fraction;
|
|
int exp;
|
|
int sign;
|
|
|
|
#if defined(FLOAT_WORD_ORDER_MISMATCH) && !defined(FLOAT)
|
|
FLO_union_type swapped;
|
|
|
|
#ifdef TFLOAT
|
|
swapped.words[0] = src->words[3];
|
|
swapped.words[1] = src->words[2];
|
|
swapped.words[2] = src->words[1];
|
|
swapped.words[3] = src->words[0];
|
|
#else
|
|
swapped.words[0] = src->words[1];
|
|
swapped.words[1] = src->words[0];
|
|
#endif
|
|
src = &swapped;
|
|
#endif
|
|
|
|
#ifdef FLOAT_BIT_ORDER_MISMATCH
|
|
fraction = src->bits.fraction;
|
|
exp = src->bits.exp;
|
|
sign = src->bits.sign;
|
|
#else
|
|
# if defined TFLOAT && defined HALFFRACBITS
|
|
{
|
|
halffractype high, low;
|
|
|
|
high = src->value_raw >> HALFSHIFT;
|
|
low = src->value_raw & (((fractype)1 << HALFSHIFT) - 1);
|
|
|
|
fraction = high & ((((fractype)1) << HALFFRACBITS) - 1);
|
|
fraction <<= FRACBITS - HALFFRACBITS;
|
|
exp = ((int)(high >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
|
|
sign = ((int)(high >> (((HALFFRACBITS + EXPBITS))))) & 1;
|
|
|
|
if (exp != EXPMAX && exp != 0 && low != 0)
|
|
{
|
|
int lowexp = ((int)(low >> HALFFRACBITS)) & ((1 << EXPBITS) - 1);
|
|
int lowsign = ((int)(low >> (((HALFFRACBITS + EXPBITS))))) & 1;
|
|
int shift;
|
|
fractype xlow;
|
|
|
|
xlow = low & ((((fractype)1) << HALFFRACBITS) - 1);
|
|
if (lowexp)
|
|
xlow |= (((halffractype)1) << HALFFRACBITS);
|
|
else
|
|
lowexp = 1;
|
|
shift = (FRACBITS - HALFFRACBITS) - (exp - lowexp);
|
|
if (shift > 0)
|
|
xlow <<= shift;
|
|
else if (shift < 0)
|
|
xlow >>= -shift;
|
|
if (sign == lowsign)
|
|
fraction += xlow;
|
|
else if (fraction >= xlow)
|
|
fraction -= xlow;
|
|
else
|
|
{
|
|
/* The high part is a power of two but the full number is lower.
|
|
This code will leave the implicit 1 in FRACTION, but we'd
|
|
have added that below anyway. */
|
|
fraction = (((fractype) 1 << FRACBITS) - xlow) << 1;
|
|
exp--;
|
|
}
|
|
}
|
|
}
|
|
# else
|
|
fraction = src->value_raw & ((((fractype)1) << FRACBITS) - 1);
|
|
exp = ((int)(src->value_raw >> FRACBITS)) & ((1 << EXPBITS) - 1);
|
|
sign = ((int)(src->value_raw >> (FRACBITS + EXPBITS))) & 1;
|
|
# endif
|
|
#endif
|
|
|
|
dst->sign = sign;
|
|
if (exp == 0)
|
|
{
|
|
/* Hmm. Looks like 0 */
|
|
if (fraction == 0
|
|
#ifdef NO_DENORMALS
|
|
|| 1
|
|
#endif
|
|
)
|
|
{
|
|
/* tastes like zero */
|
|
dst->class = CLASS_ZERO;
|
|
}
|
|
else
|
|
{
|
|
/* Zero exponent with nonzero fraction - it's denormalized,
|
|
so there isn't a leading implicit one - we'll shift it so
|
|
it gets one. */
|
|
dst->normal_exp = exp - EXPBIAS + 1;
|
|
fraction <<= NGARDS;
|
|
|
|
dst->class = CLASS_NUMBER;
|
|
#if 1
|
|
while (fraction < IMPLICIT_1)
|
|
{
|
|
fraction <<= 1;
|
|
dst->normal_exp--;
|
|
}
|
|
#endif
|
|
dst->fraction.ll = fraction;
|
|
}
|
|
}
|
|
else if (__builtin_expect (exp == EXPMAX, 0))
|
|
{
|
|
/* Huge exponent*/
|
|
if (fraction == 0)
|
|
{
|
|
/* Attached to a zero fraction - means infinity */
