mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-12-01 07:44:05 +08:00
0f546316f4
* include/java-insns.h (enum java_code): Add op_breakpoint. * include/java-interp.h (_Jv_InterpMethod): Declare breakpoint_insn. [INTERPRETER]: Declare _Jv_InterpMethod::bp_insn_slot. [!INTERPRETER]: Declare _Jv_InterpMethod::bp_insn_opcode. (install_break): Declare. * interpret.cc (breakpoint_insn): Define breakpoint insn. (compile): Add op_breakpoint to "can't happen" cases. [INTERPRETER] Initialize breakpoint insn if necessary. (install_break): New method. * interpret-run.cc: Add op_breakpoint to insn_targets. Add insn_breakpoint label. * verify.cc (branch_prepass): Add op_breakpoint to unrecognized opcodes section of switch statement. (verify_instructions_0): Likewise. From-SVN: r117734
3237 lines
85 KiB
C++
3237 lines
85 KiB
C++
// verify.cc - verify bytecode
|
|
|
|
/* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation
|
|
|
|
This file is part of libgcj.
|
|
|
|
This software is copyrighted work licensed under the terms of the
|
|
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
|
details. */
|
|
|
|
// Written by Tom Tromey <tromey@redhat.com>
|
|
|
|
// Define VERIFY_DEBUG to enable debugging output.
|
|
|
|
#include <config.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <jvm.h>
|
|
#include <gcj/cni.h>
|
|
#include <java-insns.h>
|
|
#include <java-interp.h>
|
|
|
|
// On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which
|
|
// defines PC since g++ predefines __EXTENSIONS__. Undef here to avoid clash
|
|
// with PC member of class _Jv_BytecodeVerifier below.
|
|
#undef PC
|
|
|
|
#ifdef INTERPRETER
|
|
|
|
#include <java/lang/Class.h>
|
|
#include <java/lang/VerifyError.h>
|
|
#include <java/lang/Throwable.h>
|
|
#include <java/lang/reflect/Modifier.h>
|
|
#include <java/lang/StringBuffer.h>
|
|
#include <java/lang/NoClassDefFoundError.h>
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
#include <stdio.h>
|
|
#endif /* VERIFY_DEBUG */
|
|
|
|
|
|
// This is used to mark states which are not scheduled for
|
|
// verification.
|
|
#define INVALID_STATE ((state *) -1)
|
|
|
|
static void debug_print (const char *fmt, ...)
|
|
__attribute__ ((format (printf, 1, 2)));
|
|
|
|
static inline void
|
|
debug_print (MAYBE_UNUSED const char *fmt, ...)
|
|
{
|
|
#ifdef VERIFY_DEBUG
|
|
va_list ap;
|
|
va_start (ap, fmt);
|
|
vfprintf (stderr, fmt, ap);
|
|
va_end (ap);
|
|
#endif /* VERIFY_DEBUG */
|
|
}
|
|
|
|
// This started as a fairly ordinary verifier, and for the most part
|
|
// it remains so. It works in the obvious way, by modeling the effect
|
|
// of each opcode as it is encountered. For most opcodes, this is a
|
|
// straightforward operation.
|
|
//
|
|
// This verifier does not do type merging. It used to, but this
|
|
// results in difficulty verifying some relatively simple code
|
|
// involving interfaces, and it pushed some verification work into the
|
|
// interpreter.
|
|
//
|
|
// Instead of merging reference types, when we reach a point where two
|
|
// flows of control merge, we simply keep the union of reference types
|
|
// from each branch. Then, when we need to verify a fact about a
|
|
// reference on the stack (e.g., that it is compatible with the
|
|
// argument type of a method), we check to ensure that all possible
|
|
// types satisfy the requirement.
|
|
//
|
|
// Another area this verifier differs from the norm is in its handling
|
|
// of subroutines. The JVM specification has some confusing things to
|
|
// say about subroutines. For instance, it makes claims about not
|
|
// allowing subroutines to merge and it rejects recursive subroutines.
|
|
// For the most part these are red herrings; we used to try to follow
|
|
// these things but they lead to problems. For example, the notion of
|
|
// "being in a subroutine" is not well-defined: is an exception
|
|
// handler in a subroutine? If you never execute the `ret' but
|
|
// instead `goto 1' do you remain in the subroutine?
|
|
//
|
|
// For clarity on what is really required for type safety, read
|
|
// "Simple Verification Technique for Complex Java Bytecode
|
|
// Subroutines" by Alessandro Coglio. Among other things this paper
|
|
// shows that recursive subroutines are not harmful to type safety.
|
|
// We implement something similar to what he proposes. Note that this
|
|
// means that this verifier will accept code that is rejected by some
|
|
// other verifiers.
|
|
//
|
|
// For those not wanting to read the paper, the basic observation is
|
|
// that we can maintain split states in subroutines. We maintain one
|
|
// state for each calling `jsr'. In other words, we re-verify a
|
|
// subroutine once for each caller, using the exact types held by the
|
|
// callers (as opposed to the old approach of merging types and
|
|
// keeping a bitmap registering what did or did not change). This
|
|
// approach lets us continue to verify correctly even when a
|
|
// subroutine is exited via `goto' or `athrow' and not `ret'.
|
|
//
|
|
// In some other areas the JVM specification is (mildly) incorrect,
|
|
// so we diverge. For instance, you cannot
|
|
// violate type safety by allocating an object with `new' and then
|
|
// failing to initialize it, no matter how one branches or where one
|
|
// stores the uninitialized reference. See "Improving the official
|
|
// specification of Java bytecode verification" by Alessandro Coglio.
|
|
//
|
|
// Note that there's no real point in enforcing that padding bytes or
|
|
// the mystery byte of invokeinterface must be 0, but we do that
|
|
// regardless.
|
|
//
|
|
// The verifier is currently neither completely lazy nor eager when it
|
|
// comes to loading classes. It tries to represent types by name when
|
|
// possible, and then loads them when it needs to verify a fact about
|
|
// the type. Checking types by name is valid because we only use
|
|
// names which come from the current class' constant pool. Since all
|
|
// such names are looked up using the same class loader, there is no
|
|
// danger that we might be fooled into comparing different types with
|
|
// the same name.
|
|
//
|
|
// In the future we plan to allow for a completely lazy mode of
|
|
// operation, where the verifier will construct a list of type
|
|
// assertions to be checked later.
|
|
//
|
|
// Some test cases for the verifier live in the "verify" module of the
|
|
// Mauve test suite. However, some of these are presently
|
|
// (2004-01-20) believed to be incorrect. (More precisely the notion
|
|
// of "correct" is not well-defined, and this verifier differs from
|
|
// others while remaining type-safe.) Some other tests live in the
|
|
// libgcj test suite.
|
|
class _Jv_BytecodeVerifier
|
|
{
|
|
private:
|
|
|
|
static const int FLAG_INSN_START = 1;
|
|
static const int FLAG_BRANCH_TARGET = 2;
|
|
|
|
struct state;
|
|
struct type;
|
|
struct linked_utf8;
|
|
struct ref_intersection;
|
|
|
|
template<typename T>
|
|
struct linked
|
|
{
|
|
T *val;
|
|
linked<T> *next;
|
|
};
|
|
|
|
// The current PC.
|
|
int PC;
|
|
// The PC corresponding to the start of the current instruction.
|
|
int start_PC;
|
|
|
|
// The current state of the stack, locals, etc.
|
|
state *current_state;
|
|
|
|
// At each branch target we keep a linked list of all the states we
|
|
// can process at that point. We'll only have multiple states at a
|
|
// given PC if they both have different return-address types in the
|
|
// same stack or local slot. This array is indexed by PC and holds
|
|
// the list of all such states.
|
|
linked<state> **states;
|
|
|
|
// We keep a linked list of all the states which we must reverify.
|
|
// This is the head of the list.
|
|
state *next_verify_state;
|
|
|
|
// We keep some flags for each instruction. The values are the
|
|
// FLAG_* constants defined above. This is an array indexed by PC.
|
|
char *flags;
|
|
|
|
// The bytecode itself.
|
|
unsigned char *bytecode;
|
|
// The exceptions.
|
|
_Jv_InterpException *exception;
|
|
|
|
// Defining class.
|
|
jclass current_class;
|
|
// This method.
|
|
_Jv_InterpMethod *current_method;
|
|
|
|
// A linked list of utf8 objects we allocate.
|
|
linked<_Jv_Utf8Const> *utf8_list;
|
|
|
|
// A linked list of all ref_intersection objects we allocate.
|
|
ref_intersection *isect_list;
|
|
|
|
// Create a new Utf-8 constant and return it. We do this to avoid
|
|
// having our Utf-8 constants prematurely collected.
|
|
_Jv_Utf8Const *make_utf8_const (char *s, int len)
|
|
{
|
|
linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *)
|
|
_Jv_Malloc (sizeof (linked<_Jv_Utf8Const>)
|
|
+ _Jv_Utf8Const::space_needed(s, len));
|
|
_Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1);
|
|
r->init(s, len);
|
|
lu->val = r;
|
|
lu->next = utf8_list;
|
|
utf8_list = lu;
|
|
|
|
return r;
|
|
}
|
|
|
|
__attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1)
|
|
{
|
|
using namespace java::lang;
|
|
StringBuffer *buf = new StringBuffer ();
|
|
|
|
buf->append (JvNewStringLatin1 ("verification failed"));
|
|
if (pc == -1)
|
|
pc = start_PC;
|
|
if (pc != -1)
|
|
{
|
|
buf->append (JvNewStringLatin1 (" at PC "));
|
|
buf->append (pc);
|
|
}
|
|
|
|
_Jv_InterpMethod *method = current_method;
|
|
buf->append (JvNewStringLatin1 (" in "));
|
|
buf->append (current_class->getName());
|
|
buf->append ((jchar) ':');
|
|
buf->append (method->get_method()->name->toString());
|
|
buf->append ((jchar) '(');
|
|
buf->append (method->get_method()->signature->toString());
|
|
buf->append ((jchar) ')');
|
|
|
|
buf->append (JvNewStringLatin1 (": "));
|
|
buf->append (JvNewStringLatin1 (s));
|
|
throw new java::lang::VerifyError (buf->toString ());
|
|
}
|
|
|
|
// This enum holds a list of tags for all the different types we
|
|
// need to handle. Reference types are treated specially by the
|
|
// type class.
|
|
enum type_val
|
|
{
|
|
void_type,
|
|
|
|
// The values for primitive types are chosen to correspond to values
|
|
// specified to newarray.
|
|
boolean_type = 4,
|
|
char_type = 5,
|
|
float_type = 6,
|
|
double_type = 7,
|
|
byte_type = 8,
|
|
short_type = 9,
|
|
int_type = 10,
|
|
long_type = 11,
|
|
|
|
// Used when overwriting second word of a double or long in the
|
|
// local variables. Also used after merging local variable states
|
|
// to indicate an unusable value.
|
|
unsuitable_type,
|
|
return_address_type,
|
|
// This is the second word of a two-word value, i.e., a double or
|
|
// a long.
|
|
continuation_type,
|
|
|
|
// Everything after `reference_type' must be a reference type.
|
|
reference_type,
|
|
null_type,
|
|
uninitialized_reference_type
|
|
};
|
|
|
|
// This represents a merged class type. Some verifiers (including
|
|
// earlier versions of this one) will compute the intersection of
|
|
// two class types when merging states. However, this loses
|
|
// critical information about interfaces implemented by the various
|
|
// classes. So instead we keep track of all the actual classes that
|
|
// have been merged.
|
|
struct ref_intersection
|
|
{
|
|
// Whether or not this type has been resolved.
|
|
bool is_resolved;
|
|
|
|
// Actual type data.
|
|
union
|
|
{
|
|
// For a resolved reference type, this is a pointer to the class.
|
|
jclass klass;
|
|
// For other reference types, this it the name of the class.
|
|
_Jv_Utf8Const *name;
|
|
} data;
|
|
|
|
// Link to the next reference in the intersection.
|
|
ref_intersection *ref_next;
|
|
|
|
// This is used to keep track of all the allocated
|
|
// ref_intersection objects, so we can free them.
|
|
// FIXME: we should allocate these in chunks.
