mirror of
https://gcc.gnu.org/git/gcc.git
synced 2025-01-23 12:54:42 +08:00
6c80c45e30
* Imported beans and serialization * Updated IA-64 port * Miscellaneous bug fixes From-SVN: r34028
1758 lines
53 KiB
Java
1758 lines
53 KiB
Java
/* Arrays.java -- Utility class with methods to operate on arrays
|
|
Copyright (C) 1998, 1999 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA.
|
|
|
|
As a special exception, if you link this library with other files to
|
|
produce an executable, this library does not by itself cause the
|
|
resulting executable to be covered by the GNU General Public License.
|
|
This exception does not however invalidate any other reasons why the
|
|
executable file might be covered by the GNU General Public License. */
|
|
|
|
|
|
// TO DO:
|
|
// ~ Fix the behaviour of sort and binarySearch as applied to float and double
|
|
// arrays containing NaN values. See the JDC, bug ID 4143272.
|
|
|
|
package java.util;
|
|
|
|
/**
|
|
* This class contains various static utility methods performing operations on
|
|
* arrays, and a method to provide a List "view" of an array to facilitate
|
|
* using arrays with Collection-based APIs.
|
|
*/
|
|
public class Arrays {
|
|
|
|
/**
|
|
* This class is non-instantiable.
|
|
*/
|
|
private Arrays() {
|
|
}
|
|
|
|
private static Comparator defaultComparator = new Comparator() {
|
|
public int compare(Object o1, Object o2) {
|
|
return ((Comparable)o1).compareTo(o2);
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Perform a binary search of a byte array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(byte[] a, byte key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final byte d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of a char array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(char[] a, char key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final char d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of a double array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(double[] a, double key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final double d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of a float array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(float[] a, float key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final float d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of an int array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(int[] a, int key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final int d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of a long array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(long[] a, long key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final long d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of a short array for a key. The array must be
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
|
* the key more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
*/
|
|
public static int binarySearch(short[] a, short key) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final short d = a[mid];
|
|
if (d == key) {
|
|
return mid;
|
|
} else if (d > key) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* This method does the work for the Object binary search methods.
|
|
* @exception NullPointerException if the specified comparator is null.
|
|
* @exception ClassCastException if the objects are not comparable by c.
|
|
*/
|
|
private static int objectSearch(Object[] a, Object key, final Comparator c) {
|
|
int low = 0;
|
|
int hi = a.length - 1;
|
|
int mid = 0;
|
|
while (low <= hi) {
|
|
mid = (low + hi) >> 1;
|
|
final int d = c.compare(key, a[mid]);
|
|
if (d == 0) {
|
|
return mid;
|
|
} else if (d < 0) {
|
|
hi = mid - 1;
|
|
} else {
|
|
low = ++mid; // This gets the insertion point right on the last loop
|
|
}
|
|
}
|
|
return -mid - 1;
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of an Object array for a key, using the natural
|
|
* ordering of the elements. The array must be sorted (as by the sort()
|
|
* method) - if it is not, the behaviour of this method is undefined, and may
|
|
* be an infinite loop. Further, the key must be comparable with every item
|
|
* in the array. If the array contains the key more than once, any one of
|
|
* them may be found. Note: although the specification allows for an infinite
|
|
* loop if the array is unsorted, it will not happen in this (JCL)
|
|
* implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
* @exception ClassCastException if key could not be compared with one of the
|
|
* elements of a
|
|
* @exception NullPointerException if a null element has compareTo called
|
|
*/
|
|
public static int binarySearch(Object[] a, Object key) {
|
|
return objectSearch(a, key, defaultComparator);
|
|
}
|
|
|
|
/**
|
|
* Perform a binary search of an Object array for a key, using a supplied
|
|
* Comparator. The array must be sorted (as by the sort() method with the
|
|
* same Comparator) - if it is not, the behaviour of this method is
|
|
* undefined, and may be an infinite loop. Further, the key must be
|
|
* comparable with every item in the array. If the array contains the key
|
|
* more than once, any one of them may be found. Note: although the
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
|
* will not happen in this (JCL) implementation.
|
|
*
|
|
* @param a the array to search (must be sorted)
|
|
* @param key the value to search for
|
|
* @param c the comparator by which the array is sorted
|
|
* @returns the index at which the key was found, or -n-1 if it was not
|
|
* found, where n is the index of the first value higher than key or
|
|
* a.length if there is no such value.
