mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-23 19:03:59 +08:00
431 lines
13 KiB
C++
431 lines
13 KiB
C++
/* Code for range operators.
|
|
Copyright (C) 2017-2024 Free Software Foundation, Inc.
|
|
Contributed by Andrew MacLeod <amacleod@redhat.com>
|
|
and Aldy Hernandez <aldyh@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "insn-codes.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "cfghooks.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "optabs-tree.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "diagnostic-core.h"
|
|
#include "flags.h"
|
|
#include "fold-const.h"
|
|
#include "stor-layout.h"
|
|
#include "calls.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimple-walk.h"
|
|
#include "tree-cfg.h"
|
|
#include "wide-int.h"
|
|
#include "value-relation.h"
|
|
#include "range-op.h"
|
|
#include "tree-ssa-ccp.h"
|
|
#include "range-op-mixed.h"
|
|
|
|
class pointer_plus_operator : public range_operator
|
|
{
|
|
using range_operator::op2_range;
|
|
public:
|
|
virtual void wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb,
|
|
const wide_int &lh_ub,
|
|
const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const;
|
|
virtual bool op2_range (irange &r, tree type,
|
|
const irange &lhs,
|
|
const irange &op1,
|
|
relation_trio = TRIO_VARYING) const;
|
|
void update_bitmask (irange &r, const irange &lh, const irange &rh) const
|
|
{ update_known_bitmask (r, POINTER_PLUS_EXPR, lh, rh); }
|
|
} op_pointer_plus;
|
|
|
|
void
|
|
pointer_plus_operator::wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb,
|
|
const wide_int &lh_ub,
|
|
const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const
|
|
{
|
|
// Check for [0,0] + const, and simply return the const.
|
|
if (lh_lb == 0 && lh_ub == 0 && rh_lb == rh_ub)
|
|
{
|
|
r.set (type, rh_lb, rh_lb);
|
|
return;
|
|
}
|
|
|
|
// For pointer types, we are really only interested in asserting
|
|
// whether the expression evaluates to non-NULL.
|
|
//
|
|
// With -fno-delete-null-pointer-checks we need to be more
|
|
// conservative. As some object might reside at address 0,
|
|
// then some offset could be added to it and the same offset
|
|
// subtracted again and the result would be NULL.
|
|
// E.g.
|
|
// static int a[12]; where &a[0] is NULL and
|
|
// ptr = &a[6];
|
|
// ptr -= 6;
|
|
// ptr will be NULL here, even when there is POINTER_PLUS_EXPR
|
|
// where the first range doesn't include zero and the second one
|
|
// doesn't either. As the second operand is sizetype (unsigned),
|
|
// consider all ranges where the MSB could be set as possible
|
|
// subtractions where the result might be NULL.
|
|
if ((!wi_includes_zero_p (type, lh_lb, lh_ub)
|
|
|| !wi_includes_zero_p (type, rh_lb, rh_ub))
|
|
&& !TYPE_OVERFLOW_WRAPS (type)
|
|
&& (flag_delete_null_pointer_checks
|
|
|| !wi::sign_mask (rh_ub)))
|
|
r = range_nonzero (type);
|
|
else if (lh_lb == lh_ub && lh_lb == 0
|
|
&& rh_lb == rh_ub && rh_lb == 0)
|
|
r = range_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
|
|
bool
|
|
pointer_plus_operator::op2_range (irange &r, tree type,
|
|
const irange &lhs ATTRIBUTE_UNUSED,
|
|
const irange &op1 ATTRIBUTE_UNUSED,
|
|
relation_trio trio) const
|
|
{
|
|
relation_kind rel = trio.lhs_op1 ();
|
|
r.set_varying (type);
|
|
|
|
// If the LHS and OP1 are equal, the op2 must be zero.
|
|
if (rel == VREL_EQ)
|
|
r.set_zero (type);
|
|
// If the LHS and OP1 are not equal, the offset must be non-zero.
|
|
else if (rel == VREL_NE)
|
|
r.set_nonzero (type);
|
|
else
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
class pointer_min_max_operator : public range_operator
|
|
{
|
|
public:
|
|
virtual void wi_fold (irange & r, tree type,
|
|
const wide_int &lh_lb, const wide_int &lh_ub,
|
|
const wide_int &rh_lb, const wide_int &rh_ub) const;
|
|
} op_ptr_min_max;
|
|
|
|
void
|
|
pointer_min_max_operator::wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb,
|
|
const wide_int &lh_ub,
|
|
const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const
|
|
{
|
|
// For MIN/MAX expressions with pointers, we only care about
|
|
// nullness. If both are non null, then the result is nonnull.
|
|
// If both are null, then the result is null. Otherwise they
|
|
// are varying.
