mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-23 10:54:07 +08:00
b6cb10af12
[ This is my third attempt to add this configure option. The first version was approved but it came too late in the development cycle. The second version was also approved, but I had to revert it: <https://gcc.gnu.org/pipermail/gcc-patches/2022-November/607082.html>. I've fixed the problem (by moving $(PICFLAG) from INTERNAL_CFLAGS to ALL_COMPILERFLAGS). Another change is that since r13-4536 I no longer need to touch Makefile.def, so this patch is simplified. ] This patch implements the --enable-host-pie configure option which makes the compiler executables PIE. This can be used to enhance protection against ROP attacks, and can be viewed as part of a wider trend to harden binaries. It is similar to the option --enable-host-shared, except that --e-h-s won't add -shared to the linker flags whereas --e-h-p will add -pie. It is different from --enable-default-pie because that option just adds an implicit -fPIE/-pie when the compiler is invoked, but the compiler itself isn't PIE. Since r12-5768-gfe7c3ecf, PCH works well with PIE, so there are no PCH regressions. When building the compiler, the build process may use various in-tree libraries; these need to be built with -fPIE so that it's possible to use them when building a PIE. For instance, when --with-included-gettext is in effect, intl object files must be compiled with -fPIE. Similarly, when building in-tree gmp, isl, mpfr and mpc, they must be compiled with -fPIE. With this patch and --enable-host-pie used to configure gcc: $ file gcc/cc1{,plus,obj,gm2} gcc/f951 gcc/lto1 gcc/cpp gcc/go1 gcc/rust1 gcc/gnat1 gcc/cc1: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=98e22cde129d304aa6f33e61b1c39e144aeb135e, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/cc1plus: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=859d1ea37e43dfe50c18fd4e3dd9a34bb1db8f77, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/cc1obj: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=1964f8ecee6163182bc26134e2ac1f324816e434, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/cc1gm2: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=a396672c7ff913d21855829202e7b02ecf42ff4c, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/f951: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=59c523db893186547ac75c7a71f48be0a461c06b, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/lto1: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=084a7b77df7be2d63c2d4c655b5bbc3fcdb6038d, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/cpp: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=3503bf8390d219a10d6653b8560aa21158132168, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/go1: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=988cc673af4fba5dcb482f4b34957b99050a68c5, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/rust1: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=b6a5d3d514446c4dcdee0707f086ab9b274a8a3c, for GNU/Linux 3.2.0, with debug_info, not stripped gcc/gnat1: ELF 64-bit LSB pie executable, x86-64, version 1 (GNU/Linux), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=bb11ccdc2c366fe3fe0980476bcd8ca19b67f9dc, for GNU/Linux 3.2.0, with debug_info, not stripped I plan to add an option to link with -Wl,-z,now. Bootstrapped on x86_64-pc-linux-gnu with --with-included-gettext --enable-host-pie as well as without --enable-host-pie. Also tested on a Debian system where the system gcc was configured with --enable-default-pie. Co-Authored by: Iain Sandoe <iain@sandoe.co.uk> ChangeLog: * configure.ac (--enable-host-pie): New check. Set PICFLAG after this check. * configure: Regenerate. c++tools/ChangeLog: * Makefile.in: Rename PIEFLAG to PICFLAG. Set LD_PICFLAG. Use it. Use pic/libiberty.a if PICFLAG is set. * configure.ac (--enable-default-pie): Set PICFLAG instead of PIEFLAG. (--enable-host-pie): New check. * configure: Regenerate. fixincludes/ChangeLog: * Makefile.in: Set and use PICFLAG and LD_PICFLAG. Use the "pic" build of libiberty if PICFLAG is set. * configure.ac: * configure: Regenerate. gcc/ChangeLog: * Makefile.in: Set LD_PICFLAG. Use it. Set enable_host_pie. Remove NO_PIE_CFLAGS and NO_PIE_FLAG. Pass LD_PICFLAG to ALL_LINKERFLAGS. Use the "pic" build of libiberty if --enable-host-pie. * configure.ac (--enable-host-shared): Don't set PICFLAG here. (--enable-host-pie): New check. Set PICFLAG and LD_PICFLAG after this check. * configure: Regenerate. * doc/install.texi: Document --enable-host-pie. gcc/ada/ChangeLog: * gcc-interface/Make-lang.in (ALL_ADAFLAGS): Remove NO_PIE_CFLAGS. Add PICFLAG. Use PICFLAG