|
|
ref_intersection *alloc_next;
|
|
|
|
ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
|
|
: ref_next (NULL)
|
|
{
|
|
is_resolved = true;
|
|
data.klass = klass;
|
|
alloc_next = verifier->isect_list;
|
|
verifier->isect_list = this;
|
|
}
|
|
|
|
ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
|
|
: ref_next (NULL)
|
|
{
|
|
is_resolved = false;
|
|
data.name = name;
|
|
alloc_next = verifier->isect_list;
|
|
verifier->isect_list = this;
|
|
}
|
|
|
|
ref_intersection (ref_intersection *dup, ref_intersection *tail,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
: ref_next (tail)
|
|
{
|
|
is_resolved = dup->is_resolved;
|
|
data = dup->data;
|
|
alloc_next = verifier->isect_list;
|
|
verifier->isect_list = this;
|
|
}
|
|
|
|
bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (! is_resolved && ! other->is_resolved
|
|
&& _Jv_equalUtf8Classnames (data.name, other->data.name))
|
|
return true;
|
|
if (! is_resolved)
|
|
resolve (verifier);
|
|
if (! other->is_resolved)
|
|
other->resolve (verifier);
|
|
return data.klass == other->data.klass;
|
|
}
|
|
|
|
// Merge THIS type into OTHER, returning the result. This will
|
|
// return OTHER if all the classes in THIS already appear in
|
|
// OTHER.
|
|
ref_intersection *merge (ref_intersection *other,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
ref_intersection *tail = other;
|
|
for (ref_intersection *self = this; self != NULL; self = self->ref_next)
|
|
{
|
|
bool add = true;
|
|
for (ref_intersection *iter = other; iter != NULL;
|
|
iter = iter->ref_next)
|
|
{
|
|
if (iter->equals (self, verifier))
|
|
{
|
|
add = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (add)
|
|
tail = new ref_intersection (self, tail, verifier);
|
|
}
|
|
return tail;
|
|
}
|
|
|
|
void resolve (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (is_resolved)
|
|
return;
|
|
|
|
// This is useful if you want to see which classes have to be resolved
|
|
// while doing the class verification.
|
|
debug_print("resolving class: %s\n", data.name->chars());
|
|
|
|
using namespace java::lang;
|
|
java::lang::ClassLoader *loader
|
|
= verifier->current_class->getClassLoaderInternal();
|
|
|
|
// Due to special handling in to_array() array classes will always
|
|
// be of the "L ... ;" kind. The separator char ('.' or '/' may vary
|
|
// however.
|
|
if (data.name->limit()[-1] == ';')
|
|
{
|
|
data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader);
|
|
if (data.klass == NULL)
|
|
throw new java::lang::NoClassDefFoundError(data.name->toString());
|
|
}
|
|
else
|
|
data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
|
|
false, loader);
|
|
is_resolved = true;
|
|
}
|
|
|
|
// See if an object of type OTHER can be assigned to an object of
|
|
// type *THIS. This might resolve classes in one chain or the
|
|
// other.
|
|
bool compatible (ref_intersection *other,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
ref_intersection *self = this;
|
|
|
|
for (; self != NULL; self = self->ref_next)
|
|
{
|
|
ref_intersection *other_iter = other;
|
|
|
|
for (; other_iter != NULL; other_iter = other_iter->ref_next)
|
|
{
|
|
// Avoid resolving if possible.
|
|
if (! self->is_resolved
|
|
&& ! other_iter->is_resolved
|
|
&& _Jv_equalUtf8Classnames (self->data.name,
|
|
other_iter->data.name))
|
|
continue;
|
|
|
|
if (! self->is_resolved)
|
|
self->resolve(verifier);
|
|
|
|
// If the LHS of the expression is of type
|
|
// java.lang.Object, assignment will succeed, no matter
|
|
// what the type of the RHS is. Using this short-cut we
|
|
// don't need to resolve the class of the RHS at
|
|
// verification time.
|
|
if (self->data.klass == &java::lang::Object::class$)
|
|
continue;
|
|
|
|
if (! other_iter->is_resolved)
|
|
other_iter->resolve(verifier);
|
|
|
|
if (! is_assignable_from_slow (self->data.klass,
|
|
other_iter->data.klass))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool isarray ()
|
|
{
|
|
// assert (ref_next == NULL);
|
|
if (is_resolved)
|
|
return data.klass->isArray ();
|
|
else
|
|
return data.name->first() == '[';
|
|
}
|
|
|
|
bool isinterface (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// assert (ref_next == NULL);
|
|
if (! is_resolved)
|
|
resolve (verifier);
|
|
return data.klass->isInterface ();
|
|
}
|
|
|
|
bool isabstract (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// assert (ref_next == NULL);
|
|
if (! is_resolved)
|
|
resolve (verifier);
|
|
using namespace java::lang::reflect;
|
|
return Modifier::isAbstract (data.klass->getModifiers ());
|
|
}
|
|
|
|
jclass getclass (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (! is_resolved)
|
|
resolve (verifier);
|
|
return data.klass;
|
|
}
|
|
|
|
int count_dimensions ()
|
|
{
|
|
int ndims = 0;
|
|
if (is_resolved)
|
|
{
|
|
jclass k = data.klass;
|
|
while (k->isArray ())
|
|
{
|
|
k = k->getComponentType ();
|
|
++ndims;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
char *p = data.name->chars();
|
|
while (*p++ == '[')
|
|
++ndims;
|
|
}
|
|
return ndims;
|
|
}
|
|
|
|
void *operator new (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
};
|
|
|
|
// Return the type_val corresponding to a primitive signature
|
|
// character. For instance `I' returns `int.class'.
|
|
type_val get_type_val_for_signature (jchar sig)
|
|
{
|
|
type_val rt;
|
|
switch (sig)
|
|
{
|
|
case 'Z':
|
|
rt = boolean_type;
|
|
break;
|
|
case 'B':
|
|
rt = byte_type;
|
|
break;
|
|
case 'C':
|
|
rt = char_type;
|
|
break;
|
|
case 'S':
|
|
rt = short_type;
|
|
break;
|
|
case 'I':
|
|
rt = int_type;
|
|
break;
|
|
case 'J':
|
|
rt = long_type;
|
|
break;
|
|
case 'F':
|
|
rt = float_type;
|
|
break;
|
|
case 'D':
|
|
rt = double_type;
|
|
break;
|
|
case 'V':
|
|
rt = void_type;
|
|
break;
|
|
default:
|
|
verify_fail ("invalid signature");
|
|
}
|
|
return rt;
|
|
}
|
|
|
|
// Return the type_val corresponding to a primitive class.
|
|
type_val get_type_val_for_signature (jclass k)
|
|
{
|
|
return get_type_val_for_signature ((jchar) k->method_count);
|
|
}
|
|
|
|
// This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
|
|
// TARGET haven't been prepared.
|
|
static bool is_assignable_from_slow (jclass target, jclass source)
|
|
{
|
|
// First, strip arrays.
|
|
while (target->isArray ())
|
|
{
|
|
// If target is array, source must be as well.
|
|
if (! source->isArray ())
|
|
return false;
|
|
target = target->getComponentType ();
|
|
source = source->getComponentType ();
|
|
}
|
|
|
|
// Quick success.
|
|
if (target == &java::lang::Object::class$)
|
|
return true;
|
|
|
|
do
|
|
{
|
|
if (source == target)
|
|
return true;
|
|
|
|
if (target->isPrimitive () || source->isPrimitive ())
|
|
return false;
|
|
|
|
if (target->isInterface ())
|
|
{
|
|
for (int i = 0; i < source->interface_count; ++i)
|
|
{
|
|
// We use a recursive call because we also need to
|
|
// check superinterfaces.
|
|
if (is_assignable_from_slow (target, source->getInterface (i)))
|
|
return true;
|
|
}
|
|
}
|
|
source = source->getSuperclass ();
|
|
}
|
|
while (source != NULL);
|
|
|
|
return false;
|
|
}
|
|
|
|
// The `type' class is used to represent a single type in the
|
|
// verifier.
|
|
struct type
|
|
{
|
|
// The type key.
|
|
type_val key;
|
|
|
|
// For reference types, the representation of the type.
|
|
ref_intersection *klass;
|
|
|
|
// This is used in two situations.
|
|
//
|
|
// First, when constructing a new object, it is the PC of the
|
|
// `new' instruction which created the object. We use the special
|
|
// value UNINIT to mean that this is uninitialized. The special
|
|
// value SELF is used for the case where the current method is
|
|
// itself the <init> method. the special value EITHER is used
|
|
// when we may optionally allow either an uninitialized or
|
|
// initialized reference to match.
|
|
//
|
|
// Second, when the key is return_address_type, this holds the PC
|
|
// of the instruction following the `jsr'.
|
|
int pc;
|
|
|
|
static const int UNINIT = -2;
|
|
static const int SELF = -1;
|
|
static const int EITHER = -3;
|
|
|
|
// Basic constructor.
|
|
type ()
|
|
{
|
|
key = unsuitable_type;
|
|
klass = NULL;
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Make a new instance given the type tag. We assume a generic
|
|
// `reference_type' means Object.
|
|
type (type_val k)
|
|
{
|
|
key = k;
|
|
// For reference_type, if KLASS==NULL then that means we are
|
|
// looking for a generic object of any kind, including an
|
|
// uninitialized reference.
|
|
klass = NULL;
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Make a new instance given a class.
|
|
type (jclass k, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
key = reference_type;
|
|
klass = new ref_intersection (k, verifier);
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Make a new instance given the name of a class.
|
|
type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
key = reference_type;
|
|
klass = new ref_intersection (n, verifier);
|
|
pc = UNINIT;
|
|
}
|
|
|
|
// Copy constructor.
|
|
type (const type &t)
|
|
{
|
|
key = t.key;
|
|
klass = t.klass;
|
|
pc = t.pc;
|
|
}
|
|
|
|
// These operators are required because libgcj can't link in
|
|
// -lstdc++.
|
|
void *operator new[] (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete[] (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
|
|
type& operator= (type_val k)
|
|
{
|
|
key = k;
|
|
klass = NULL;
|
|
pc = UNINIT;
|
|
return *this;
|
|
}
|
|
|
|
type& operator= (const type& t)
|
|
{
|
|
key = t.key;
|
|
klass = t.klass;
|
|
pc = t.pc;
|
|
return *this;
|
|
}
|
|
|
|
// Promote a numeric type.
|
|
type &promote ()
|
|
{
|
|
if (key == boolean_type || key == char_type
|
|
|| key == byte_type || key == short_type)
|
|
key = int_type;
|
|
return *this;
|
|
}
|
|
|
|
// Mark this type as the uninitialized result of `new'.
|
|
void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key == reference_type)
|
|
key = uninitialized_reference_type;
|
|
else
|
|
verifier->verify_fail ("internal error in type::uninitialized");
|
|
pc = npc;
|
|
}
|
|
|
|
// Mark this type as now initialized.
|
|
void set_initialized (int npc)
|
|
{
|
|
if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
|
|
{
|
|
key = reference_type;
|
|
pc = UNINIT;
|
|
}
|
|
}
|
|
|
|
// Mark this type as a particular return address.
|
|
void set_return_address (int npc)
|
|
{
|
|
pc = npc;
|
|
}
|
|
|
|
// Return true if this type and type OTHER are considered
|
|
// mergeable for the purposes of state merging. This is related
|
|
// to subroutine handling. For this purpose two types are
|
|
// considered unmergeable if they are both return-addresses but
|
|
// have different PCs.
|
|
bool state_mergeable_p (const type &other) const
|
|
{
|
|
return (key != return_address_type
|
|
|| other.key != return_address_type
|
|
|| pc == other.pc);
|
|
}
|
|
|
|
// Return true if an object of type K can be assigned to a variable
|
|
// of type *THIS. Handle various special cases too. Might modify
|
|
// *THIS or K. Note however that this does not perform numeric
|
|
// promotion.
|
|
bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// Any type is compatible with the unsuitable type.
|
|
if (key == unsuitable_type)
|
|
return true;
|
|
|
|
if (key < reference_type || k.key < reference_type)
|
|
return key == k.key;
|
|
|
|
// The `null' type is convertible to any initialized reference
|
|
// type.
|
|
if (key == null_type)
|
|
return k.key != uninitialized_reference_type;
|
|
if (k.key == null_type)
|
|
return key != uninitialized_reference_type;
|
|
|
|
// A special case for a generic reference.
|
|
if (klass == NULL)
|
|
return true;
|
|
if (k.klass == NULL)
|
|
verifier->verify_fail ("programmer error in type::compatible");
|
|
|
|
// Handle the special 'EITHER' case, which is only used in a
|
|
// special case of 'putfield'. Note that we only need to handle
|
|
// this on the LHS of a check.
|
|
if (! isinitialized () && pc == EITHER)
|
|
{
|
|
// If the RHS is uninitialized, it must be an uninitialized
|
|
// 'this'.
|
|
if (! k.isinitialized () && k.pc != SELF)
|
|
return false;
|
|
}
|
|
else if (isinitialized () != k.isinitialized ())
|
|
{
|
|
// An initialized type and an uninitialized type are not
|
|
// otherwise compatible.