|
|
dst->class = CLASS_INFINITY;
|
|
}
|
|
else
|
|
{
|
|
/* Nonzero fraction, means nan */
|
|
#ifdef QUIET_NAN_NEGATED
|
|
if ((fraction & QUIET_NAN) == 0)
|
|
#else
|
|
if (fraction & QUIET_NAN)
|
|
#endif
|
|
{
|
|
dst->class = CLASS_QNAN;
|
|
}
|
|
else
|
|
{
|
|
dst->class = CLASS_SNAN;
|
|
}
|
|
/* Now that we know which kind of NaN we got, discard the
|
|
quiet/signaling bit, but do preserve the NaN payload. */
|
|
fraction &= ~QUIET_NAN;
|
|
dst->fraction.ll = fraction << NGARDS;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Nothing strange about this number */
|
|
dst->normal_exp = exp - EXPBIAS;
|
|
dst->class = CLASS_NUMBER;
|
|
dst->fraction.ll = (fraction << NGARDS) | IMPLICIT_1;
|
|
}
|
|
}
|
|
#endif /* L_unpack_df || L_unpack_sf */
|
|
|
|
#if defined(L_addsub_sf) || defined(L_addsub_df) || defined(L_addsub_tf)
|
|
static const fp_number_type *
|
|
_fpadd_parts (fp_number_type * a,
|
|
fp_number_type * b,
|
|
fp_number_type * tmp)
|
|
{
|
|
intfrac tfraction;
|
|
|
|
/* Put commonly used fields in local variables. */
|
|
int a_normal_exp;
|
|
int b_normal_exp;
|
|
fractype a_fraction;
|
|
fractype b_fraction;
|
|
|
|
if (isnan (a))
|
|
{
|
|
return a;
|
|
}
|
|
if (isnan (b))
|
|
{
|
|
return b;
|
|
}
|
|
if (isinf (a))
|
|
{
|
|
/* Adding infinities with opposite signs yields a NaN. */
|
|
if (isinf (b) && a->sign != b->sign)
|
|
return makenan ();
|
|
return a;
|
|
}
|
|
if (isinf (b))
|
|
{
|
|
return b;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
if (iszero (a))
|
|
{
|
|
*tmp = *a;
|
|
tmp->sign = a->sign & b->sign;
|
|
return tmp;
|
|
}
|
|
return a;
|
|
}
|
|
if (iszero (a))
|
|
{
|
|
return b;
|
|
}
|
|
|
|
/* Got two numbers. shift the smaller and increment the exponent till
|
|
they're the same */
|
|
{
|
|
int diff;
|
|
int sdiff;
|
|
|
|
a_normal_exp = a->normal_exp;
|
|
b_normal_exp = b->normal_exp;
|
|
a_fraction = a->fraction.ll;
|
|
b_fraction = b->fraction.ll;
|
|
|
|
diff = a_normal_exp - b_normal_exp;
|
|
sdiff = diff;
|
|
|
|
if (diff < 0)
|
|
diff = -diff;
|
|
if (diff < FRAC_NBITS)
|
|
{
|
|
if (sdiff > 0)
|
|
{
|
|
b_normal_exp += diff;
|
|
LSHIFT (b_fraction, diff);
|
|
}
|
|
else if (sdiff < 0)
|
|
{
|
|
a_normal_exp += diff;
|
|
LSHIFT (a_fraction, diff);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Somethings's up.. choose the biggest */
|
|
if (a_normal_exp > b_normal_exp)
|
|
{
|
|
b_normal_exp = a_normal_exp;
|
|
b_fraction = 0;
|
|
}
|
|
else
|
|
{
|
|
a_normal_exp = b_normal_exp;
|
|
a_fraction = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (a->sign != b->sign)
|
|
{
|
|
if (a->sign)
|
|
{
|
|
tfraction = -a_fraction + b_fraction;
|
|
}
|
|
else
|
|
{
|
|
tfraction = a_fraction - b_fraction;
|
|
}
|
|
if (tfraction >= 0)
|
|
{
|
|
tmp->sign = 0;
|
|
tmp->normal_exp = a_normal_exp;
|
|
tmp->fraction.ll = tfraction;
|
|
}
|
|
else
|
|
{
|
|
tmp->sign = 1;
|
|
tmp->normal_exp = a_normal_exp;
|
|
