mirror of
https://gcc.gnu.org/git/gcc.git
synced 2025-01-18 10:24:30 +08:00
6de9cd9a88
From-SVN: r81764
140 lines
3.1 KiB
C
140 lines
3.1 KiB
C
/* Complex exponential functions
|
|
Copyright 2002, 2004 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfor).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with libgfor; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
#include <math.h>
|
|
#include "libgfortran.h"
|
|
|
|
|
|
/* z = a + ib */
|
|
/* Absolute value. */
|
|
GFC_REAL_4
|
|
cabsf (GFC_COMPLEX_4 z)
|
|
{
|
|
return hypotf (REALPART (z), IMAGPART (z));
|
|
}
|
|
|
|
/* Complex argument. The angle made with the +ve real axis. Range 0-2pi. */
|
|
GFC_REAL_4
|
|
cargf (GFC_COMPLEX_4 z)
|
|
{
|
|
GFC_REAL_4 arg;
|
|
|
|
arg = atan2f (IMAGPART (z), REALPART (z));
|
|
if (arg < 0)
|
|
return arg + 2 * M_PI;
|
|
else
|
|
return arg;
|
|
}
|
|
|
|
/* exp(z) = exp(a)*(cos(b) + isin(b)) */
|
|
GFC_COMPLEX_4
|
|
cexpf (GFC_COMPLEX_4 z)
|
|
{
|
|
GFC_REAL_4 a;
|
|
GFC_REAL_4 b;
|
|
GFC_COMPLEX_4 v;
|
|
|
|
a = REALPART (z);
|
|
b = IMAGPART (z);
|
|
COMPLEX_ASSIGN (v, cosf (b), sinf (b));
|
|
return expf (a) * v;
|
|
}
|
|
|
|
/* log(z) = log (cabs(z)) + i*carg(z) */
|
|
GFC_COMPLEX_4
|
|
clogf (GFC_COMPLEX_4 z)
|
|
{
|
|
GFC_COMPLEX_4 v;
|
|
|
|
COMPLEX_ASSIGN (v, logf (cabsf (z)), cargf (z));
|
|
return v;
|
|
}
|
|
|
|
/* log10(z) = log10 (cabs(z)) + i*carg(z) */
|
|
GFC_COMPLEX_4
|
|
clog10f (GFC_COMPLEX_4 z)
|
|
{
|
|
GFC_COMPLEX_4 v;
|
|
|
|
COMPLEX_ASSIGN (v, log10f (cabsf (z)), cargf (z));
|
|
return v;
|
|
}
|
|
|
|
/* pow(base, power) = cexp (power * clog (base)) */
|
|
GFC_COMPLEX_4
|
|
cpowf (GFC_COMPLEX_4 base, GFC_COMPLEX_4 power)
|
|
{
|
|
return cexpf (power * clogf (base));
|
|
}
|
|
|
|
/* sqrt(z). Algorithm pulled from glibc. */
|
|
GFC_COMPLEX_4
|
|
csqrtf (GFC_COMPLEX_4 z)
|
|
{
|
|
GFC_REAL_4 re;
|
|
GFC_REAL_4 im;
|
|
GFC_COMPLEX_4 v;
|
|
|
|
re = REALPART (z);
|
|
im = IMAGPART (z);
|
|
if (im == 0.0)
|
|
{
|
|
if (re < 0.0)
|
|
{
|
|
COMPLEX_ASSIGN (v, 0.0, copysignf (sqrtf (-re), im));
|
|
}
|
|
else
|
|
{
|
|
COMPLEX_ASSIGN (v, fabsf (sqrt (re)),
|
|
copysignf (0.0, im));
|
|
}
|
|
}
|
|
else if (re == 0.0)
|
|
{
|
|
GFC_REAL_4 r;
|
|
|
|
r = sqrtf (0.5 * fabs (im));
|
|
|
|
COMPLEX_ASSIGN (v, copysignf (r, im), r);
|
|
}
|
|
else
|
|
{
|
|
GFC_REAL_4 d, r, s;
|
|
|
|
d = hypotf (re, im);
|
|
/* Use the identity 2 Re res Im res = Im x
|
|
to avoid cancellation error in d +/- Re x. */
|
|
if (re > 0)
|
|
{
|
|
r = sqrtf (0.5 * d + 0.5 * re);
|
|
s = (0.5 * im) / r;
|
|
}
|
|
else
|
|
{
|
|
s = sqrtf (0.5 * d - 0.5 * re);
|
|
r = fabsf ((0.5 * im) / s);
|
|
}
|
|
|
|
COMPLEX_ASSIGN (v, r, copysignf (s, im));
|
|
}
|
|
return v;
|
|
}
|
|
|