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// Two uninitialized objects are compatible if either:
|
|
// * The PCs are identical, or
|
|
// * One PC is UNINIT.
|
|
if (! isinitialized ())
|
|
{
|
|
if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return klass->compatible(k.klass, verifier);
|
|
}
|
|
|
|
bool equals (const type &other, _Jv_BytecodeVerifier *vfy)
|
|
{
|
|
// Only works for reference types.
|
|
if ((key != reference_type
|
|
&& key != uninitialized_reference_type)
|
|
|| (other.key != reference_type
|
|
&& other.key != uninitialized_reference_type))
|
|
return false;
|
|
// Only for single-valued types.
|
|
if (klass->ref_next || other.klass->ref_next)
|
|
return false;
|
|
return klass->equals (other.klass, vfy);
|
|
}
|
|
|
|
bool isvoid () const
|
|
{
|
|
return key == void_type;
|
|
}
|
|
|
|
bool iswide () const
|
|
{
|
|
return key == long_type || key == double_type;
|
|
}
|
|
|
|
// Return number of stack or local variable slots taken by this
|
|
// type.
|
|
int depth () const
|
|
{
|
|
return iswide () ? 2 : 1;
|
|
}
|
|
|
|
bool isarray () const
|
|
{
|
|
// We treat null_type as not an array. This is ok based on the
|
|
// current uses of this method.
|
|
if (key == reference_type)
|
|
return klass->isarray ();
|
|
return false;
|
|
}
|
|
|
|
bool isnull () const
|
|
{
|
|
return key == null_type;
|
|
}
|
|
|
|
bool isinterface (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key != reference_type)
|
|
return false;
|
|
return klass->isinterface (verifier);
|
|
}
|
|
|
|
bool isabstract (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key != reference_type)
|
|
return false;
|
|
return klass->isabstract (verifier);
|
|
}
|
|
|
|
// Return the element type of an array.
|
|
type element_type (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key != reference_type)
|
|
verifier->verify_fail ("programmer error in type::element_type()", -1);
|
|
|
|
jclass k = klass->getclass (verifier)->getComponentType ();
|
|
if (k->isPrimitive ())
|
|
return type (verifier->get_type_val_for_signature (k));
|
|
return type (k, verifier);
|
|
}
|
|
|
|
// Return the array type corresponding to an initialized
|
|
// reference. We could expand this to work for other kinds of
|
|
// types, but currently we don't need to.
|
|
type to_array (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (key != reference_type)
|
|
verifier->verify_fail ("internal error in type::to_array()");
|
|
|
|
// In case the class is already resolved we can simply ask the runtime
|
|
// to give us the array version.
|
|
// If it is not resolved we prepend "[" to the classname to make the
|
|
// array usage verification more lazy. In other words: makes new Foo[300]
|
|
// pass the verifier if Foo.class is missing.
|
|
if (klass->is_resolved)
|
|
{
|
|
jclass k = klass->getclass (verifier);
|
|
|
|
return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
|
|
verifier);
|
|
}
|
|
else
|
|
{
|
|
int len = klass->data.name->len();
|
|
|
|
// If the classname is given in the Lp1/p2/cn; format we only need
|
|
// to add a leading '['. The same procedure has to be done for
|
|
// primitive arrays (ie. provided "[I", the result should be "[[I".
|
|
// If the classname is given as p1.p2.cn we have to embed it into
|
|
// "[L" and ';'.
|
|
if (klass->data.name->limit()[-1] == ';' ||
|
|
_Jv_isPrimitiveOrDerived(klass->data.name))
|
|
{
|
|
// Reserves space for leading '[' and trailing '\0' .
|
|
char arrayName[len + 2];
|
|
|
|
arrayName[0] = '[';
|
|
strcpy(&arrayName[1], klass->data.name->chars());
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
// This is only needed when we want to print the string to the
|
|
// screen while debugging.
|
|
arrayName[len + 1] = '\0';
|
|
|
|
debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
|
|
#endif
|
|
|
|
return type (verifier->make_utf8_const( arrayName, len + 1 ),
|
|
verifier);
|
|
}
|
|
else
|
|
{
|
|
// Reserves space for leading "[L" and trailing ';' and '\0' .
|
|
char arrayName[len + 4];
|
|
|
|
arrayName[0] = '[';
|
|
arrayName[1] = 'L';
|
|
strcpy(&arrayName[2], klass->data.name->chars());
|
|
arrayName[len + 2] = ';';
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
// This is only needed when we want to print the string to the
|
|
// screen while debugging.
|
|
arrayName[len + 3] = '\0';
|
|
|
|
debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
|
|
#endif
|
|
|
|
return type (verifier->make_utf8_const( arrayName, len + 3 ),
|
|
verifier);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
bool isreference () const
|
|
{
|
|
return key >= reference_type;
|
|
}
|
|
|
|
int get_pc () const
|
|
{
|
|
return pc;
|
|
}
|
|
|
|
bool isinitialized () const
|
|
{
|
|
return key == reference_type || key == null_type;
|
|
}
|
|
|
|
bool isresolved () const
|
|
{
|
|
return (key == reference_type
|
|
|| key == null_type
|
|
|| key == uninitialized_reference_type);
|
|
}
|
|
|
|
void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// The way this is written, we don't need to check isarray().
|
|
if (key != reference_type)
|
|
verifier->verify_fail ("internal error in verify_dimensions:"
|
|
" not a reference type");
|
|
|
|
if (klass->count_dimensions () < ndims)
|
|
verifier->verify_fail ("array type has fewer dimensions"
|
|
" than required");
|
|
}
|
|
|
|
// Merge OLD_TYPE into this. On error throw exception. Return
|
|
// true if the merge caused a type change.
|
|
bool merge (type& old_type, bool local_semantics,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
bool changed = false;
|
|
bool refo = old_type.isreference ();
|
|
bool refn = isreference ();
|
|
if (refo && refn)
|
|
{
|
|
if (old_type.key == null_type)
|
|
;
|
|
else if (key == null_type)
|
|
{
|
|
*this = old_type;
|
|
changed = true;
|
|
}
|
|
else if (isinitialized () != old_type.isinitialized ())
|
|
verifier->verify_fail ("merging initialized and uninitialized types");
|
|
else
|
|
{
|
|
if (! isinitialized ())
|
|
{
|
|
if (pc == UNINIT)
|
|
pc = old_type.pc;
|
|
else if (old_type.pc == UNINIT)
|
|
;
|
|
else if (pc != old_type.pc)
|
|
verifier->verify_fail ("merging different uninitialized types");
|
|
}
|
|
|
|
ref_intersection *merged = old_type.klass->merge (klass,
|
|
verifier);
|
|
if (merged != klass)
|
|
{
|
|
klass = merged;
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
else if (refo || refn || key != old_type.key)
|
|
{
|
|
if (local_semantics)
|
|
{
|
|
// If we already have an `unsuitable' type, then we
|
|
// don't need to change again.
|
|
if (key != unsuitable_type)
|
|
{
|
|
key = unsuitable_type;
|
|
changed = true;
|
|
}
|
|
}
|
|
else
|
|
verifier->verify_fail ("unmergeable type");
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
void print (void) const
|
|
{
|
|
char c = '?';
|
|
switch (key)
|
|
{
|
|
case boolean_type: c = 'Z'; break;
|
|
case byte_type: c = 'B'; break;
|
|
case char_type: c = 'C'; break;
|
|
case short_type: c = 'S'; break;
|
|
case int_type: c = 'I'; break;
|
|
case long_type: c = 'J'; break;
|
|
case float_type: c = 'F'; break;
|
|
case double_type: c = 'D'; break;
|
|
case void_type: c = 'V'; break;
|
|
case unsuitable_type: c = '-'; break;
|
|
case return_address_type: c = 'r'; break;
|
|
case continuation_type: c = '+'; break;
|
|
case reference_type: c = 'L'; break;
|
|
case null_type: c = '@'; break;
|
|
case uninitialized_reference_type: c = 'U'; break;
|
|
}
|
|
debug_print ("%c", c);
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
};
|
|
|
|
// This class holds all the state information we need for a given
|
|
// location.
|
|
struct state
|
|
{
|
|
// The current top of the stack, in terms of slots.
|
|
int stacktop;
|
|
// The current depth of the stack. This will be larger than
|
|
// STACKTOP when wide types are on the stack.
|
|
int stackdepth;
|
|
// The stack.
|
|
type *stack;
|
|
// The local variables.
|
|
type *locals;
|
|
// We keep track of the type of `this' specially. This is used to
|
|
// ensure that an instance initializer invokes another initializer
|
|
// on `this' before returning. We must keep track of this
|
|
// specially because otherwise we might be confused by code which
|
|
// assigns to locals[0] (overwriting `this') and then returns
|
|
// without really initializing.
|
|
type this_type;
|
|
|
|
// The PC for this state. This is only valid on states which are
|
|
// permanently attached to a given PC. For an object like
|
|
// `current_state', which is used transiently, this has no
|
|
// meaning.
|
|
int pc;
|
|
// We keep a linked list of all states requiring reverification.
|
|
// If this is the special value INVALID_STATE then this state is
|
|
// not on the list. NULL marks the end of the linked list.
|
|
state *next;
|
|
|
|
// NO_NEXT is the PC value meaning that a new state must be
|
|
// acquired from the verification list.
|
|
static const int NO_NEXT = -1;
|
|
|
|
state ()
|
|
: this_type ()
|
|
{
|
|
stack = NULL;
|
|
locals = NULL;
|
|
next = INVALID_STATE;
|
|
}
|
|
|
|
state (int max_stack, int max_locals)
|
|
: this_type ()
|
|
{
|
|
stacktop = 0;
|
|
stackdepth = 0;
|
|
stack = new type[max_stack];
|
|
for (int i = 0; i < max_stack; ++i)
|
|
stack[i] = unsuitable_type;
|
|
locals = new type[max_locals];
|
|
for (int i = 0; i < max_locals; ++i)
|
|
locals[i] = unsuitable_type;
|
|
pc = NO_NEXT;
|
|
next = INVALID_STATE;
|
|
}
|
|
|
|
state (const state *orig, int max_stack, int max_locals)
|
|
{
|
|
stack = new type[max_stack];
|
|
locals = new type[max_locals];
|
|
copy (orig, max_stack, max_locals);
|
|
pc = NO_NEXT;
|
|
next = INVALID_STATE;
|
|
}
|
|
|
|
~state ()
|
|
{
|
|
if (stack)
|
|
delete[] stack;
|
|
if (locals)
|
|
delete[] locals;
|
|
}
|
|
|
|
void *operator new[] (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete[] (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
|
|
void *operator new (size_t bytes)
|
|
{
|
|
return _Jv_Malloc (bytes);
|
|
}
|
|
|
|
void operator delete (void *mem)
|
|
{
|
|
_Jv_Free (mem);
|
|
}
|
|
|
|
void copy (const state *copy, int max_stack, int max_locals)
|
|
{
|
|
stacktop = copy->stacktop;
|
|
stackdepth = copy->stackdepth;
|
|
for (int i = 0; i < max_stack; ++i)
|
|
stack[i] = copy->stack[i];
|
|
for (int i = 0; i < max_locals; ++i)
|
|
locals[i] = copy->locals[i];
|
|
|
|
this_type = copy->this_type;
|
|
// Don't modify `next' or `pc'.
|
|
}
|
|
|
|
// Modify this state to reflect entry to an exception handler.
|
|
void set_exception (type t, int max_stack)
|
|
{
|
|
stackdepth = 1;
|
|
stacktop = 1;
|
|
stack[0] = t;
|
|
for (int i = stacktop; i < max_stack; ++i)
|
|
stack[i] = unsuitable_type;
|
|
}
|
|
|
|
inline int get_pc () const
|
|
{
|
|
return pc;
|
|
}
|
|
|
|
void set_pc (int npc)
|
|
{
|
|
pc = npc;
|
|
}
|
|
|
|
// Merge STATE_OLD into this state. Destructively modifies this
|
|
// state. Returns true if the new state was in fact changed.
|
|
// Will throw an exception if the states are not mergeable.