tmp->fraction.ll = -tfraction;
|
|
}
|
|
/* and renormalize it */
|
|
|
|
while (tmp->fraction.ll < IMPLICIT_1 && tmp->fraction.ll)
|
|
{
|
|
tmp->fraction.ll <<= 1;
|
|
tmp->normal_exp--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
tmp->sign = a->sign;
|
|
tmp->normal_exp = a_normal_exp;
|
|
tmp->fraction.ll = a_fraction + b_fraction;
|
|
}
|
|
tmp->class = CLASS_NUMBER;
|
|
/* Now the fraction is added, we have to shift down to renormalize the
|
|
number */
|
|
|
|
if (tmp->fraction.ll >= IMPLICIT_2)
|
|
{
|
|
LSHIFT (tmp->fraction.ll, 1);
|
|
tmp->normal_exp++;
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
FLO_type
|
|
add (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
const fp_number_type *res;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
res = _fpadd_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
|
|
FLO_type
|
|
sub (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
const fp_number_type *res;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
b.sign ^= 1;
|
|
|
|
res = _fpadd_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
#endif /* L_addsub_sf || L_addsub_df */
|
|
|
|
#if defined(L_mul_sf) || defined(L_mul_df) || defined(L_mul_tf)
|
|
static inline __attribute__ ((__always_inline__)) const fp_number_type *
|
|
_fpmul_parts ( fp_number_type * a,
|
|
fp_number_type * b,
|
|
fp_number_type * tmp)
|
|
{
|
|
fractype low = 0;
|
|
fractype high = 0;
|
|
|
|
if (isnan (a))
|
|
{
|
|
a->sign = a->sign != b->sign;
|
|
return a;
|
|
}
|
|
if (isnan (b))
|
|
{
|
|
b->sign = a->sign != b->sign;
|
|
return b;
|
|
}
|
|
if (isinf (a))
|
|
{
|
|
if (iszero (b))
|
|
return makenan ();
|
|
a->sign = a->sign != b->sign;
|
|
return a;
|
|
}
|
|
if (isinf (b))
|
|
{
|
|
if (iszero (a))
|
|
{
|
|
return makenan ();
|
|
}
|
|
b->sign = a->sign != b->sign;
|
|
return b;
|
|
}
|
|
if (iszero (a))
|
|
{
|
|
a->sign = a->sign != b->sign;
|
|
return a;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
b->sign = a->sign != b->sign;
|
|
return b;
|
|
}
|
|
|
|
/* Calculate the mantissa by multiplying both numbers to get a
|
|
twice-as-wide number. */
|
|
{
|
|
#if defined(NO_DI_MODE) || defined(TFLOAT)
|
|
{
|
|
fractype x = a->fraction.ll;
|
|
fractype ylow = b->fraction.ll;
|
|
fractype yhigh = 0;
|
|
int bit;
|
|
|
|
/* ??? This does multiplies one bit at a time. Optimize. */
|
|
for (bit = 0; bit < FRAC_NBITS; bit++)
|
|
{
|
|
int carry;
|
|
|
|
if (x & 1)
|
|
{
|
|
carry = (low += ylow) < ylow;
|
|
high += yhigh + carry;
|
|
}
|
|
yhigh <<= 1;
|
|
if (ylow & FRACHIGH)
|
|
{
|
|
yhigh |= 1;
|
|
}
|
|
ylow <<= 1;
|
|
x >>= 1;
|
|
}
|
|
}
|
|
#elif defined(FLOAT)
|
|
/* Multiplying two USIs to get a UDI, we're safe. */
|
|
{
|
|
UDItype answer = (UDItype)a->fraction.ll * (UDItype)b->fraction.ll;
|
|
|
|
high = answer >> BITS_PER_SI;
|
|
low = answer;
|
|
}
|
|
#else
|
|
/* fractype is DImode, but we need the result to be twice as wide.