|
|
* @exception ClassCastException if key could not be compared with one of the
|
|
* elements of a
|
|
*/
|
|
public static int binarySearch(Object[] a, Object key, Comparator c) {
|
|
return objectSearch(a, key, c);
|
|
}
|
|
|
|
/**
|
|
* Compare two byte arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(byte[] a1, byte[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two char arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(char[] a1, char[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two double arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(double[] a1, double[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two float arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(float[] a1, float[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two long arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(long[] a1, long[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two short arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(short[] a1, short[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two boolean arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(boolean[] a1, boolean[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two int arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a2 is of the same length
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
|
*/
|
|
public static boolean equals(int[] a1, int[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (a1[i] != a2[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Compare two Object arrays for equality.
|
|
*
|
|
* @param a1 the first array to compare
|
|
* @param a2 the second array to compare
|
|
* @returns true if a1 and a2 are both null, or if a1 is of the same length
|
|
* as a2, and for each 0 <= i < a.length, a1[i] == null ? a2[i] == null :
|
|
* a1[i].equals(a2[i]).
|
|
*/
|
|
public static boolean equals(Object[] a1, Object[] a2) {
|
|
|
|
// Quick test which saves comparing elements of the same array, and also
|
|
// catches the case that both are null.
|
|
if (a1 == a2) {
|
|
return true;
|
|
}
|
|
try {
|
|
|
|
// If they're the same length, test each element
|
|
if (a1.length == a2.length) {
|
|
for (int i = 0; i < a1.length; i++) {
|
|
if (!(a1[i] == null ? a2[i] == null : a1[i].equals(a2[i]))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If a1 == null or a2 == null but not both then we will get a NullPointer
|
|
} catch (NullPointerException e) {
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a boolean value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(boolean[] a, boolean val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a boolean value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(boolean[] a, int fromIndex, int toIndex,
|
|
boolean val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a byte value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(byte[] a, byte val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a byte value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a char value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(char[] a, char val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a char value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(char[] a, int fromIndex, int toIndex, char val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a double value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(double[] a, double val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a double value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(double[] a, int fromIndex, int toIndex, double val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a float value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(float[] a, float val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a float value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(float[] a, int fromIndex, int toIndex, float val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with an int value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(int[] a, int val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with an int value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(int[] a, int fromIndex, int toIndex, int val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a long value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(long[] a, long val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a long value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(long[] a, int fromIndex, int toIndex, long val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with a short value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
*/
|
|
public static void fill(short[] a, short val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with a short value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
*/
|
|
public static void fill(short[] a, int fromIndex, int toIndex, short val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fill an array with an Object value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param val the value to fill it with
|
|
* @exception ClassCastException if val is not an instance of the element
|
|
* type of a.
|
|
*/
|
|
public static void fill(Object[] a, Object val) {
|
|
// This implementation is slightly inefficient timewise, but the extra
|
|
// effort over inlining it is O(1) and small, and I refuse to repeat code
|
|
// if it can be helped.
|
|
fill(a, 0, a.length, val);
|
|
}
|
|
|
|
/**
|
|
* Fill a range of an array with an Object value.
|
|
*
|
|
* @param a the array to fill
|
|
* @param fromIndex the index to fill from, inclusive
|
|
* @param toIndex the index to fill to, exclusive
|
|
* @param val the value to fill with
|
|
* @exception ClassCastException if val is not an instance of the element
|
|
* type of a.
|
|
*/
|
|
public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
|
|
for (int i = fromIndex; i < toIndex; i++) {
|
|
a[i] = val;
|
|
}
|
|
}
|
|
|
|
// Thanks to Paul Fisher <rao@gnu.org> for finding this quicksort algorithm
|
|
// as specified by Sun and porting it to Java.
|
|
|
|
/**
|
|
* Sort a byte array into ascending order. The sort algorithm is an optimised
|
|
* quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
|
|
* "Engineering a Sort Function", Software-Practice and Experience, Vol.
|
|
* 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(byte[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
private static short cmp(byte i, byte j) {
|
|
return (short)(i-j);
|
|
}
|
|
|
|
private static int med3(int a, int b, int c, byte[] d) {
|
|
return cmp(d[a], d[b]) < 0 ?
|
|
(cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
|
|
: (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, byte[] a) {
|
|
byte c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(byte[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
short r;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
|
|
if (r == 0) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
|
|
if (r == 0) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, byte[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* Sort a char array into ascending order. The sort algorithm is an optimised
|
|
* quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
|
|
* "Engineering a Sort Function", Software-Practice and Experience, Vol.
|
|
* 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(char[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
private static int cmp(char i, char j) {
|
|
return i-j;
|
|
}
|
|
|
|
private static int med3(int a, int b, int c, char[] d) {
|
|
return cmp(d[a], d[b]) < 0 ?