|
|
if (!wi_includes_zero_p (type, lh_lb, lh_ub)
|
|
&& !wi_includes_zero_p (type, rh_lb, rh_ub))
|
|
r = range_nonzero (type);
|
|
else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
|
|
r = range_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
|
|
class pointer_and_operator : public range_operator
|
|
{
|
|
public:
|
|
virtual void wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb, const wide_int &lh_ub,
|
|
const wide_int &rh_lb, const wide_int &rh_ub) const;
|
|
} op_pointer_and;
|
|
|
|
void
|
|
pointer_and_operator::wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb,
|
|
const wide_int &lh_ub,
|
|
const wide_int &rh_lb ATTRIBUTE_UNUSED,
|
|
const wide_int &rh_ub ATTRIBUTE_UNUSED) const
|
|
{
|
|
// For pointer types, we are really only interested in asserting
|
|
// whether the expression evaluates to non-NULL.
|
|
if (wi_zero_p (type, lh_lb, lh_ub) || wi_zero_p (type, lh_lb, lh_ub))
|
|
r = range_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
|
|
|
|
class pointer_or_operator : public range_operator
|
|
{
|
|
public:
|
|
using range_operator::op1_range;
|
|
using range_operator::op2_range;
|
|
virtual bool op1_range (irange &r, tree type,
|
|
const irange &lhs,
|
|
const irange &op2,
|
|
relation_trio rel = TRIO_VARYING) const;
|
|
virtual bool op2_range (irange &r, tree type,
|
|
const irange &lhs,
|
|
const irange &op1,
|
|
relation_trio rel = TRIO_VARYING) const;
|
|
virtual void wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb, const wide_int &lh_ub,
|
|
const wide_int &rh_lb, const wide_int &rh_ub) const;
|
|
} op_pointer_or;
|
|
|
|
bool
|
|
pointer_or_operator::op1_range (irange &r, tree type,
|
|
const irange &lhs,
|
|
const irange &op2 ATTRIBUTE_UNUSED,
|
|
relation_trio) const
|
|
{
|
|
if (lhs.undefined_p ())
|
|
return false;
|
|
if (lhs.zero_p ())
|
|
{
|
|
r.set_zero (type);
|
|
return true;
|
|
}
|
|
r.set_varying (type);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
pointer_or_operator::op2_range (irange &r, tree type,
|
|
const irange &lhs,
|
|
const irange &op1,
|
|
relation_trio) const
|
|
{
|
|
return pointer_or_operator::op1_range (r, type, lhs, op1);
|
|
}
|
|
|
|
void
|
|
pointer_or_operator::wi_fold (irange &r, tree type,
|
|
const wide_int &lh_lb,
|
|
const wide_int &lh_ub,
|
|
const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const
|
|
{
|
|
// For pointer types, we are really only interested in asserting
|
|
// whether the expression evaluates to non-NULL.
|
|
if (!wi_includes_zero_p (type, lh_lb, lh_ub)
|
|
&& !wi_includes_zero_p (type, rh_lb, rh_ub))
|
|
r = range_nonzero (type);
|
|
else if (wi_zero_p (type, lh_lb, lh_ub) && wi_zero_p (type, rh_lb, rh_ub))
|
|
r = range_zero (type);
|
|
else
|
|
r.set_varying (type);
|
|
}
|
|
|
|
class operator_pointer_diff : public range_operator
|
|
{
|
|
virtual bool op1_op2_relation_effect (irange &lhs_range,
|
|
tree type,
|
|
const irange &op1_range,
|
|
const irange &op2_range,
|
|
relation_kind rel) const;
|
|
void update_bitmask (irange &r, const irange &lh, const irange &rh) const
|
|
{ update_known_bitmask (r, POINTER_DIFF_EXPR, lh, rh); }
|
|
} op_pointer_diff;
|
|
|
|
bool
|
|
operator_pointer_diff::op1_op2_relation_effect (irange &lhs_range, tree type,
|
|
const irange &op1_range,
|
|
const irange &op2_range,
|
|
relation_kind rel) const
|
|
{
|
|
return minus_op1_op2_relation_effect (lhs_range, type, op1_range, op2_range,
|
|
rel);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------
|
|
// Hybrid operators for the 4 operations which integer and pointers share,
|
|
// but which have different implementations. Simply check the type in
|
|
// the call and choose the appropriate method.
|
|
// Once there is a PRANGE signature, simply add the appropriate
|
|
// prototypes in the rmixed range class, and remove these hybrid classes.