|
|
Assuming a widening multiply from DImode to TImode is not
|
|
available, build one by hand. */
|
|
{
|
|
USItype nl = a->fraction.ll;
|
|
USItype nh = a->fraction.ll >> BITS_PER_SI;
|
|
USItype ml = b->fraction.ll;
|
|
USItype mh = b->fraction.ll >> BITS_PER_SI;
|
|
UDItype pp_ll = (UDItype) ml * nl;
|
|
UDItype pp_hl = (UDItype) mh * nl;
|
|
UDItype pp_lh = (UDItype) ml * nh;
|
|
UDItype pp_hh = (UDItype) mh * nh;
|
|
UDItype res2 = 0;
|
|
UDItype res0 = 0;
|
|
UDItype ps_hh__ = pp_hl + pp_lh;
|
|
if (ps_hh__ < pp_hl)
|
|
res2 += (UDItype)1 << BITS_PER_SI;
|
|
pp_hl = (UDItype)(USItype)ps_hh__ << BITS_PER_SI;
|
|
res0 = pp_ll + pp_hl;
|
|
if (res0 < pp_ll)
|
|
res2++;
|
|
res2 += (ps_hh__ >> BITS_PER_SI) + pp_hh;
|
|
high = res2;
|
|
low = res0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
tmp->normal_exp = a->normal_exp + b->normal_exp
|
|
+ FRAC_NBITS - (FRACBITS + NGARDS);
|
|
tmp->sign = a->sign != b->sign;
|
|
while (high >= IMPLICIT_2)
|
|
{
|
|
tmp->normal_exp++;
|
|
if (high & 1)
|
|
{
|
|
low >>= 1;
|
|
low |= FRACHIGH;
|
|
}
|
|
high >>= 1;
|
|
}
|
|
while (high < IMPLICIT_1)
|
|
{
|
|
tmp->normal_exp--;
|
|
|
|
high <<= 1;
|
|
if (low & FRACHIGH)
|
|
high |= 1;
|
|
low <<= 1;
|
|
}
|
|
|
|
if ((high & GARDMASK) == GARDMSB)
|
|
{
|
|
if (high & (1 << NGARDS))
|
|
{
|
|
/* Because we're half way, we would round to even by adding
|
|
GARDROUND + 1, except that's also done in the packing
|
|
function, and rounding twice will lose precision and cause
|
|
the result to be too far off. Example: 32-bit floats with
|
|
bit patterns 0xfff * 0x3f800400 ~= 0xfff (less than 0.5ulp
|
|
off), not 0x1000 (more than 0.5ulp off). */
|
|
}
|
|
else if (low)
|
|
{
|
|
/* We're a further than half way by a small amount corresponding
|
|
to the bits set in "low". Knowing that, we round here and
|
|
not in pack_d, because there we don't have "low" available
|
|
anymore. */
|
|
high += GARDROUND + 1;
|
|
|
|
/* Avoid further rounding in pack_d. */
|
|
high &= ~(fractype) GARDMASK;
|
|
}
|
|
}
|
|
tmp->fraction.ll = high;
|
|
tmp->class = CLASS_NUMBER;
|
|
return tmp;
|
|
}
|
|
|
|
FLO_type
|
|
multiply (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
fp_number_type tmp;
|
|
const fp_number_type *res;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
res = _fpmul_parts (&a, &b, &tmp);
|
|
|
|
return pack_d (res);
|
|
}
|
|
#endif /* L_mul_sf || L_mul_df || L_mul_tf */
|
|
|
|
#if defined(L_div_sf) || defined(L_div_df) || defined(L_div_tf)
|
|
static inline __attribute__ ((__always_inline__)) const fp_number_type *
|
|
_fpdiv_parts (fp_number_type * a,
|
|
fp_number_type * b)
|
|
{
|
|
fractype bit;
|
|
fractype numerator;
|
|
fractype denominator;
|
|
fractype quotient;
|
|
|
|
if (isnan (a))
|
|
{
|
|
return a;
|
|
}
|
|
if (isnan (b))
|
|
{
|
|
return b;
|
|
}
|
|
|
|
a->sign = a->sign ^ b->sign;
|
|
|
|
if (isinf (a) || iszero (a))
|
|
{
|
|
if (a->class == b->class)
|
|
return makenan ();
|
|
return a;
|
|
}
|
|
|
|
if (isinf (b))
|
|
{
|
|
a->fraction.ll = 0;
|
|
a->normal_exp = 0;
|
|
return a;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
a->class = CLASS_INFINITY;
|
|
return a;
|
|
}
|
|
|
|
/* Calculate the mantissa by multiplying both 64bit numbers to get a
|
|
128 bit number */
|
|
{