|
|
(cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
|
|
: (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, char[] a) {
|
|
char c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(char[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
int r;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
|
|
if (r == 0) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
|
|
if (r == 0) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, char[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* Sort a double array into ascending order. The sort algorithm is an
|
|
* optimised quicksort, as described in Jon L. Bentley and M. Douglas
|
|
* McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
|
|
* Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort. Note that this implementation, like Sun's, has undefined
|
|
* behaviour if the array contains any NaN values.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(double[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
private static double cmp(double i, double j) {
|
|
return i-j;
|
|
}
|
|
|
|
private static int med3(int a, int b, int c, double[] d) {
|
|
return cmp(d[a], d[b]) < 0 ?
|
|
(cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
|
|
: (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, double[] a) {
|
|
double c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(double[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
double r;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
|
|
if (r == 0) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
|
|
if (r == 0) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, double[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* Sort a float array into ascending order. The sort algorithm is an
|
|
* optimised quicksort, as described in Jon L. Bentley and M. Douglas
|
|
* McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
|
|
* Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort. Note that this implementation, like Sun's, has undefined
|
|
* behaviour if the array contains any NaN values.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(float[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
private static float cmp(float i, float j) {
|
|
return i-j;
|
|
}
|
|
|
|
private static int med3(int a, int b, int c, float[] d) {
|
|
return cmp(d[a], d[b]) < 0 ?
|
|
(cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
|
|
: (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, float[] a) {
|
|
float c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(float[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
float r;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
|
|
if (r == 0) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
|
|
if (r == 0) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, float[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* Sort an int array into ascending order. The sort algorithm is an optimised
|
|
* quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
|
|
* "Engineering a Sort Function", Software-Practice and Experience, Vol.
|
|
* 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(int[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
private static long cmp(int i, int j) {
|
|
return (long)i-(long)j;
|
|
}
|
|
|
|
private static int med3(int a, int b, int c, int[] d) {
|
|
return cmp(d[a], d[b]) < 0 ?
|
|
(cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
|
|
: (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, int[] a) {
|
|
int c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(int[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
long r;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
|
|
if (r == 0) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
|
|
if (r == 0) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, int[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* Sort a long array into ascending order. The sort algorithm is an optimised
|
|
* quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
|
|
* "Engineering a Sort Function", Software-Practice and Experience, Vol.
|
|
* 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(long[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
// The "cmp" method has been removed from here and replaced with direct
|
|
// compares in situ, to avoid problems with overflow if the difference
|
|
// between two numbers is bigger than a long will hold.
|
|
// One particular change as a result is the use of r1 and r2 in qsort
|
|
|
|
private static int med3(int a, int b, int c, long[] d) {
|
|
return d[a] < d[b] ?
|
|
(d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
|
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, long[] a) {
|
|
long c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(long[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && a[j-1] > a[j]; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
long r1, r2;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r1 = a[pb]) <= (r2 = a[pv])) {
|
|
if (r1 == r2) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r1 = a[pc]) >= (r2 = a[pv])) {
|
|
if (r1 == r2) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, long[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* Sort a short array into ascending order. The sort algorithm is an
|
|
* optimised quicksort, as described in Jon L. Bentley and M. Douglas
|
|
* McIlroy's "Engineering a Sort Function", Software-Practice and Experience,
|
|
* Vol. 23(11) P. 1249-1265 (November 1993). This algorithm gives nlog(n)
|
|
* performance on many arrays that would take quadratic time with a standard
|
|
* quicksort.
|
|
*
|
|
* @param a the array to sort
|
|
*/
|
|
public static void sort(short[] a) {
|
|
qsort(a, 0, a.length);
|
|
}
|
|
|
|
private static int cmp(short i, short j) {
|
|
return i-j;
|
|
}
|
|
|
|
private static int med3(int a, int b, int c, short[] d) {
|
|
return cmp(d[a], d[b]) < 0 ?