|
|
bool merge (state *state_old, int max_locals,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
bool changed = false;
|
|
|
|
// Special handling for `this'. If one or the other is
|
|
// uninitialized, then the merge is uninitialized.
|
|
if (this_type.isinitialized ())
|
|
this_type = state_old->this_type;
|
|
|
|
// Merge stacks.
|
|
if (state_old->stacktop != stacktop) // FIXME stackdepth instead?
|
|
verifier->verify_fail ("stack sizes differ");
|
|
for (int i = 0; i < state_old->stacktop; ++i)
|
|
{
|
|
if (stack[i].merge (state_old->stack[i], false, verifier))
|
|
changed = true;
|
|
}
|
|
|
|
// Merge local variables.
|
|
for (int i = 0; i < max_locals; ++i)
|
|
{
|
|
if (locals[i].merge (state_old->locals[i], true, verifier))
|
|
changed = true;
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
// Ensure that `this' has been initialized.
|
|
void check_this_initialized (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (this_type.isreference () && ! this_type.isinitialized ())
|
|
verifier->verify_fail ("`this' is uninitialized");
|
|
}
|
|
|
|
// Set type of `this'.
|
|
void set_this_type (const type &k)
|
|
{
|
|
this_type = k;
|
|
}
|
|
|
|
// Mark each `new'd object we know of that was allocated at PC as
|
|
// initialized.
|
|
void set_initialized (int pc, int max_locals)
|
|
{
|
|
for (int i = 0; i < stacktop; ++i)
|
|
stack[i].set_initialized (pc);
|
|
for (int i = 0; i < max_locals; ++i)
|
|
locals[i].set_initialized (pc);
|
|
this_type.set_initialized (pc);
|
|
}
|
|
|
|
// This tests to see whether two states can be considered "merge
|
|
// compatible". If both states have a return-address in the same
|
|
// slot, and the return addresses are different, then they are not
|
|
// compatible and we must not try to merge them.
|
|
bool state_mergeable_p (state *other, int max_locals,
|
|
_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
// This is tricky: if the stack sizes differ, then not only are
|
|
// these not mergeable, but in fact we should give an error, as
|
|
// we've found two execution paths that reach a branch target
|
|
// with different stack depths. FIXME stackdepth instead?
|
|
if (stacktop != other->stacktop)
|
|
verifier->verify_fail ("stack sizes differ");
|
|
|
|
for (int i = 0; i < stacktop; ++i)
|
|
if (! stack[i].state_mergeable_p (other->stack[i]))
|
|
return false;
|
|
for (int i = 0; i < max_locals; ++i)
|
|
if (! locals[i].state_mergeable_p (other->locals[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void reverify (_Jv_BytecodeVerifier *verifier)
|
|
{
|
|
if (next == INVALID_STATE)
|
|
{
|
|
next = verifier->next_verify_state;
|
|
verifier->next_verify_state = this;
|
|
}
|
|
}
|
|
|
|
#ifdef VERIFY_DEBUG
|
|
void print (const char *leader, int pc,
|
|
int max_stack, int max_locals) const
|
|
{
|
|
debug_print ("%s [%4d]: [stack] ", leader, pc);
|
|
int i;
|
|
for (i = 0; i < stacktop; ++i)
|
|
stack[i].print ();
|
|
for (; i < max_stack; ++i)
|
|
debug_print (".");
|
|
debug_print (" [local] ");
|
|
for (i = 0; i < max_locals; ++i)
|
|
locals[i].print ();
|
|
debug_print (" | %p\n", this);
|
|
}
|
|
#else
|
|
inline void print (const char *, int, int, int) const
|
|
{
|
|
}
|
|
#endif /* VERIFY_DEBUG */
|
|
};
|
|
|
|
type pop_raw ()
|
|
{
|
|
if (current_state->stacktop <= 0)
|
|
verify_fail ("stack empty");
|
|
type r = current_state->stack[--current_state->stacktop];
|
|
current_state->stackdepth -= r.depth ();
|
|
if (current_state->stackdepth < 0)
|
|
verify_fail ("stack empty", start_PC);
|
|
return r;
|
|
}
|
|
|
|
type pop32 ()
|
|
{
|
|
type r = pop_raw ();
|
|
if (r.iswide ())
|
|
verify_fail ("narrow pop of wide type");
|
|
return r;
|
|
}
|
|
|
|
type pop_type (type match)
|
|
{
|
|
match.promote ();
|
|
type t = pop_raw ();
|
|
if (! match.compatible (t, this))
|
|
verify_fail ("incompatible type on stack");
|
|
return t;
|
|
}
|
|
|
|
// Pop a reference which is guaranteed to be initialized. MATCH
|
|
// doesn't have to be a reference type; in this case this acts like
|
|
// pop_type.
|
|
type pop_init_ref (type match)
|
|
{
|
|
type t = pop_raw ();
|
|
if (t.isreference () && ! t.isinitialized ())
|
|
verify_fail ("initialized reference required");
|
|
else if (! match.compatible (t, this))
|
|
verify_fail ("incompatible type on stack");
|
|
return t;
|
|
}
|
|
|
|
// Pop a reference type or a return address.
|
|
type pop_ref_or_return ()
|
|
{
|
|
type t = pop_raw ();
|
|
if (! t.isreference () && t.key != return_address_type)
|
|
verify_fail ("expected reference or return address on stack");
|
|
return t;
|
|
}
|
|
|
|
void push_type (type t)
|
|
{
|
|
// If T is a numeric type like short, promote it to int.
|
|
t.promote ();
|
|
|
|
int depth = t.depth ();
|
|
if (current_state->stackdepth + depth > current_method->max_stack)
|
|
verify_fail ("stack overflow");
|
|
current_state->stack[current_state->stacktop++] = t;
|
|
current_state->stackdepth += depth;
|
|
}
|
|
|
|
void set_variable (int index, type t)
|
|
{
|
|
// If T is a numeric type like short, promote it to int.
|
|
t.promote ();
|
|
|
|
int depth = t.depth ();
|
|
if (index > current_method->max_locals - depth)
|
|
verify_fail ("invalid local variable");
|
|
current_state->locals[index] = t;
|
|
|
|
if (depth == 2)
|
|
current_state->locals[index + 1] = continuation_type;
|
|
if (index > 0 && current_state->locals[index - 1].iswide ())
|
|
current_state->locals[index - 1] = unsuitable_type;
|
|
}
|
|
|
|
type get_variable (int index, type t)
|
|
{
|
|
int depth = t.depth ();
|
|
if (index > current_method->max_locals - depth)
|
|
verify_fail ("invalid local variable");
|
|
if (! t.compatible (current_state->locals[index], this))
|
|
verify_fail ("incompatible type in local variable");
|
|
if (depth == 2)
|
|
{
|
|
type t (continuation_type);
|
|
if (! current_state->locals[index + 1].compatible (t, this))
|
|
verify_fail ("invalid local variable");
|
|
}
|
|
return current_state->locals[index];
|
|
}
|
|
|
|
// Make sure ARRAY is an array type and that its elements are
|
|
// compatible with type ELEMENT. Returns the actual element type.
|
|
type require_array_type (type array, type element)
|
|
{
|
|
// An odd case. Here we just pretend that everything went ok. If
|
|
// the requested element type is some kind of reference, return
|
|
// the null type instead.
|
|
if (array.isnull ())
|
|
return element.isreference () ? type (null_type) : element;
|
|
|
|
if (! array.isarray ())
|
|
verify_fail ("array required");
|
|
|
|
type t = array.element_type (this);
|
|
if (! element.compatible (t, this))
|
|
{
|
|
// Special case for byte arrays, which must also be boolean
|
|
// arrays.
|
|
bool ok = true;
|
|
if (element.key == byte_type)
|
|
{
|
|
type e2 (boolean_type);
|
|
ok = e2.compatible (t, this);
|
|
}
|
|
if (! ok)
|
|
verify_fail ("incompatible array element type");
|
|
}
|
|
|
|
// Return T and not ELEMENT, because T might be specialized.
|
|
return t;
|
|
}
|
|
|
|
jint get_byte ()
|
|
{
|
|
if (PC >= current_method->code_length)
|
|
verify_fail ("premature end of bytecode");
|
|
return (jint) bytecode[PC++] & 0xff;
|
|
}
|
|
|
|
jint get_ushort ()
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
return (jint) ((b1 << 8) | b2) & 0xffff;
|
|
}
|
|
|
|
jint get_short ()
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
jshort s = (b1 << 8) | b2;
|
|
return (jint) s;
|
|
}
|
|
|
|
jint get_int ()
|
|
{
|
|
jint b1 = get_byte ();
|
|
jint b2 = get_byte ();
|
|
jint b3 = get_byte ();
|
|
jint b4 = get_byte ();
|
|
return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
|
|
}
|
|
|
|
int compute_jump (int offset)
|
|
{
|
|
int npc = start_PC + offset;
|
|
if (npc < 0 || npc >= current_method->code_length)
|
|
verify_fail ("branch out of range", start_PC);
|
|
return npc;
|
|
}
|
|
|
|
// Add a new state to the state list at NPC.
|
|
state *add_new_state (int npc, state *old_state)
|
|
{
|
|
state *new_state = new state (old_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
debug_print ("== New state in add_new_state\n");
|
|
new_state->print ("New", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
linked<state> *nlink
|
|
= (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
|
|
nlink->val = new_state;
|
|
nlink->next = states[npc];
|
|
states[npc] = nlink;
|
|
new_state->set_pc (npc);
|
|
return new_state;
|
|
}
|
|
|
|
// Merge the indicated state into the state at the branch target and
|
|
// schedule a new PC if there is a change. NPC is the PC of the
|
|
// branch target, and FROM_STATE is the state at the source of the
|
|
// branch. This method returns true if the destination state
|
|
// changed and requires reverification, false otherwise.
|
|
void merge_into (int npc, state *from_state)
|
|
{
|
|
// Iterate over all target states and merge our state into each,
|
|
// if applicable. FIXME one improvement we could make here is
|
|
// "state destruction". Merging a new state into an existing one
|
|
// might cause a return_address_type to be merged to
|
|
// unsuitable_type. In this case the resulting state may now be
|
|
// mergeable with other states currently held in parallel at this
|
|
// location. So in this situation we could pairwise compare and
|
|
// reduce the number of parallel states.
|
|
bool applicable = false;
|
|
for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
|
|
{
|
|
state *new_state = iter->val;
|
|
if (new_state->state_mergeable_p (from_state,
|
|
current_method->max_locals, this))
|
|
{
|
|
applicable = true;
|
|
|
|
debug_print ("== Merge states in merge_into\n");
|
|
from_state->print ("Frm", start_PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
new_state->print (" To", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
bool changed = new_state->merge (from_state,
|
|
current_method->max_locals,
|
|
this);
|
|
new_state->print ("New", npc, current_method->max_stack,
|
|
current_method->max_locals);
|
|
|
|
if (changed)
|
|
new_state->reverify (this);
|
|
}
|
|
}
|
|
|
|
if (! applicable)
|
|
{
|
|
// Either we don't yet have a state at NPC, or we have a
|
|
// return-address type that is in conflict with all existing
|
|
// state. So, we need to create a new entry.
|
|
state *new_state = add_new_state (npc, from_state);
|
|
// A new state added in this way must always be reverified.
|
|
new_state->reverify (this);
|
|
}
|
|
}
|
|
|
|
void push_jump (int offset)
|
|
{
|
|
int npc = compute_jump (offset);
|
|
// According to the JVM Spec, we need to check for uninitialized
|
|
// objects here. However, this does not actually affect type
|
|
// safety, and the Eclipse java compiler generates code that
|
|
// violates this constraint.
|
|
merge_into (npc, current_state);
|
|
}
|
|
|
|
void push_exception_jump (type t, int pc)
|
|
{
|
|
// According to the JVM Spec, we need to check for uninitialized
|
|
// objects here. However, this does not actually affect type
|
|
// safety, and the Eclipse java compiler generates code that
|
|
// violates this constraint.