when building ada/b_gnat1.o and ada/b_gnatb.o. * gcc-interface/Makefile.in: Use pic/libiberty.a if PICFLAG is set. Remove NO_PIE_FLAG. gcc/m2/ChangeLog: * Make-lang.in: New var, GM2_PICFLAGS. Use it. gcc/d/ChangeLog: * Make-lang.in: Remove NO_PIE_CFLAGS. intl/ChangeLog: * Makefile.in: Use @PICFLAG@ in COMPILE as well. * configure.ac (--enable-host-shared): Don't set PICFLAG here. (--enable-host-pie): New check. Set PICFLAG after this check. * configure: Regenerate. libcody/ChangeLog: * Makefile.in: Pass LD_PICFLAG to LDFLAGS. * configure.ac (--enable-host-shared): Don't set PICFLAG here. (--enable-host-pie): New check. Set PICFLAG and LD_PICFLAG after this check. * configure: Regenerate. libcpp/ChangeLog: * configure.ac (--enable-host-shared): Don't set PICFLAG here. (--enable-host-pie): New check. Set PICFLAG after this check. * configure: Regenerate. libdecnumber/ChangeLog: * configure.ac (--enable-host-shared): Don't set PICFLAG here. (--enable-host-pie): New check. Set PICFLAG after this check. * configure: Regenerate. libiberty/ChangeLog: * configure.ac: Also set shared when enable_host_pie. * configure: Regenerate. zlib/ChangeLog: * configure.ac (--enable-host-shared): Don't set PICFLAG here. (--enable-host-pie): New check. Set PICFLAG after this check. * configure: Regenerate. |
||
---|---|---|
.. | ||
tests/base | ||
aclocal.m4 | ||
ChangeLog | ||
check.tpl | ||
config.h.in | ||
configure | ||
configure.ac | ||
fixfixes.c | ||
fixinc.in | ||
fixincl.c | ||
fixincl.tpl | ||
fixincl.x | ||
fixlib.c | ||
fixlib.h | ||
fixopts.c | ||
fixtests.c | ||
genfixes | ||
inclhack.def | ||
Makefile.in | ||
mkfixinc.sh | ||
mkheaders.in | ||
procopen.c | ||
README | ||
README-fixinc | ||
server.c | ||
server.h | ||
system.h |
GCC MAINTAINER INFORMATION ========================== If you are having some problem with a system header that is either broken by the manufacturer, or is broken by the fixinclude process, then you will need to alter or add information to the include fix definitions file, ``inclhack.def''. Please also send relevant information to gcc-bugs@gcc.gnu.org, gcc-patches@gcc.gnu.org and, please, to me: bkorb@gnu.org. To make your fix, you will need to do several things: 1. Obtain access to the AutoGen program on some platform. It does not have to be your build platform, but it is more convenient. 2. Edit "inclhack.def" to reflect the changes you need to make. See below for information on how to make those changes. 3. Run the "genfixes" shell script to produce a new copy of the "fixincl.x" file. 4. Rebuild the compiler and check the header causing the issue. Make sure it is now properly handled. Add tests to the "test_text" entry(ies) that validate your fix. This will help ensure that future fixes won't negate your work. Do *NOT* specify test text for "wrap" or "replacement" fixes. There is no real possibility that these fixes will fail. If they do, you will surely know straight away. NOTE: "test_text" is interpreted by the shell as it gets copied into the test header. THEREFORE you must quote dollar sign characters and back quotes -- unless you mean for them to be interpreted by the shell. e.g. the math_huge_val_from_dbl_max test_text needs to put text into both float.h and math.h, so it includes a back-quoted script to add text to float.h. 5. Go into the fixincludes build directory and type, "make check". You are guaranteed to have issues printed out as a result. Look at the diffs produced. Make sure you have not clobbered the proper functioning of a different fix. Make sure your fix is properly tested and it does what it is supposed to do. 6. Now that you have the right things happening, synchronize the $(srcdir)/tests/base directory with the $(builddir)/tests/res directory. The output of "make check" will be some diffs that should give you some hints about what to do. 7. Rerun "make check" and verify that there are no issues left. MAKING CHANGES TO INCLHACK.DEF ============================== 0. If you are not the fixincludes maintainer, please send that person email about any changes you may want to make. Thanks! 1. Every fix must have a "hackname" that is compatible with C syntax for variable names and is unique without regard to alphabetic case. Please keep them alphabetical by this name. :-) 2. If the problem is known to exist only in certain files, then identify the files with "files = " entries. If you use fnmatch(3C) wild card characters in a "files" entry, be certain that the first "files" entry has no such character. Otherwise, the "make check" machinery will attempt to create files with those characters in the name. That is inconvenient. 