|
|
/* quotient =
|
|
( numerator / denominator) * 2^(numerator exponent - denominator exponent)
|
|
*/
|
|
|
|
a->normal_exp = a->normal_exp - b->normal_exp;
|
|
numerator = a->fraction.ll;
|
|
denominator = b->fraction.ll;
|
|
|
|
if (numerator < denominator)
|
|
{
|
|
/* Fraction will be less than 1.0 */
|
|
numerator *= 2;
|
|
a->normal_exp--;
|
|
}
|
|
bit = IMPLICIT_1;
|
|
quotient = 0;
|
|
/* ??? Does divide one bit at a time. Optimize. */
|
|
while (bit)
|
|
{
|
|
if (numerator >= denominator)
|
|
{
|
|
quotient |= bit;
|
|
numerator -= denominator;
|
|
}
|
|
bit >>= 1;
|
|
numerator *= 2;
|
|
}
|
|
|
|
if ((quotient & GARDMASK) == GARDMSB)
|
|
{
|
|
if (quotient & (1 << NGARDS))
|
|
{
|
|
/* Because we're half way, we would round to even by adding
|
|
GARDROUND + 1, except that's also done in the packing
|
|
function, and rounding twice will lose precision and cause
|
|
the result to be too far off. */
|
|
}
|
|
else if (numerator)
|
|
{
|
|
/* We're a further than half way by the small amount
|
|
corresponding to the bits set in "numerator". Knowing
|
|
that, we round here and not in pack_d, because there we
|
|
don't have "numerator" available anymore. */
|
|
quotient += GARDROUND + 1;
|
|
|
|
/* Avoid further rounding in pack_d. */
|
|
quotient &= ~(fractype) GARDMASK;
|
|
}
|
|
}
|
|
|
|
a->fraction.ll = quotient;
|
|
return (a);
|
|
}
|
|
}
|
|
|
|
FLO_type
|
|
divide (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
const fp_number_type *res;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
res = _fpdiv_parts (&a, &b);
|
|
|
|
return pack_d (res);
|
|
}
|
|
#endif /* L_div_sf || L_div_df */
|
|
|
|
#if defined(L_fpcmp_parts_sf) || defined(L_fpcmp_parts_df) \
|
|
|| defined(L_fpcmp_parts_tf)
|
|
/* according to the demo, fpcmp returns a comparison with 0... thus
|
|
a<b -> -1
|
|
a==b -> 0
|
|
a>b -> +1
|
|
*/
|
|
|
|
int
|
|
__fpcmp_parts (fp_number_type * a, fp_number_type * b)
|
|
{
|
|
#if 0
|
|
/* either nan -> unordered. Must be checked outside of this routine. */
|
|
if (isnan (a) && isnan (b))
|
|
{
|
|
return 1; /* still unordered! */
|
|
}
|
|
#endif
|
|
|
|
if (isnan (a) || isnan (b))
|
|
{
|
|
return 1; /* how to indicate unordered compare? */
|
|
}
|
|
if (isinf (a) && isinf (b))
|
|
{
|
|
/* +inf > -inf, but +inf != +inf */
|
|
/* b \a| +inf(0)| -inf(1)
|
|
______\+--------+--------
|
|
+inf(0)| a==b(0)| a<b(-1)
|
|
-------+--------+--------
|
|
-inf(1)| a>b(1) | a==b(0)
|
|
-------+--------+--------
|
|
So since unordered must be nonzero, just line up the columns...
|
|
*/
|
|
return b->sign - a->sign;
|
|
}
|
|
/* but not both... */
|
|
if (isinf (a))
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
if (isinf (b))
|
|
{
|
|
return b->sign ? 1 : -1;
|
|
}
|
|
if (iszero (a) && iszero (b))
|
|
{
|
|
return 0;
|
|
}
|
|
if (iszero (a))
|
|
{
|
|
return b->sign ? 1 : -1;
|
|
}
|
|
if (iszero (b))
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
/* now both are "normal". */
|
|
if (a->sign != b->sign)
|
|
{
|
|
/* opposite signs */
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
/* same sign; exponents? */
|
|
if (a->normal_exp > b->normal_exp)
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
if (a->normal_exp < b->normal_exp)
|
|
{
|
|
return a->sign ? 1 : -1;