|
|
state s (current_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
if (current_method->max_stack < 1)
|
|
verify_fail ("stack overflow at exception handler");
|
|
s.set_exception (t, current_method->max_stack);
|
|
merge_into (pc, &s);
|
|
}
|
|
|
|
state *pop_jump ()
|
|
{
|
|
state *new_state = next_verify_state;
|
|
if (new_state == INVALID_STATE)
|
|
verify_fail ("programmer error in pop_jump");
|
|
if (new_state != NULL)
|
|
{
|
|
next_verify_state = new_state->next;
|
|
new_state->next = INVALID_STATE;
|
|
}
|
|
return new_state;
|
|
}
|
|
|
|
void invalidate_pc ()
|
|
{
|
|
PC = state::NO_NEXT;
|
|
}
|
|
|
|
void note_branch_target (int pc)
|
|
{
|
|
// Don't check `pc <= PC', because we've advanced PC after
|
|
// fetching the target and we haven't yet checked the next
|
|
// instruction.
|
|
if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
|
|
verify_fail ("branch not to instruction start", start_PC);
|
|
flags[pc] |= FLAG_BRANCH_TARGET;
|
|
}
|
|
|
|
void skip_padding ()
|
|
{
|
|
while ((PC % 4) > 0)
|
|
if (get_byte () != 0)
|
|
verify_fail ("found nonzero padding byte");
|
|
}
|
|
|
|
// Do the work for a `ret' instruction. INDEX is the index into the
|
|
// local variables.
|
|
void handle_ret_insn (int index)
|
|
{
|
|
type ret_addr = get_variable (index, return_address_type);
|
|
// It would be nice if we could do this. However, the JVM Spec
|
|
// doesn't say that this is what happens. It is implied that
|
|
// reusing a return address is invalid, but there's no actual
|
|
// prohibition against it.
|
|
// set_variable (index, unsuitable_type);
|
|
|
|
int npc = ret_addr.get_pc ();
|
|
// We might be returning to a `jsr' that is at the end of the
|
|
// bytecode. This is ok if we never return from the called
|
|
// subroutine, but if we see this here it is an error.
|
|
if (npc >= current_method->code_length)
|
|
verify_fail ("fell off end");
|
|
|
|
// According to the JVM Spec, we need to check for uninitialized
|
|
// objects here. However, this does not actually affect type
|
|
// safety, and the Eclipse java compiler generates code that
|
|
// violates this constraint.
|
|
merge_into (npc, current_state);
|
|
invalidate_pc ();
|
|
}
|
|
|
|
void handle_jsr_insn (int offset)
|
|
{
|
|
int npc = compute_jump (offset);
|
|
|
|
// According to the JVM Spec, we need to check for uninitialized
|
|
// objects here. However, this does not actually affect type
|
|
// safety, and the Eclipse java compiler generates code that
|
|
// violates this constraint.
|
|
|
|
// Modify our state as appropriate for entry into a subroutine.
|
|
type ret_addr (return_address_type);
|
|
ret_addr.set_return_address (PC);
|
|
push_type (ret_addr);
|
|
merge_into (npc, current_state);
|
|
invalidate_pc ();
|
|
}
|
|
|
|
jclass construct_primitive_array_type (type_val prim)
|
|
{
|
|
jclass k = NULL;
|
|
switch (prim)
|
|
{
|
|
case boolean_type:
|
|
k = JvPrimClass (boolean);
|
|
break;
|
|
case char_type:
|
|
k = JvPrimClass (char);
|
|
break;
|
|
case float_type:
|
|
k = JvPrimClass (float);
|
|
break;
|
|
case double_type:
|
|
k = JvPrimClass (double);
|
|
break;
|
|
case byte_type:
|
|
k = JvPrimClass (byte);
|
|
break;
|
|
case short_type:
|
|
k = JvPrimClass (short);
|
|
break;
|
|
case int_type:
|
|
k = JvPrimClass (int);
|
|
break;
|
|
case long_type:
|
|
k = JvPrimClass (long);
|
|
break;
|
|
|
|
// These aren't used here but we call them out to avoid
|
|
// warnings.
|
|
case void_type:
|
|
case unsuitable_type:
|
|
case return_address_type:
|
|
case continuation_type:
|
|
case reference_type:
|
|
case null_type:
|
|
case uninitialized_reference_type:
|
|
default:
|
|
verify_fail ("unknown type in construct_primitive_array_type");
|
|
}
|
|
k = _Jv_GetArrayClass (k, NULL);
|
|
return k;
|
|
}
|
|
|
|
// This pass computes the location of branch targets and also
|
|
// instruction starts.
|
|
void branch_prepass ()
|
|
{
|
|
flags = (char *) _Jv_Malloc (current_method->code_length);
|
|
|
|
for (int i = 0; i < current_method->code_length; ++i)
|
|
flags[i] = 0;
|
|
|
|
PC = 0;
|
|
while (PC < current_method->code_length)
|
|
{
|
|
// Set `start_PC' early so that error checking can have the
|
|
// correct value.
|
|
start_PC = PC;
|
|
flags[PC] |= FLAG_INSN_START;
|
|
|
|
java_opcode opcode = (java_opcode) bytecode[PC++];
|
|
switch (opcode)
|
|
{
|
|
case op_nop:
|
|
case op_aconst_null:
|
|
case op_iconst_m1:
|
|
case op_iconst_0:
|
|
case op_iconst_1:
|
|
case op_iconst_2:
|
|
case op_iconst_3:
|
|
case op_iconst_4:
|
|
case op_iconst_5:
|
|
case op_lconst_0:
|
|
case op_lconst_1:
|
|
case op_fconst_0:
|
|
case op_fconst_1:
|
|
case op_fconst_2:
|
|
case op_dconst_0:
|
|
case op_dconst_1:
|
|
case op_iload_0:
|
|
case op_iload_1:
|
|
case op_iload_2:
|
|
case op_iload_3:
|
|
case op_lload_0:
|
|
case op_lload_1:
|
|
case op_lload_2:
|
|
case op_lload_3:
|
|
case op_fload_0:
|
|
case op_fload_1:
|
|
case op_fload_2:
|
|
case op_fload_3:
|
|
case op_dload_0:
|
|
case op_dload_1:
|
|
case op_dload_2:
|
|
case op_dload_3:
|
|
case op_aload_0:
|
|
case op_aload_1:
|
|
case op_aload_2:
|
|
case op_aload_3:
|
|
case op_iaload:
|
|
case op_laload:
|
|
case op_faload:
|
|
case op_daload:
|
|
case op_aaload:
|
|
case op_baload:
|
|
case op_caload:
|
|
case op_saload:
|
|
case op_istore_0:
|
|
case op_istore_1:
|
|
case op_istore_2:
|
|
case op_istore_3:
|
|
case op_lstore_0:
|
|
case op_lstore_1:
|
|
case op_lstore_2:
|
|
case op_lstore_3:
|
|
case op_fstore_0:
|
|
case op_fstore_1:
|
|
case op_fstore_2:
|
|
case op_fstore_3:
|
|
case op_dstore_0:
|
|
case op_dstore_1:
|
|
case op_dstore_2:
|
|
case op_dstore_3:
|
|
case op_astore_0:
|
|
case op_astore_1:
|
|
case op_astore_2:
|
|
case op_astore_3:
|
|
case op_iastore:
|
|
case op_lastore:
|
|
case op_fastore:
|
|
case op_dastore:
|
|
case op_aastore:
|
|
case op_bastore:
|
|
case op_castore:
|
|
case op_sastore:
|
|
case op_pop:
|
|
case op_pop2:
|
|
case op_dup:
|
|
case op_dup_x1:
|
|
case op_dup_x2:
|
|
case op_dup2:
|
|
case op_dup2_x1:
|
|
case op_dup2_x2:
|
|
case op_swap:
|
|
case op_iadd:
|
|
case op_isub:
|
|
case op_imul:
|
|
case op_idiv:
|
|
case op_irem:
|
|
case op_ishl:
|
|
case op_ishr:
|
|
case op_iushr:
|
|
case op_iand:
|
|
case op_ior:
|
|
case op_ixor:
|
|
case op_ladd:
|
|
case op_lsub:
|
|
case op_lmul:
|
|
case op_ldiv:
|
|
case op_lrem:
|
|
case op_lshl:
|
|
case op_lshr:
|
|
case op_lushr:
|
|
case op_land:
|
|
case op_lor:
|
|
case op_lxor:
|
|
case op_fadd:
|
|
case op_fsub:
|
|
case op_fmul:
|
|
case op_fdiv:
|
|
case op_frem:
|
|
case op_dadd:
|
|
case op_dsub:
|
|
case op_dmul:
|
|
case op_ddiv:
|
|
case op_drem:
|
|
case op_ineg:
|
|
case op_i2b:
|
|
case op_i2c:
|
|
case op_i2s:
|
|
case op_lneg:
|
|
case op_fneg:
|
|
case op_dneg:
|
|
case op_i2l:
|
|
case op_i2f:
|
|
case op_i2d:
|
|
case op_l2i:
|
|
case op_l2f:
|
|
case op_l2d:
|
|
case op_f2i:
|
|
case op_f2l:
|
|
case op_f2d:
|
|
case op_d2i:
|
|
case op_d2l:
|
|
case op_d2f:
|
|
case op_lcmp:
|
|
case op_fcmpl:
|
|
case op_fcmpg:
|
|
case op_dcmpl:
|
|
case op_dcmpg:
|
|
case op_monitorenter:
|
|
case op_monitorexit:
|
|
case op_ireturn:
|
|
case op_lreturn:
|
|
case op_freturn:
|
|
case op_dreturn:
|
|
case op_areturn:
|
|
case op_return:
|
|
case op_athrow:
|
|
case op_arraylength:
|
|
break;
|
|
|
|
case op_bipush:
|
|
case op_ldc:
|
|
case op_iload:
|
|
case op_lload:
|
|
case op_fload:
|
|
case op_dload:
|
|
case op_aload:
|
|
case op_istore:
|
|
case op_lstore:
|
|
case op_fstore:
|
|
case op_dstore:
|
|
case op_astore:
|
|
case op_ret:
|
|
case op_newarray:
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_iinc:
|
|
case op_sipush:
|
|
case op_ldc_w:
|
|
case op_ldc2_w:
|
|
case op_getstatic:
|
|
case op_getfield:
|
|
case op_putfield:
|
|
case op_putstatic:
|
|
case op_new:
|
|
case op_anewarray:
|
|
case op_instanceof:
|
|
case op_checkcast:
|
|
case op_invokespecial:
|
|
case op_invokestatic:
|
|
case op_invokevirtual:
|
|
get_short ();
|
|
break;
|
|
|
|
case op_multianewarray:
|
|
get_short ();
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_jsr:
|
|
case op_ifeq:
|
|
case op_ifne:
|
|
case op_iflt:
|
|
case op_ifge:
|
|
case op_ifgt:
|
|
case op_ifle:
|
|
case op_if_icmpeq:
|
|
case op_if_icmpne:
|
|
case op_if_icmplt:
|
|
case op_if_icmpge:
|
|
case op_if_icmpgt:
|
|
case op_if_icmple:
|
|
case op_if_acmpeq:
|
|
case op_if_acmpne:
|
|
case op_ifnull:
|
|
case op_ifnonnull:
|
|
case op_goto:
|
|
note_branch_target (compute_jump (get_short ()));
|
|
break;
|
|
|
|
case op_tableswitch:
|
|
{
|
|
skip_padding ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
jint low = get_int ();
|
|
jint hi = get_int ();
|
|
if (low > hi)
|
|
verify_fail ("invalid tableswitch", start_PC);
|
|
for (int i = low; i <= hi; ++i)
|
|
note_branch_target (compute_jump (get_int ()));
|
|
}
|
|
break;
|
|
|
|
case op_lookupswitch:
|
|
{
|
|
skip_padding ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
int npairs = get_int ();
|
|
if (npairs < 0)
|
|
verify_fail ("too few pairs in lookupswitch", start_PC);
|
|
while (npairs-- > 0)
|
|
{
|
|
get_int ();
|
|
note_branch_target (compute_jump (get_int ()));
|
|
}
|
|
}
|
|
break;
|
|
|
|
case op_invokeinterface:
|
|
get_short ();
|
|
get_byte ();
|
|
get_byte ();
|
|
break;
|
|
|
|
case op_wide:
|
|
{
|
|
opcode = (java_opcode) get_byte ();
|
|
get_short ();
|
|
if (opcode == op_iinc)
|
|
get_short ();
|
|
}
|
|
break;
|
|
|
|
case op_jsr_w:
|
|
case op_goto_w:
|
|
note_branch_target (compute_jump (get_int ()));
|
|
break;
|
|
|
|
// These are unused here, but we call them out explicitly
|
|
// so that -Wswitch-enum doesn't complain.