3. It is relatively expensive to fire off a process to fix a source file, therefore write apply tests to avoid unnecessary fix processes. The preferred apply tests are "select", "bypass", "mach" "sum", and "c-test" because they are performed internally: * select - Run a regex on the contents of the file being considered. All such regex-es must match. Matching is done with extended regular expressions. * bypass - Run a regex on the contents of the file being considered. No such regex may match. * sum - Select a specific version of a file that has a matching check sum. The BSD version of checksum ["sum(1BSD)"] is used. Each "sum" entry should contain exactly three space separated tokens: the sum, some number and the basename of the file. The "some number" is ignored. If there are multiple "sum" entries, only one needs to match in order to pass. For example: sum = '1234 3 foobar.h'; specifies that the "foobar.h" header in any directory will match if it has the checksum 1234. * c_test - call a function in fixtests.c. See that file. * files - the "fnmatch" pattern of the file(s) to examine for the issue. There may be several copies of this attribute. If the header lives in a /usr/include subdirectory, be sure to include that subdirectory in the name. e.g. net/if.h * mach - Match the output of config.guess against a series of fnmatch patterns. It must match at least one of the patterns, unless "not-machine" has also been specified. In that case, the config.guess output must not match any of the patterns. The next test is relatively slow because it must be handled in a separate shell process. Some platforms do not support server shells, so the whole process is even slower and more cumbersome there. * test - These should be arguments to the program, "/bin/test". You may perform multiple commands, if you enclose them in backquotes and echo out valid test arguments. For example, you might echo out '0 -eq 1' if you want a false result, or '0 -eq 0' for a true result. These tests are required to: 1. Be positive for all header files that require the fix. It is desirable to: 2. Be negative as often as possible whenever the fix is not required, avoiding the process overhead. It is nice if: 3. The expression is as simple as possible to both process and understand by people. :-) Please take advantage of the fact AutoGen will glue together string fragments. It helps. Also take note that double quote strings and single quote strings have different formation rules. Double quote strings are a tiny superset of ANSI-C string syntax. Single quote strings follow shell single quote string formation rules, except that the backslash is processed before '\\', '\'' and '#' characters (using C character syntax). Each test must pass or the fix is not applied. For example, all "select" expressions must be found and not one "bypass" selection may be found. Examples of test specifications: hackname = broken_assert_stdio; files = assert.h; select = stderr; bypass = "include.*stdio.h"; The ``broken_assert_stdio'' fix will be applied only to a file named "assert.h" if it contains the string "stderr" _and_ it does _not_ contain the expression "include.*stdio.h". hackname = no_double_slash; c_test = "double_slash"; The ``no_double_slash'' fix will be applied if the ``double_slash_test()'' function says to. See ``fixtests.c'' for documentation on how to include new functions into that module. 4. There are currently four methods of fixing a file: 1. a series of sed expressions. Each will be an individual "-e" argument to a single invocation of sed. Unless you need to use multiple or complex sed expressions, please use the "replacement text" method instead. 2. a shell script. These scripts are _required_ to read all of stdin in order to avoid pipe stalls. They may choose to discard the input. 3. Replacement text. If the replacement is empty, then no fix is applied. Otherwise, the replacement text is written to the output file and no further fixes are applied. If you really want a no-op file, replace the file with a comment. Replacement text "fixes" must be first in this file!! 4. A C language subroutine method for both tests and fixes. See ``fixtests.c'' for instructions on writing C-language applicability tests and ``fixfixes.c'' for C-language fixing. These files also contain tables that describe the currently implemented fixes and tests. If at all possible, you should try to use one of the C language fixes as it is far more efficient. There are currently five such fixes, three of which are very special purpose: i) char_macro_def - This function repairs the definition of an ioctl macro that presumes CPP macro