|
|
|
|
class hybrid_and_operator : public operator_bitwise_and
|
|
{
|
|
public:
|
|
using range_operator::op1_range;
|
|
using range_operator::op2_range;
|
|
using range_operator::lhs_op1_relation;
|
|
bool op1_range (irange &r, tree type,
|
|
const irange &lhs, const irange &op2,
|
|
relation_trio rel = TRIO_VARYING) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_bitwise_and::op1_range (r, type, lhs, op2, rel);
|
|
else
|
|
return false;
|
|
}
|
|
bool op2_range (irange &r, tree type,
|
|
const irange &lhs, const irange &op1,
|
|
relation_trio rel = TRIO_VARYING) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_bitwise_and::op2_range (r, type, lhs, op1, rel);
|
|
else
|
|
return false;
|
|
}
|
|
relation_kind lhs_op1_relation (const irange &lhs,
|
|
const irange &op1, const irange &op2,
|
|
relation_kind rel) const final override
|
|
{
|
|
if (!lhs.undefined_p () && INTEGRAL_TYPE_P (lhs.type ()))
|
|
return operator_bitwise_and::lhs_op1_relation (lhs, op1, op2, rel);
|
|
else
|
|
return VREL_VARYING;
|
|
}
|
|
void update_bitmask (irange &r, const irange &lh,
|
|
const irange &rh) const final override
|
|
{
|
|
if (!r.undefined_p () && INTEGRAL_TYPE_P (r.type ()))
|
|
operator_bitwise_and::update_bitmask (r, lh, rh);
|
|
}
|
|
|
|
void wi_fold (irange &r, tree type, const wide_int &lh_lb,
|
|
const wide_int &lh_ub, const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_bitwise_and::wi_fold (r, type, lh_lb, lh_ub,
|
|
rh_lb, rh_ub);
|
|
else
|
|
return op_pointer_and.wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
|
|
}
|
|
} op_hybrid_and;
|
|
|
|
// Temporary class which dispatches routines to either the INT version or
|
|
// the pointer version depending on the type. Once PRANGE is a range
|
|
// class, we can remove the hybrid.
|
|
|
|
class hybrid_or_operator : public operator_bitwise_or
|
|
{
|
|
public:
|
|
using range_operator::op1_range;
|
|
using range_operator::op2_range;
|
|
using range_operator::lhs_op1_relation;
|
|
bool op1_range (irange &r, tree type,
|
|
const irange &lhs, const irange &op2,
|
|
relation_trio rel = TRIO_VARYING) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_bitwise_or::op1_range (r, type, lhs, op2, rel);
|
|
else
|
|
return op_pointer_or.op1_range (r, type, lhs, op2, rel);
|
|
}
|
|
bool op2_range (irange &r, tree type,
|
|
const irange &lhs, const irange &op1,
|
|
relation_trio rel = TRIO_VARYING) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_bitwise_or::op2_range (r, type, lhs, op1, rel);
|
|
else
|
|
return op_pointer_or.op2_range (r, type, lhs, op1, rel);
|
|
}
|
|
void update_bitmask (irange &r, const irange &lh,
|
|
const irange &rh) const final override
|
|
{
|
|
if (!r.undefined_p () && INTEGRAL_TYPE_P (r.type ()))
|
|
operator_bitwise_or::update_bitmask (r, lh, rh);
|
|
}
|
|
|
|
void wi_fold (irange &r, tree type, const wide_int &lh_lb,
|
|
const wide_int &lh_ub, const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_bitwise_or::wi_fold (r, type, lh_lb, lh_ub,
|
|
rh_lb, rh_ub);
|
|
else
|
|
return op_pointer_or.wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
|
|
}
|
|
} op_hybrid_or;
|
|
|
|
// Temporary class which dispatches routines to either the INT version or
|
|
// the pointer version depending on the type. Once PRANGE is a range
|
|
// class, we can remove the hybrid.
|
|
|
|
class hybrid_min_operator : public operator_min
|
|
{
|
|
public:
|
|
void update_bitmask (irange &r, const irange &lh,
|
|
const irange &rh) const final override
|
|
{
|
|
if (!r.undefined_p () && INTEGRAL_TYPE_P (r.type ()))
|
|
operator_min::update_bitmask (r, lh, rh);
|
|
}
|
|
|
|
void wi_fold (irange &r, tree type, const wide_int &lh_lb,
|
|
const wide_int &lh_ub, const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_min::wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
|
|
else
|
|
return op_ptr_min_max.wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
|
|
}
|
|
} op_hybrid_min;
|
|
|
|
class hybrid_max_operator : public operator_max
|
|
{
|
|
public:
|
|
void update_bitmask (irange &r, const irange &lh,
|
|
const irange &rh) const final override
|
|
{
|
|
if (!r.undefined_p () && INTEGRAL_TYPE_P (r.type ()))
|
|
operator_max::update_bitmask (r, lh, rh);
|
|
}
|
|
|
|
void wi_fold (irange &r, tree type, const wide_int &lh_lb,
|
|
const wide_int &lh_ub, const wide_int &rh_lb,
|
|
const wide_int &rh_ub) const final override
|
|
{
|
|
if (INTEGRAL_TYPE_P (type))
|
|
return operator_max::wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
|
|
else
|
|
return op_ptr_min_max.wi_fold (r, type, lh_lb, lh_ub, rh_lb, rh_ub);
|
|
}
|
|
} op_hybrid_max;
|
|
|
|
// Initialize any pointer operators to the primary table
|
|
|
|
void
|
|
range_op_table::initialize_pointer_ops ()
|
|
{
|
|
set (POINTER_PLUS_EXPR, op_pointer_plus);
|
|
set (POINTER_DIFF_EXPR, op_pointer_diff);
|
|
set (BIT_AND_EXPR, op_hybrid_and);
|
|
set (BIT_IOR_EXPR, op_hybrid_or);
|
|
set (MIN_EXPR, op_hybrid_min);
|
|
set (MAX_EXPR, op_hybrid_max);
|
|
}
|