|
|
}
|
|
/* same exponents; check size. */
|
|
if (a->fraction.ll > b->fraction.ll)
|
|
{
|
|
return a->sign ? -1 : 1;
|
|
}
|
|
if (a->fraction.ll < b->fraction.ll)
|
|
{
|
|
return a->sign ? 1 : -1;
|
|
}
|
|
/* after all that, they're equal. */
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(L_compare_sf) || defined(L_compare_df) || defined(L_compoare_tf)
|
|
CMPtype
|
|
compare (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
return __fpcmp_parts (&a, &b);
|
|
}
|
|
#endif /* L_compare_sf || L_compare_df */
|
|
|
|
/* These should be optimized for their specific tasks someday. */
|
|
|
|
#if defined(L_eq_sf) || defined(L_eq_df) || defined(L_eq_tf)
|
|
CMPtype
|
|
_eq_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* false, truth == 0 */
|
|
|
|
return __fpcmp_parts (&a, &b) ;
|
|
}
|
|
#endif /* L_eq_sf || L_eq_df */
|
|
|
|
#if defined(L_ne_sf) || defined(L_ne_df) || defined(L_ne_tf)
|
|
CMPtype
|
|
_ne_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* true, truth != 0 */
|
|
|
|
return __fpcmp_parts (&a, &b) ;
|
|
}
|
|
#endif /* L_ne_sf || L_ne_df */
|
|
|
|
#if defined(L_gt_sf) || defined(L_gt_df) || defined(L_gt_tf)
|
|
CMPtype
|
|
_gt_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return -1; /* false, truth > 0 */
|
|
|
|
return __fpcmp_parts (&a, &b);
|
|
}
|
|
#endif /* L_gt_sf || L_gt_df */
|
|
|
|
#if defined(L_ge_sf) || defined(L_ge_df) || defined(L_ge_tf)
|
|
CMPtype
|
|
_ge_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return -1; /* false, truth >= 0 */
|
|
return __fpcmp_parts (&a, &b) ;
|
|
}
|
|
#endif /* L_ge_sf || L_ge_df */
|
|
|
|
#if defined(L_lt_sf) || defined(L_lt_df) || defined(L_lt_tf)
|
|
CMPtype
|
|
_lt_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* false, truth < 0 */
|
|
|
|
return __fpcmp_parts (&a, &b);
|
|
}
|
|
#endif /* L_lt_sf || L_lt_df */
|
|
|
|
#if defined(L_le_sf) || defined(L_le_df) || defined(L_le_tf)
|
|
CMPtype
|
|
_le_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
if (isnan (&a) || isnan (&b))
|
|
return 1; /* false, truth <= 0 */
|
|
|
|
return __fpcmp_parts (&a, &b) ;
|
|
}
|
|
#endif /* L_le_sf || L_le_df */
|
|
|
|
#if defined(L_unord_sf) || defined(L_unord_df) || defined(L_unord_tf)
|
|
CMPtype
|
|
_unord_f2 (FLO_type arg_a, FLO_type arg_b)
|
|
{
|
|
fp_number_type a;
|
|
fp_number_type b;
|
|
FLO_union_type au, bu;
|
|
|
|
au.value = arg_a;
|
|
bu.value = arg_b;
|
|
|
|
unpack_d (&au, &a);
|
|
unpack_d (&bu, &b);
|
|
|
|
return (isnan (&a) || isnan (&b));
|
|
}
|
|
#endif /* L_unord_sf || L_unord_df */
|
|
|
|
#if defined(L_si_to_sf) || defined(L_si_to_df) || defined(L_si_to_tf)
|
|
FLO_type
|
|
si_to_float (SItype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = CLASS_NUMBER;
|
|
in.sign = arg_a < 0;
|
|
if (!arg_a)
|
|
{
|
|
in.class = CLASS_ZERO;
|
|
}
|
|
else
|
|
{
|
|
USItype uarg;
|
|
int shift;
|
|
in.normal_exp = FRACBITS + NGARDS;
|
|
if (in.sign)
|
|
{
|
|
/* Special case for minint, since there is no +ve integer
|
|
representation for it */
|
|
if (arg_a == (- MAX_SI_INT - 1))
|
|
{
|
|
return (FLO_type)(- MAX_SI_INT - 1);
|
|
}
|
|
uarg = (-arg_a);
|
|
}
|
|
else
|
|
uarg = arg_a;
|
|
|
|
in.fraction.ll = uarg;
|
|
shift = clzusi (uarg) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