|
|
case op_putfield_1:
|
|
case op_putfield_2:
|
|
case op_putfield_4:
|
|
case op_putfield_8:
|
|
case op_putfield_a:
|
|
case op_putstatic_1:
|
|
case op_putstatic_2:
|
|
case op_putstatic_4:
|
|
case op_putstatic_8:
|
|
case op_putstatic_a:
|
|
case op_getfield_1:
|
|
case op_getfield_2s:
|
|
case op_getfield_2u:
|
|
case op_getfield_4:
|
|
case op_getfield_8:
|
|
case op_getfield_a:
|
|
case op_getstatic_1:
|
|
case op_getstatic_2s:
|
|
case op_getstatic_2u:
|
|
case op_getstatic_4:
|
|
case op_getstatic_8:
|
|
case op_getstatic_a:
|
|
case op_breakpoint:
|
|
default:
|
|
verify_fail ("unrecognized instruction in branch_prepass",
|
|
start_PC);
|
|
}
|
|
|
|
// See if any previous branch tried to branch to the middle of
|
|
// this instruction.
|
|
for (int pc = start_PC + 1; pc < PC; ++pc)
|
|
{
|
|
if ((flags[pc] & FLAG_BRANCH_TARGET))
|
|
verify_fail ("branch to middle of instruction", pc);
|
|
}
|
|
}
|
|
|
|
// Verify exception handlers.
|
|
for (int i = 0; i < current_method->exc_count; ++i)
|
|
{
|
|
if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
|
|
verify_fail ("exception handler not at instruction start",
|
|
exception[i].handler_pc.i);
|
|
if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
|
|
verify_fail ("exception start not at instruction start",
|
|
exception[i].start_pc.i);
|
|
if (exception[i].end_pc.i != current_method->code_length
|
|
&& ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
|
|
verify_fail ("exception end not at instruction start",
|
|
exception[i].end_pc.i);
|
|
|
|
flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
|
|
}
|
|
}
|
|
|
|
void check_pool_index (int index)
|
|
{
|
|
if (index < 0 || index >= current_class->constants.size)
|
|
verify_fail ("constant pool index out of range", start_PC);
|
|
}
|
|
|
|
type check_class_constant (int index)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
|
|
return type (pool->data[index].clazz, this);
|
|
else if (pool->tags[index] == JV_CONSTANT_Class)
|
|
return type (pool->data[index].utf8, this);
|
|
verify_fail ("expected class constant", start_PC);
|
|
}
|
|
|
|
type check_constant (int index)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
int tag = pool->tags[index];
|
|
if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String)
|
|
return type (&java::lang::String::class$, this);
|
|
else if (tag == JV_CONSTANT_Integer)
|
|
return type (int_type);
|
|
else if (tag == JV_CONSTANT_Float)
|
|
return type (float_type);
|
|
else if (current_method->is_15
|
|
&& (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class))
|
|
return type (&java::lang::Class::class$, this);
|
|
verify_fail ("String, int, or float constant expected", start_PC);
|
|
}
|
|
|
|
type check_wide_constant (int index)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] == JV_CONSTANT_Long)
|
|
return type (long_type);
|
|
else if (pool->tags[index] == JV_CONSTANT_Double)
|
|
return type (double_type);
|
|
verify_fail ("long or double constant expected", start_PC);
|
|
}
|
|
|
|
// Helper for both field and method. These are laid out the same in
|
|
// the constant pool.
|
|
type handle_field_or_method (int index, int expected,
|
|
_Jv_Utf8Const **name,
|
|
_Jv_Utf8Const **fmtype)
|
|
{
|
|
check_pool_index (index);
|
|
_Jv_Constants *pool = ¤t_class->constants;
|
|
if (pool->tags[index] != expected)
|
|
verify_fail ("didn't see expected constant", start_PC);
|
|
// Once we know we have a Fieldref or Methodref we assume that it
|
|
// is correctly laid out in the constant pool. I think the code
|
|
// in defineclass.cc guarantees this.
|
|
_Jv_ushort class_index, name_and_type_index;
|
|
_Jv_loadIndexes (&pool->data[index],
|
|
class_index,
|
|
name_and_type_index);
|
|
_Jv_ushort name_index, desc_index;
|
|
_Jv_loadIndexes (&pool->data[name_and_type_index],
|
|
name_index, desc_index);
|
|
|
|
*name = pool->data[name_index].utf8;
|
|
*fmtype = pool->data[desc_index].utf8;
|
|
|
|
return check_class_constant (class_index);
|
|
}
|
|
|
|
// Return field's type, compute class' type if requested.
|
|
// If PUTFIELD is true, use the special 'putfield' semantics.
|
|
type check_field_constant (int index, type *class_type = NULL,
|
|
bool putfield = false)
|
|
{
|
|
_Jv_Utf8Const *name, *field_type;
|
|
type ct = handle_field_or_method (index,
|
|
JV_CONSTANT_Fieldref,
|
|
&name, &field_type);
|
|
if (class_type)
|
|
*class_type = ct;
|
|
type result;
|
|
if (field_type->first() == '[' || field_type->first() == 'L')
|
|
result = type (field_type, this);
|
|
else
|
|
result = get_type_val_for_signature (field_type->first());
|
|
|
|
// We have an obscure special case here: we can use `putfield' on
|
|
// a field declared in this class, even if `this' has not yet been
|
|
// initialized.
|
|
if (putfield
|
|
&& ! current_state->this_type.isinitialized ()
|
|
&& current_state->this_type.pc == type::SELF
|
|
&& current_state->this_type.equals (ct, this)
|
|
// We don't look at the signature, figuring that if it is
|
|
// wrong we will fail during linking. FIXME?
|
|
&& _Jv_Linker::has_field_p (current_class, name))
|
|
// Note that we don't actually know whether we're going to match
|
|
// against 'this' or some other object of the same type. So,
|
|
// here we set things up so that it doesn't matter. This relies
|
|
// on knowing what our caller is up to.
|
|
class_type->set_uninitialized (type::EITHER, this);
|
|
|
|
return result;
|
|
}
|
|
|
|
type check_method_constant (int index, bool is_interface,
|
|
_Jv_Utf8Const **method_name,
|
|
_Jv_Utf8Const **method_signature)
|
|
{
|
|
return handle_field_or_method (index,
|
|
(is_interface
|
|
? JV_CONSTANT_InterfaceMethodref
|
|
: JV_CONSTANT_Methodref),
|
|
method_name, method_signature);
|
|
}
|
|
|
|
type get_one_type (char *&p)
|
|
{
|
|
char *start = p;
|
|
|
|
int arraycount = 0;
|
|
while (*p == '[')
|
|
{
|
|
++arraycount;
|
|
++p;
|
|
}
|
|
|
|
char v = *p++;
|
|
|
|
if (v == 'L')
|
|
{
|
|
while (*p != ';')
|
|
++p;
|
|
++p;
|
|
_Jv_Utf8Const *name = make_utf8_const (start, p - start);
|
|
return type (name, this);
|
|
}
|
|
|
|
// Casting to jchar here is ok since we are looking at an ASCII
|
|
// character.
|
|
type_val rt = get_type_val_for_signature (jchar (v));
|
|
|
|
if (arraycount == 0)
|
|
{
|
|
// Callers of this function eventually push their arguments on
|
|
// the stack. So, promote them here.
|
|
return type (rt).promote ();
|
|
}
|
|
|
|
jclass k = construct_primitive_array_type (rt);
|
|
while (--arraycount > 0)
|
|
k = _Jv_GetArrayClass (k, NULL);
|
|
return type (k, this);
|
|
}
|
|
|
|
void compute_argument_types (_Jv_Utf8Const *signature,
|
|
type *types)
|
|
{
|
|
char *p = signature->chars();
|
|
|
|
// Skip `('.
|
|
++p;
|
|
|
|
int i = 0;
|
|
while (*p != ')')
|
|
types[i++] = get_one_type (p);
|
|
}
|
|
|
|
type compute_return_type (_Jv_Utf8Const *signature)
|
|
{
|
|
char *p = signature->chars();
|
|
while (*p != ')')
|
|
++p;
|
|
++p;
|
|
return get_one_type (p);
|
|
}
|
|
|
|
void check_return_type (type onstack)
|
|
{
|
|
type rt = compute_return_type (current_method->self->signature);
|
|
if (! rt.compatible (onstack, this))
|
|
verify_fail ("incompatible return type");
|
|
}
|
|
|
|
// Initialize the stack for the new method. Returns true if this
|
|
// method is an instance initializer.
|
|
bool initialize_stack ()
|
|
{
|
|
int var = 0;
|
|
bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
|
|
gcj::init_name);
|
|
bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
|
|
gcj::clinit_name);
|
|
|
|
using namespace java::lang::reflect;
|
|
if (! Modifier::isStatic (current_method->self->accflags))
|
|
{
|
|
type kurr (current_class, this);
|
|
if (is_init)
|
|
{
|
|
kurr.set_uninitialized (type::SELF, this);
|
|
is_init = true;
|
|
}
|
|
else if (is_clinit)
|
|
verify_fail ("<clinit> method must be static");
|
|
set_variable (0, kurr);
|
|
current_state->set_this_type (kurr);
|
|
++var;
|
|
}
|
|
else
|
|
{
|
|
if (is_init)
|
|
verify_fail ("<init> method must be non-static");
|
|
}
|
|
|
|
// We have to handle wide arguments specially here.
|
|
int arg_count = _Jv_count_arguments (current_method->self->signature);
|
|
type arg_types[arg_count];
|
|
compute_argument_types (current_method->self->signature, arg_types);
|
|
for (int i = 0; i < arg_count; ++i)
|
|
{
|
|
set_variable (var, arg_types[i]);
|
|
++var;
|
|
if (arg_types[i].iswide ())
|
|
++var;
|
|
}
|
|
|
|
return is_init;
|
|
}
|
|
|
|
void verify_instructions_0 ()
|
|
{
|
|
current_state = new state (current_method->max_stack,
|
|
current_method->max_locals);
|
|
|
|
PC = 0;
|
|
start_PC = 0;
|
|
|
|
// True if we are verifying an instance initializer.
|
|
bool this_is_init = initialize_stack ();
|
|
|
|
states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
|
|
* current_method->code_length);
|
|
for (int i = 0; i < current_method->code_length; ++i)
|
|
states[i] = NULL;
|
|
|
|
next_verify_state = NULL;
|
|
|
|
while (true)
|
|
{
|
|
// If the PC was invalidated, get a new one from the work list.
|
|
if (PC == state::NO_NEXT)
|
|
{
|
|
state *new_state = pop_jump ();
|
|
// If it is null, we're done.
|
|
if (new_state == NULL)
|
|
break;
|
|
|
|
PC = new_state->get_pc ();
|
|
debug_print ("== State pop from pending list\n");
|
|
// Set up the current state.
|
|
current_state->copy (new_state, current_method->max_stack,
|
|
current_method->max_locals);
|
|
}
|
|
else
|
|
{
|
|
// We only have to do this checking in the situation where
|
|
// control flow falls through from the previous
|
|
// instruction. Otherwise merging is done at the time we
|
|
// push the branch. Note that we'll catch the
|
|
// off-the-end problem just below.
|
|
if (PC < current_method->code_length && states[PC] != NULL)
|
|
{
|
|
// We've already visited this instruction. So merge
|
|
// the states together. It is simplest, but not most
|
|
// efficient, to just always invalidate the PC here.
|
|
merge_into (PC, current_state);
|
|
invalidate_pc ();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Control can't fall off the end of the bytecode. We need to
|
|
// check this in both cases, not just the fall-through case,
|
|
// because we don't check to see whether a `jsr' appears at
|
|
// the end of the bytecode until we process a `ret'.
|
|
if (PC >= current_method->code_length)
|
|
verify_fail ("fell off end");
|
|
|
|
// We only have to keep saved state at branch targets. If
|
|
// we're at a branch target and the state here hasn't been set
|
|
// yet, we set it now. You might notice that `ret' targets
|
|
// won't necessarily have FLAG_BRANCH_TARGET set. This
|
|
// doesn't matter, since those states will be filled in by
|
|
// merge_into.
|
|
if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
|
|
add_new_state (PC, current_state);
|
|
|
|
// Set this before handling exceptions so that debug output is
|
|
// sane.
|
|
start_PC = PC;
|
|
|
|
// Update states for all active exception handlers. Ordinarily
|
|
// there are not many exception handlers. So we simply run
|
|
// through them all.