substitution within pairs of single quote characters. ii) char_macro_use - This function repairs the usage of ioctl macros that no longer can wrap an argument with single quotes. iii) machine_name - This function will look at "#if", "#ifdef", "#ifndef" and "#elif" directive lines and replace the first occurrence of a non-reserved name that is traditionally pre-defined by the native compiler. The next two are for general use: iv) wrap - wraps the entire file with "#ifndef", "#define" and "#endif" self-exclusionary text. It also, optionally, inserts a prolog after the "#define" and an epilog just before the "#endif". You can use this for a fix as follows: c_fix = wrap; c_fix_arg = "/* prolog text */"; c_fix_arg = "/* epilog text */"; If you want an epilog without a prolog, set the first "c_fix_arg" to the empty string. Both or the second "c_fix_arg"s may be omitted and the file will still be wrapped. THERE IS A SPECIAL EXCEPTION TO THIS, HOWEVER: If the regular expression '#if.*__need' is found, then it is assumed that the file needs to be read and interpreted more than once. However, the prolog and epilog text (if any) will be inserted. v) format - Replaces text selected with a regular expression with a specialized formating string. The formatting works as follows: The format text is copied to the output until a '%' character is found. If the character after the '%' is another '%', then one '%' is output and processing continues. If the following character is not a digit, then the '%' and that character are copied and processing continues. Finally, if the '%' *is* followed by a digit, that digit is used as an index into the regmatch_t array to replace the two characters with the matched text. i.e.: "%0" is replaced by the full matching text, "%1" is the first matching sub-expression, etc. This is used as follows: c_fix = format; c_fix_arg = "#ifndef %1\n%0\n#endif"; c_fix_arg = "#define[ \t]+([A-Z][A-Z0-9a-z_]*).*"; This would wrap a one line #define inside of a "#ifndef"/"#endif" pair. The second "c_fix_arg" may be omitted *IF* there is at least one select clause and the first one identifies the text you wish to reformat. It will then be used as the second "c_fix_arg". You may delete the selected text by supplying an empty string for the replacement format (the first "c_fix_arg"). Note: In general, a format c_fix may be used in place of one sed expression. However, it will need to be rewritten by hand. For example: sed = 's@^#if __GNUC__ == 2 && __GNUC_MINOR__ >= 7$' '@& || __GNUC__ >= 3@'; may be rewritten using a format c_fix as: c_fix = format; c_fix_arg = '%0 || __GNUC__ >= 3'; c_fix_arg = '^#if __GNUC__ == 2 && __GNUC_MINOR__ >= 7$'; Multiple sed substitution expressions probably ought to remain sed expressions in order to maintain clarity. Also note that if the second sed expression is the same as the first select expression, then you may omit the second c_fix_arg. The select expression will be picked up and used in its absence. EXAMPLES OF FIXES: ================== hackname = AAA_ki_iface; replace; /* empty replacement -> no fixing the file */ When this ``fix'' is invoked, it will prevent any fixes from being applied. ------------------ hackname = AAB_svr4_no_varargs; replace = "/* This file was generated by fixincludes. */\n" "#ifndef _SYS_VARARGS_H\n" "#define _SYS_VARARGS_H\n\n" "#ifdef __STDC__\n" "#include <stdarg.h>\n" "#else\n" "#include <varargs.h>\n" "#endif\n\n" "#endif /* _SYS_VARARGS_H */\n"; When this ``fix'' is invoked, the replacement text will be emitted into the replacement include file. No further fixes will be applied. ------------------ hackname = hpux11_fabsf; files = math.h; select = "^[ \t]*#[ \t]*define[ \t]+fabsf\\(.*"; bypass = "__cplusplus"; c_fix = format; c_fix_arg = "#ifndef __cplusplus\n%0\n#endif"; test_text = "# define fabsf(x) ((float)fabs((double)(float)(x)))\n"; This fix will ensure that the #define for fabs is wrapped with C++ protection, providing the header is not already C++ aware. ------------------ 5. Testing fixes. The brute force method is, of course, to configure and build GCC. But you can also: cd ${top_builddir}/gcc rm -rf include-fixed/ stmp-fixinc make stmp-fixinc I would really recommend, however: cd ${top_builddir}/fixincludes make check To do this, you *must* have autogen installed on your system. The "check" step will proceed to construct a shell script that will exercise all the fixes, using the sample test_text provided with each fix. Once done, the changes made will be compared against the changes saved in the source directory. If you are changing the tests or fixes, the change will likely be highlighted.