|
|
if (shift > 0)
|
|
{
|
|
in.fraction.ll <<= shift;
|
|
in.normal_exp -= shift;
|
|
}
|
|
}
|
|
return pack_d (&in);
|
|
}
|
|
#endif /* L_si_to_sf || L_si_to_df */
|
|
|
|
#if defined(L_usi_to_sf) || defined(L_usi_to_df) || defined(L_usi_to_tf)
|
|
FLO_type
|
|
usi_to_float (USItype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.sign = 0;
|
|
if (!arg_a)
|
|
{
|
|
in.class = CLASS_ZERO;
|
|
}
|
|
else
|
|
{
|
|
int shift;
|
|
in.class = CLASS_NUMBER;
|
|
in.normal_exp = FRACBITS + NGARDS;
|
|
in.fraction.ll = arg_a;
|
|
|
|
shift = clzusi (arg_a) - (BITS_PER_SI - 1 - FRACBITS - NGARDS);
|
|
if (shift < 0)
|
|
{
|
|
fractype guard = in.fraction.ll & (((fractype)1 << -shift) - 1);
|
|
in.fraction.ll >>= -shift;
|
|
in.fraction.ll |= (guard != 0);
|
|
in.normal_exp -= shift;
|
|
}
|
|
else if (shift > 0)
|
|
{
|
|
in.fraction.ll <<= shift;
|
|
in.normal_exp -= shift;
|
|
}
|
|
}
|
|
return pack_d (&in);
|
|
}
|
|
#endif
|
|
|
|
#if defined(L_sf_to_si) || defined(L_df_to_si) || defined(L_tf_to_si)
|
|
SItype
|
|
float_to_si (FLO_type arg_a)
|
|
{
|
|
fp_number_type a;
|
|
SItype tmp;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &a);
|
|
|
|
if (iszero (&a))
|
|
return 0;
|
|
if (isnan (&a))
|
|
return 0;
|
|
/* get reasonable MAX_SI_INT... */
|
|
if (isinf (&a))
|
|
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
|
|
/* it is a number, but a small one */
|
|
if (a.normal_exp < 0)
|
|
return 0;
|
|
if (a.normal_exp > BITS_PER_SI - 2)
|
|
return a.sign ? (-MAX_SI_INT)-1 : MAX_SI_INT;
|
|
tmp = a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
|
|
return a.sign ? (-tmp) : (tmp);
|
|
}
|
|
#endif /* L_sf_to_si || L_df_to_si */
|
|
|
|
#if defined(L_tf_to_usi)
|
|
USItype
|
|
float_to_usi (FLO_type arg_a)
|
|
{
|
|
fp_number_type a;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &a);
|
|
|
|
if (iszero (&a))
|
|
return 0;
|
|
if (isnan (&a))
|
|
return 0;
|
|
/* it is a negative number */
|
|
if (a.sign)
|
|
return 0;
|
|
/* get reasonable MAX_USI_INT... */
|
|
if (isinf (&a))
|
|
return MAX_USI_INT;
|
|
/* it is a number, but a small one */
|
|
if (a.normal_exp < 0)
|
|
return 0;
|
|
if (a.normal_exp > BITS_PER_SI - 1)
|
|
return MAX_USI_INT;
|
|
else if (a.normal_exp > (FRACBITS + NGARDS))
|
|
return a.fraction.ll << (a.normal_exp - (FRACBITS + NGARDS));
|
|
else
|
|
return a.fraction.ll >> ((FRACBITS + NGARDS) - a.normal_exp);
|
|
}
|
|
#endif /* L_tf_to_usi */
|
|
|
|
#if defined(L_negate_sf) || defined(L_negate_df) || defined(L_negate_tf)
|
|
FLO_type
|
|
negate (FLO_type arg_a)
|
|
{
|
|
fp_number_type a;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &a);
|
|
|
|
flip_sign (&a);
|
|
return pack_d (&a);
|
|
}
|
|
#endif /* L_negate_sf || L_negate_df */
|
|
|
|
#ifdef FLOAT
|
|
|
|
#if defined(L_make_sf)
|
|
SFtype
|
|
__make_fp(fp_class_type class,
|
|
unsigned int sign,
|
|
int exp,
|
|
USItype frac)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = class;
|
|
in.sign = sign;
|
|
in.normal_exp = exp;
|
|
in.fraction.ll = frac;
|
|
return pack_d (&in);
|
|
}
|
|
#endif /* L_make_sf */
|
|
|
|
#ifndef FLOAT_ONLY
|
|
|
|
/* This enables one to build an fp library that supports float but not double.
|
|
Otherwise, we would get an undefined reference to __make_dp.