|
|
for (int i = 0; i < current_method->exc_count; ++i)
|
|
{
|
|
if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
|
|
{
|
|
type handler (&java::lang::Throwable::class$, this);
|
|
if (exception[i].handler_type.i != 0)
|
|
handler = check_class_constant (exception[i].handler_type.i);
|
|
push_exception_jump (handler, exception[i].handler_pc.i);
|
|
}
|
|
}
|
|
|
|
current_state->print (" ", PC, current_method->max_stack,
|
|
current_method->max_locals);
|
|
java_opcode opcode = (java_opcode) bytecode[PC++];
|
|
switch (opcode)
|
|
{
|
|
case op_nop:
|
|
break;
|
|
|
|
case op_aconst_null:
|
|
push_type (null_type);
|
|
break;
|
|
|
|
case op_iconst_m1:
|
|
case op_iconst_0:
|
|
case op_iconst_1:
|
|
case op_iconst_2:
|
|
case op_iconst_3:
|
|
case op_iconst_4:
|
|
case op_iconst_5:
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_lconst_0:
|
|
case op_lconst_1:
|
|
push_type (long_type);
|
|
break;
|
|
|
|
case op_fconst_0:
|
|
case op_fconst_1:
|
|
case op_fconst_2:
|
|
push_type (float_type);
|
|
break;
|
|
|
|
case op_dconst_0:
|
|
case op_dconst_1:
|
|
push_type (double_type);
|
|
break;
|
|
|
|
case op_bipush:
|
|
get_byte ();
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_sipush:
|
|
get_short ();
|
|
push_type (int_type);
|
|
break;
|
|
|
|
case op_ldc:
|
|
push_type (check_constant (get_byte ()));
|
|
break;
|
|
case op_ldc_w:
|
|
push_type (check_constant (get_ushort ()));
|
|
break;
|
|
case op_ldc2_w:
|
|
push_type (check_wide_constant (get_ushort ()));
|
|
break;
|
|
|
|
case op_iload:
|
|
push_type (get_variable (get_byte (), int_type));
|
|
break;
|
|
case op_lload:
|
|
push_type (get_variable (get_byte (), long_type));
|
|
break;
|
|
case op_fload:
|
|
push_type (get_variable (get_byte (), float_type));
|
|
break;
|
|
case op_dload:
|
|
push_type (get_variable (get_byte (), double_type));
|
|
break;
|
|
case op_aload:
|
|
push_type (get_variable (get_byte (), reference_type));
|
|
break;
|
|
|
|
case op_iload_0:
|
|
case op_iload_1:
|
|
case op_iload_2:
|
|
case op_iload_3:
|
|
push_type (get_variable (opcode - op_iload_0, int_type));
|
|
break;
|
|
case op_lload_0:
|
|
case op_lload_1:
|
|
case op_lload_2:
|
|
case op_lload_3:
|
|
push_type (get_variable (opcode - op_lload_0, long_type));
|
|
break;
|
|
case op_fload_0:
|
|
case op_fload_1:
|
|
case op_fload_2:
|
|
case op_fload_3:
|
|
push_type (get_variable (opcode - op_fload_0, float_type));
|
|
break;
|
|
case op_dload_0:
|
|
case op_dload_1:
|
|
case op_dload_2:
|
|
case op_dload_3:
|
|
push_type (get_variable (opcode - op_dload_0, double_type));
|
|
break;
|
|
case op_aload_0:
|
|
case op_aload_1:
|
|
case op_aload_2:
|
|
case op_aload_3:
|
|
push_type (get_variable (opcode - op_aload_0, reference_type));
|
|
break;
|
|
case op_iaload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_init_ref (reference_type),
|
|
int_type));
|
|
break;
|
|
case op_laload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_init_ref (reference_type),
|
|
long_type));
|
|
break;
|
|
case op_faload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_init_ref (reference_type),
|
|
float_type));
|
|
break;
|
|
case op_daload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_init_ref (reference_type),
|
|
double_type));
|
|
break;
|
|
case op_aaload:
|
|
pop_type (int_type);
|
|
push_type (require_array_type (pop_init_ref (reference_type),
|
|
reference_type));
|
|
break;
|
|
case op_baload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), byte_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_caload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), char_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_saload:
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), short_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_istore:
|
|
set_variable (get_byte (), pop_type (int_type));
|
|
break;
|
|
case op_lstore:
|
|
set_variable (get_byte (), pop_type (long_type));
|
|
break;
|
|
case op_fstore:
|
|
set_variable (get_byte (), pop_type (float_type));
|
|
break;
|
|
case op_dstore:
|
|
set_variable (get_byte (), pop_type (double_type));
|
|
break;
|
|
case op_astore:
|
|
set_variable (get_byte (), pop_ref_or_return ());
|
|
break;
|
|
case op_istore_0:
|
|
case op_istore_1:
|
|
case op_istore_2:
|
|
case op_istore_3:
|
|
set_variable (opcode - op_istore_0, pop_type (int_type));
|
|
break;
|
|
case op_lstore_0:
|
|
case op_lstore_1:
|
|
case op_lstore_2:
|
|
case op_lstore_3:
|
|
set_variable (opcode - op_lstore_0, pop_type (long_type));
|
|
break;
|
|
case op_fstore_0:
|
|
case op_fstore_1:
|
|
case op_fstore_2:
|
|
case op_fstore_3:
|
|
set_variable (opcode - op_fstore_0, pop_type (float_type));
|
|
break;
|
|
case op_dstore_0:
|
|
case op_dstore_1:
|
|
case op_dstore_2:
|
|
case op_dstore_3:
|
|
set_variable (opcode - op_dstore_0, pop_type (double_type));
|
|
break;
|
|
case op_astore_0:
|
|
case op_astore_1:
|
|
case op_astore_2:
|
|
case op_astore_3:
|
|
set_variable (opcode - op_astore_0, pop_ref_or_return ());
|
|
break;
|
|
case op_iastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), int_type);
|
|
break;
|
|
case op_lastore:
|
|
pop_type (long_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), long_type);
|
|
break;
|
|
case op_fastore:
|
|
pop_type (float_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), float_type);
|
|
break;
|
|
case op_dastore:
|
|
pop_type (double_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), double_type);
|
|
break;
|
|
case op_aastore:
|
|
pop_type (reference_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), reference_type);
|
|
break;
|
|
case op_bastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), byte_type);
|
|
break;
|
|
case op_castore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), char_type);
|
|
break;
|
|
case op_sastore:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
require_array_type (pop_init_ref (reference_type), short_type);
|
|
break;
|
|
case op_pop:
|
|
pop32 ();
|
|
break;
|
|
case op_pop2:
|
|
{
|
|
type t = pop_raw ();
|
|
if (! t.iswide ())
|
|
pop32 ();
|
|
}
|
|
break;
|
|
case op_dup:
|
|
{
|
|
type t = pop32 ();
|
|
push_type (t);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
case op_dup_x1:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
break;
|
|
case op_dup_x2:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop_raw ();
|
|
if (! t2.iswide ())
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t3);
|
|
}
|
|
else
|
|
push_type (t1);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
break;
|
|
case op_dup2:
|
|
{
|
|
type t = pop_raw ();
|
|
if (! t.iswide ())
|
|
{
|
|
type t2 = pop32 ();
|
|
push_type (t2);
|
|
push_type (t);
|
|
push_type (t2);
|
|
}
|
|
else
|
|
push_type (t);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
case op_dup2_x1:
|
|
{
|
|
type t1 = pop_raw ();
|
|
type t2 = pop32 ();
|
|
if (! t1.iswide ())
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type (t2);
|
|
push_type (t1);
|
|
push_type (t3);
|
|
}
|
|
else
|
|
push_type (t1);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
break;
|
|
case op_dup2_x2:
|
|
{
|
|
type t1 = pop_raw ();
|
|
if (t1.iswide ())
|
|
{
|
|
type t2 = pop_raw ();
|
|
if (t2.iswide ())
|
|
{
|
|
push_type (t1);
|
|
push_type (t2);
|
|
}
|
|
else
|
|
{
|
|
type t3 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t3);
|
|
push_type (t2);
|
|
}
|
|
push_type (t1);
|
|
}
|
|
else
|
|
{
|
|
type t2 = pop32 ();
|
|
type t3 = pop_raw ();
|
|
if (t3.iswide ())
|
|
{
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
else
|
|
{
|
|
type t4 = pop32 ();
|
|
push_type (t2);
|
|
push_type (t1);
|
|
push_type (t4);
|
|
}
|
|
push_type (t3);
|
|
push_type (t2);
|
|
push_type (t1);
|
|
}
|
|
}
|
|
break;
|
|
case op_swap:
|
|
{
|
|
type t1 = pop32 ();
|
|
type t2 = pop32 ();
|
|
push_type (t1);
|
|
push_type (t2);
|
|
}
|
|
break;
|
|
case op_iadd:
|
|
case op_isub:
|
|
case op_imul:
|
|
case op_idiv:
|
|
case op_irem:
|
|
case op_ishl:
|
|
case op_ishr:
|
|
case op_iushr:
|
|
case op_iand:
|
|
case op_ior:
|
|
case op_ixor:
|
|
pop_type (int_type);
|
|
push_type (pop_type (int_type));
|
|
break;
|
|
case op_ladd:
|
|
case op_lsub:
|
|
case op_lmul:
|
|
case op_ldiv:
|
|
case op_lrem:
|
|
case op_land:
|
|
case op_lor:
|
|
case op_lxor:
|
|
pop_type (long_type);
|
|
push_type (pop_type (long_type));
|
|
break;
|
|
case op_lshl:
|
|
case op_lshr:
|
|
case op_lushr:
|
|
pop_type (int_type);
|
|
push_type (pop_type (long_type));
|
|
break;
|
|
case op_fadd:
|
|
case op_fsub:
|
|
case op_fmul:
|
|
case op_fdiv:
|
|
case op_frem:
|
|
pop_type (float_type);
|
|
push_type (pop_type (float_type));
|
|
break;
|
|
case op_dadd:
|
|
case op_dsub:
|
|
case op_dmul:
|
|
case op_ddiv:
|
|
case op_drem:
|
|
pop_type (double_type);
|
|
push_type (pop_type (double_type));
|
|
break;
|
|
case op_ineg:
|
|
case op_i2b:
|
|
case op_i2c:
|
|
case op_i2s:
|
|
push_type (pop_type (int_type));
|
|
break;
|
|
case op_lneg:
|
|
push_type (pop_type (long_type));
|
|
break;
|
|
case op_fneg:
|
|
push_type (pop_type (float_type));
|
|
break;
|
|
case op_dneg:
|
|
push_type (pop_type (double_type));
|
|
break;
|
|
case op_iinc:
|
|
get_variable (get_byte (), int_type);
|
|
get_byte ();
|
|
break;
|
|
case op_i2l:
|
|
pop_type (int_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_i2f:
|
|
pop_type (int_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_i2d:
|
|
pop_type (int_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_l2i:
|
|
pop_type (long_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_l2f:
|
|
pop_type (long_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_l2d:
|
|
pop_type (long_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_f2i:
|
|
pop_type (float_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_f2l:
|
|
pop_type (float_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_f2d:
|
|
pop_type (float_type);
|
|
push_type (double_type);
|
|
break;
|
|
case op_d2i:
|
|
pop_type (double_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_d2l:
|
|
pop_type (double_type);
|
|
push_type (long_type);
|
|
break;
|
|
case op_d2f:
|
|
pop_type (double_type);
|
|
push_type (float_type);
|
|
break;
|
|
case op_lcmp:
|
|
pop_type (long_type);
|
|
pop_type (long_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_fcmpl:
|
|
case op_fcmpg:
|
|
pop_type (float_type);
|
|
pop_type (float_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_dcmpl:
|
|
case op_dcmpg:
|
|
pop_type (double_type);
|
|
pop_type (double_type);
|
|
push_type (int_type);
|
|
break;
|
|
case op_ifeq:
|
|
case op_ifne:
|
|
case op_iflt:
|
|
case op_ifge:
|
|
case op_ifgt:
|
|
case op_ifle:
|
|
pop_type (int_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_if_icmpeq:
|
|
case op_if_icmpne:
|
|
case op_if_icmplt:
|
|
case op_if_icmpge:
|
|
case op_if_icmpgt:
|
|
case op_if_icmple:
|
|
pop_type (int_type);
|
|
pop_type (int_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_if_acmpeq:
|
|
case op_if_acmpne:
|
|
pop_type (reference_type);
|
|
pop_type (reference_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_goto:
|
|
push_jump (get_short ());
|
|
invalidate_pc ();
|
|
break;
|
|
case op_jsr:
|
|
handle_jsr_insn (get_short ());
|
|
break;
|
|
case op_ret:
|
|
handle_ret_insn (get_byte ());
|
|
break;
|
|
case op_tableswitch:
|
|
{
|
|
pop_type (int_type);
|
|
skip_padding ();
|
|
push_jump (get_int ());
|
|
jint low = get_int ();
|
|
jint high = get_int ();
|
|
// Already checked LOW -vs- HIGH.