|
|
This is needed for some 8-bit ports that can't handle well values that
|
|
are 8-bytes in size, so we just don't support double for them at all. */
|
|
|
|
#if defined(L_sf_to_df)
|
|
DFtype
|
|
sf_to_df (SFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &in);
|
|
|
|
return __make_dp (in.class, in.sign, in.normal_exp,
|
|
((UDItype) in.fraction.ll) << F_D_BITOFF);
|
|
}
|
|
#endif /* L_sf_to_df */
|
|
|
|
#if defined(L_sf_to_tf) && defined(TMODES)
|
|
TFtype
|
|
sf_to_tf (SFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &in);
|
|
|
|
return __make_tp (in.class, in.sign, in.normal_exp,
|
|
((UTItype) in.fraction.ll) << F_T_BITOFF);
|
|
}
|
|
#endif /* L_sf_to_df */
|
|
|
|
#endif /* ! FLOAT_ONLY */
|
|
#endif /* FLOAT */
|
|
|
|
#ifndef FLOAT
|
|
|
|
extern SFtype __make_fp (fp_class_type, unsigned int, int, USItype);
|
|
|
|
#if defined(L_make_df)
|
|
DFtype
|
|
__make_dp (fp_class_type class, unsigned int sign, int exp, UDItype frac)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = class;
|
|
in.sign = sign;
|
|
in.normal_exp = exp;
|
|
in.fraction.ll = frac;
|
|
return pack_d (&in);
|
|
}
|
|
#endif /* L_make_df */
|
|
|
|
#if defined(L_df_to_sf)
|
|
SFtype
|
|
df_to_sf (DFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
USItype sffrac;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &in);
|
|
|
|
sffrac = in.fraction.ll >> F_D_BITOFF;
|
|
|
|
/* We set the lowest guard bit in SFFRAC if we discarded any non
|
|
zero bits. */
|
|
if ((in.fraction.ll & (((USItype) 1 << F_D_BITOFF) - 1)) != 0)
|
|
sffrac |= 1;
|
|
|
|
return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
|
|
}
|
|
#endif /* L_df_to_sf */
|
|
|
|
#if defined(L_df_to_tf) && defined(TMODES) \
|
|
&& !defined(FLOAT) && !defined(TFLOAT)
|
|
TFtype
|
|
df_to_tf (DFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &in);
|
|
|
|
return __make_tp (in.class, in.sign, in.normal_exp,
|
|
((UTItype) in.fraction.ll) << D_T_BITOFF);
|
|
}
|
|
#endif /* L_sf_to_df */
|
|
|
|
#ifdef TFLOAT
|
|
#if defined(L_make_tf)
|
|
TFtype
|
|
__make_tp(fp_class_type class,
|
|
unsigned int sign,
|
|
int exp,
|
|
UTItype frac)
|
|
{
|
|
fp_number_type in;
|
|
|
|
in.class = class;
|
|
in.sign = sign;
|
|
in.normal_exp = exp;
|
|
in.fraction.ll = frac;
|
|
return pack_d (&in);
|
|
}
|
|
#endif /* L_make_tf */
|
|
|
|
#if defined(L_tf_to_df)
|
|
DFtype
|
|
tf_to_df (TFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
UDItype sffrac;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &in);
|
|
|
|
sffrac = in.fraction.ll >> D_T_BITOFF;
|
|
|
|
/* We set the lowest guard bit in SFFRAC if we discarded any non
|
|
zero bits. */
|
|
if ((in.fraction.ll & (((UTItype) 1 << D_T_BITOFF) - 1)) != 0)
|
|
sffrac |= 1;
|
|
|
|
return __make_dp (in.class, in.sign, in.normal_exp, sffrac);
|
|
}
|
|
#endif /* L_tf_to_df */
|
|
|
|
#if defined(L_tf_to_sf)
|
|
SFtype
|
|
tf_to_sf (TFtype arg_a)
|
|
{
|
|
fp_number_type in;
|
|
USItype sffrac;
|
|
FLO_union_type au;
|
|
|
|
au.value = arg_a;
|
|
unpack_d (&au, &in);
|
|
|
|
sffrac = in.fraction.ll >> F_T_BITOFF;
|
|
|
|
/* We set the lowest guard bit in SFFRAC if we discarded any non
|
|
zero bits. */
|
|
if ((in.fraction.ll & (((UTItype) 1 << F_T_BITOFF) - 1)) != 0)
|
|
sffrac |= 1;
|
|
|
|
return __make_fp (in.class, in.sign, in.normal_exp, sffrac);
|
|
}
|
|
#endif /* L_tf_to_sf */
|
|
#endif /* TFLOAT */
|
|
|
|
#endif /* ! FLOAT */
|
|
#endif /* !EXTENDED_FLOAT_STUBS */
|