|
|
for (int i = low; i <= high; ++i)
|
|
push_jump (get_int ());
|
|
invalidate_pc ();
|
|
}
|
|
break;
|
|
|
|
case op_lookupswitch:
|
|
{
|
|
pop_type (int_type);
|
|
skip_padding ();
|
|
push_jump (get_int ());
|
|
jint npairs = get_int ();
|
|
// Already checked NPAIRS >= 0.
|
|
jint lastkey = 0;
|
|
for (int i = 0; i < npairs; ++i)
|
|
{
|
|
jint key = get_int ();
|
|
if (i > 0 && key <= lastkey)
|
|
verify_fail ("lookupswitch pairs unsorted", start_PC);
|
|
lastkey = key;
|
|
push_jump (get_int ());
|
|
}
|
|
invalidate_pc ();
|
|
}
|
|
break;
|
|
case op_ireturn:
|
|
check_return_type (pop_type (int_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_lreturn:
|
|
check_return_type (pop_type (long_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_freturn:
|
|
check_return_type (pop_type (float_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_dreturn:
|
|
check_return_type (pop_type (double_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_areturn:
|
|
check_return_type (pop_init_ref (reference_type));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_return:
|
|
// We only need to check this when the return type is
|
|
// void, because all instance initializers return void.
|
|
if (this_is_init)
|
|
current_state->check_this_initialized (this);
|
|
check_return_type (void_type);
|
|
invalidate_pc ();
|
|
break;
|
|
case op_getstatic:
|
|
push_type (check_field_constant (get_ushort ()));
|
|
break;
|
|
case op_putstatic:
|
|
pop_type (check_field_constant (get_ushort ()));
|
|
break;
|
|
case op_getfield:
|
|
{
|
|
type klass;
|
|
type field = check_field_constant (get_ushort (), &klass);
|
|
pop_type (klass);
|
|
push_type (field);
|
|
}
|
|
break;
|
|
case op_putfield:
|
|
{
|
|
type klass;
|
|
type field = check_field_constant (get_ushort (), &klass, true);
|
|
pop_type (field);
|
|
pop_type (klass);
|
|
}
|
|
break;
|
|
|
|
case op_invokevirtual:
|
|
case op_invokespecial:
|
|
case op_invokestatic:
|
|
case op_invokeinterface:
|
|
{
|
|
_Jv_Utf8Const *method_name, *method_signature;
|
|
type class_type
|
|
= check_method_constant (get_ushort (),
|
|
opcode == op_invokeinterface,
|
|
&method_name,
|
|
&method_signature);
|
|
// NARGS is only used when we're processing
|
|
// invokeinterface. It is simplest for us to compute it
|
|
// here and then verify it later.
|
|
int nargs = 0;
|
|
if (opcode == op_invokeinterface)
|
|
{
|
|
nargs = get_byte ();
|
|
if (get_byte () != 0)
|
|
verify_fail ("invokeinterface dummy byte is wrong");
|
|
}
|
|
|
|
bool is_init = false;
|
|
if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
|
|
{
|
|
is_init = true;
|
|
if (opcode != op_invokespecial)
|
|
verify_fail ("can't invoke <init>");
|
|
}
|
|
else if (method_name->first() == '<')
|
|
verify_fail ("can't invoke method starting with `<'");
|
|
|
|
// Pop arguments and check types.
|
|
int arg_count = _Jv_count_arguments (method_signature);
|
|
type arg_types[arg_count];
|
|
compute_argument_types (method_signature, arg_types);
|
|
for (int i = arg_count - 1; i >= 0; --i)
|
|
{
|
|
// This is only used for verifying the byte for
|
|
// invokeinterface.
|
|
nargs -= arg_types[i].depth ();
|
|
pop_init_ref (arg_types[i]);
|
|
}
|
|
|
|
if (opcode == op_invokeinterface
|
|
&& nargs != 1)
|
|
verify_fail ("wrong argument count for invokeinterface");
|
|
|
|
if (opcode != op_invokestatic)
|
|
{
|
|
type t = class_type;
|
|
if (is_init)
|
|
{
|
|
// In this case the PC doesn't matter.
|
|
t.set_uninitialized (type::UNINIT, this);
|
|
// FIXME: check to make sure that the <init>
|
|
// call is to the right class.
|
|
// It must either be super or an exact class
|
|
// match.
|
|
}
|
|
type raw = pop_raw ();
|
|
if (! t.compatible (raw, this))
|
|
verify_fail ("incompatible type on stack");
|
|
|
|
if (is_init)
|
|
current_state->set_initialized (raw.get_pc (),
|
|
current_method->max_locals);
|
|
}
|
|
|
|
type rt = compute_return_type (method_signature);
|
|
if (! rt.isvoid ())
|
|
push_type (rt);
|
|
}
|
|
break;
|
|
|
|
case op_new:
|
|
{
|
|
type t = check_class_constant (get_ushort ());
|
|
if (t.isarray ())
|
|
verify_fail ("type is array");
|
|
t.set_uninitialized (start_PC, this);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
|
|
case op_newarray:
|
|
{
|
|
int atype = get_byte ();
|
|
// We intentionally have chosen constants to make this
|
|
// valid.
|
|
if (atype < boolean_type || atype > long_type)
|
|
verify_fail ("type not primitive", start_PC);
|
|
pop_type (int_type);
|
|
type t (construct_primitive_array_type (type_val (atype)), this);
|
|
push_type (t);
|
|
}
|
|
break;
|
|
case op_anewarray:
|
|
pop_type (int_type);
|
|
push_type (check_class_constant (get_ushort ()).to_array (this));
|
|
break;
|
|
case op_arraylength:
|
|
{
|
|
type t = pop_init_ref (reference_type);
|
|
if (! t.isarray () && ! t.isnull ())
|
|
verify_fail ("array type expected");
|
|
push_type (int_type);
|
|
}
|
|
break;
|
|
case op_athrow:
|
|
pop_type (type (&java::lang::Throwable::class$, this));
|
|
invalidate_pc ();
|
|
break;
|
|
case op_checkcast:
|
|
pop_init_ref (reference_type);
|
|
push_type (check_class_constant (get_ushort ()));
|
|
break;
|
|
case op_instanceof:
|
|
pop_init_ref (reference_type);
|
|
check_class_constant (get_ushort ());
|
|
push_type (int_type);
|
|
break;
|
|
case op_monitorenter:
|
|
pop_init_ref (reference_type);
|
|
break;
|
|
case op_monitorexit:
|
|
pop_init_ref (reference_type);
|
|
break;
|
|
case op_wide:
|
|
{
|
|
switch (get_byte ())
|
|
{
|
|
case op_iload:
|
|
push_type (get_variable (get_ushort (), int_type));
|
|
break;
|
|
case op_lload:
|
|
push_type (get_variable (get_ushort (), long_type));
|
|
break;
|
|
case op_fload:
|
|
push_type (get_variable (get_ushort (), float_type));
|
|
break;
|
|
case op_dload:
|
|
push_type (get_variable (get_ushort (), double_type));
|
|
break;
|
|
case op_aload:
|
|
push_type (get_variable (get_ushort (), reference_type));
|
|
break;
|
|
case op_istore:
|
|
set_variable (get_ushort (), pop_type (int_type));
|
|
break;
|
|
case op_lstore:
|
|
set_variable (get_ushort (), pop_type (long_type));
|
|
break;
|
|
case op_fstore:
|
|
set_variable (get_ushort (), pop_type (float_type));
|
|
break;
|
|
case op_dstore:
|
|
set_variable (get_ushort (), pop_type (double_type));
|
|
break;
|
|
case op_astore:
|
|
set_variable (get_ushort (), pop_init_ref (reference_type));
|
|
break;
|
|
case op_ret:
|
|
handle_ret_insn (get_short ());
|
|
break;
|
|
case op_iinc:
|
|
get_variable (get_ushort (), int_type);
|
|
get_short ();
|
|
break;
|
|
default:
|
|
verify_fail ("unrecognized wide instruction", start_PC);
|
|
}
|
|
}
|
|
break;
|
|
case op_multianewarray:
|
|
{
|
|
type atype = check_class_constant (get_ushort ());
|
|
int dim = get_byte ();
|
|
if (dim < 1)
|
|
verify_fail ("too few dimensions to multianewarray", start_PC);
|
|
atype.verify_dimensions (dim, this);
|
|
for (int i = 0; i < dim; ++i)
|
|
pop_type (int_type);
|
|
push_type (atype);
|
|
}
|
|
break;
|
|
case op_ifnull:
|
|
case op_ifnonnull:
|
|
pop_type (reference_type);
|
|
push_jump (get_short ());
|
|
break;
|
|
case op_goto_w:
|
|
push_jump (get_int ());
|
|
invalidate_pc ();
|
|
break;
|
|
case op_jsr_w:
|
|
handle_jsr_insn (get_int ());
|
|
break;
|
|
|
|
// These are unused here, but we call them out explicitly
|
|
// so that -Wswitch-enum doesn't complain.
|
|
case op_putfield_1:
|
|
case op_putfield_2:
|
|
case op_putfield_4:
|
|
case op_putfield_8:
|
|
case op_putfield_a:
|
|
case op_putstatic_1:
|
|
case op_putstatic_2:
|
|
case op_putstatic_4:
|
|
case op_putstatic_8:
|
|
case op_putstatic_a:
|
|
case op_getfield_1:
|
|
case op_getfield_2s:
|
|
case op_getfield_2u:
|
|
case op_getfield_4:
|
|
case op_getfield_8:
|
|
case op_getfield_a:
|
|
case op_getstatic_1:
|
|
case op_getstatic_2s:
|
|
case op_getstatic_2u:
|
|
case op_getstatic_4:
|
|
case op_getstatic_8:
|
|
case op_getstatic_a:
|
|
case op_breakpoint:
|
|
default:
|
|
// Unrecognized opcode.
|
|
verify_fail ("unrecognized instruction in verify_instructions_0",
|
|
start_PC);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
void verify_instructions ()
|
|
{
|
|
branch_prepass ();
|
|
verify_instructions_0 ();
|
|
}
|
|
|
|
_Jv_BytecodeVerifier (_Jv_InterpMethod *m)
|
|
{
|
|
// We just print the text as utf-8. This is just for debugging
|
|
// anyway.
|
|
debug_print ("--------------------------------\n");
|
|
debug_print ("-- Verifying method `%s'\n", m->self->name->chars());
|
|
|
|
current_method = m;
|
|
bytecode = m->bytecode ();
|
|
exception = m->exceptions ();
|
|
current_class = m->defining_class;
|
|
|
|
states = NULL;
|
|
flags = NULL;
|
|
utf8_list = NULL;
|
|
isect_list = NULL;
|
|
}
|
|
|
|
~_Jv_BytecodeVerifier ()
|
|
{
|
|
if (flags)
|
|
_Jv_Free (flags);
|
|
|
|
while (utf8_list != NULL)
|
|
{
|
|
linked<_Jv_Utf8Const> *n = utf8_list->next;
|
|
_Jv_Free (utf8_list);
|
|
utf8_list = n;
|
|
}
|
|
|
|
while (isect_list != NULL)
|
|
{
|
|
ref_intersection *next = isect_list->alloc_next;
|
|
delete isect_list;
|
|
isect_list = next;
|
|
}
|
|
|
|
if (states)
|
|
{
|
|
for (int i = 0; i < current_method->code_length; ++i)
|
|
{
|
|
linked<state> *iter = states[i];
|
|
while (iter != NULL)
|
|
{
|
|
linked<state> *next = iter->next;
|
|
delete iter->val;
|
|
_Jv_Free (iter);
|
|
iter = next;
|
|
}
|
|
}
|
|
_Jv_Free (states);
|
|
}
|
|
}
|
|
};
|
|
|
|
void
|
|
_Jv_VerifyMethod (_Jv_InterpMethod *meth)
|
|
{
|
|
_Jv_BytecodeVerifier v (meth);
|
|
v.verify_instructions ();
|
|
}
|
|
|
|
#endif /* INTERPRETER */
|