|
|
(cmp(d[b], d[c]) < 0 ? b : cmp(d[a], d[c]) < 0 ? c : a)
|
|
: (cmp(d[b], d[c]) > 0 ? b : cmp(d[a], d[c]) > 0 ? c : a);
|
|
}
|
|
|
|
private static void swap(int i, int j, short[] a) {
|
|
short c = a[i];
|
|
a[i] = a[j];
|
|
a[j] = c;
|
|
}
|
|
|
|
private static void qsort(short[] a, int start, int n) {
|
|
// use an insertion sort on small arrays
|
|
if (n < 7) {
|
|
for (int i = start + 1; i < start + n; i++)
|
|
for (int j = i; j > 0 && cmp(a[j-1], a[j]) > 0; j--)
|
|
swap(j, j-1, a);
|
|
return;
|
|
}
|
|
|
|
int pm = n/2; // small arrays, middle element
|
|
if (n > 7) {
|
|
int pl = start;
|
|
int pn = start + n-1;
|
|
|
|
if (n > 40) { // big arrays, pseudomedian of 9
|
|
int s = n/8;
|
|
pl = med3(pl, pl+s, pl+2*s, a);
|
|
pm = med3(pm-s, pm, pm+s, a);
|
|
pn = med3(pn-2*s, pn-s, pn, a);
|
|
}
|
|
pm = med3(pl, pm, pn, a); // mid-size, med of 3
|
|
}
|
|
|
|
int pa, pb, pc, pd, pv;
|
|
int r;
|
|
|
|
pv = start; swap(pv, pm, a);
|
|
pa = pb = start;
|
|
pc = pd = start + n-1;
|
|
|
|
for (;;) {
|
|
while (pb <= pc && (r = cmp(a[pb], a[pv])) <= 0) {
|
|
if (r == 0) { swap(pa, pb, a); pa++; }
|
|
pb++;
|
|
}
|
|
while (pc >= pb && (r = cmp(a[pc], a[pv])) >= 0) {
|
|
if (r == 0) { swap(pc, pd, a); pd--; }
|
|
pc--;
|
|
}
|
|
if (pb > pc) break;
|
|
swap(pb, pc, a);
|
|
pb++;
|
|
pc--;
|
|
}
|
|
int pn = start + n;
|
|
int s;
|
|
s = Math.min(pa-start, pb-pa); vecswap(start, pb-s, s, a);
|
|
s = Math.min(pd-pc, pn-pd-1); vecswap(pb, pn-s, s, a);
|
|
if ((s = pb-pa) > 1) qsort(a, start, s);
|
|
if ((s = pd-pc) > 1) qsort(a, pn-s, s);
|
|
}
|
|
|
|
private static void vecswap(int i, int j, int n, short[] a) {
|
|
for (; n > 0; i++, j++, n--)
|
|
swap(i, j, a);
|
|
}
|
|
|
|
/**
|
|
* The bulk of the work for the object sort routines. In general,
|
|
* the code attempts to be simple rather than fast, the idea being
|
|
* that a good optimising JIT will be able to optimise it better
|
|
* than I can, and if I try it will make it more confusing for the
|
|
* JIT.
|
|
*/
|
|
private static void mergeSort(Object[] a, int from, int to, Comparator c)
|
|
{
|
|
// First presort the array in chunks of length 6 with insertion sort.
|
|
// mergesort would give too much overhead for this length.
|
|
for (int chunk = from; chunk < to; chunk += 6)
|
|
{
|
|
int end = Math.min(chunk+6, to);
|
|
for (int i = chunk + 1; i < end; i++)
|
|
{
|
|
if (c.compare(a[i-1], a[i]) > 0)
|
|
{
|
|
// not already sorted
|
|
int j=i;
|
|
Object elem = a[j];
|
|
do
|
|
{
|
|
a[j] = a[j-1];
|
|
j--;
|
|
}
|
|
while (j>chunk && c.compare(a[j-1], elem) > 0);
|
|
a[j] = elem;
|
|
}
|
|
}
|
|
}
|
|
|
|
int len = to - from;
|
|
// If length is smaller or equal 6 we are done.
|
|
if (len <= 6)
|
|
return;
|
|
|
|
Object[] src = a;
|
|
Object[] dest = new Object[len];
|
|
Object[] t = null; // t is used for swapping src and dest
|
|
|
|
// The difference of the fromIndex of the src and dest array.
|
|
int srcDestDiff = -from;
|
|
|
|
// The merges are done in this loop
|
|
for (int size = 6; size < len; size <<= 1)
|
|
{
|
|
for (int start = from; start < to; start += size << 1)
|
|
{
|
|
// mid ist the start of the second sublist;
|
|
// end the start of the next sublist (or end of array).
|
|
int mid = start + size;
|
|
int end = Math.min(to, mid + size);
|
|
|
|
// The second list is empty or the elements are already in
|
|
// order - no need to merge
|
|
if (mid >= end || c.compare(src[mid - 1], src[mid]) <= 0) {
|
|
System.arraycopy(src, start,
|
|
dest, start + srcDestDiff, end - start);
|
|
|
|
// The two halves just need swapping - no need to merge
|
|
} else if (c.compare(src[start], src[end - 1]) > 0) {
|
|
System.arraycopy(src, start,
|
|
dest, end - size + srcDestDiff, size);
|
|
System.arraycopy(src, mid,
|
|
dest, start + srcDestDiff, end - mid);
|
|
|
|
} else {
|
|
// Declare a lot of variables to save repeating
|
|
// calculations. Hopefully a decent JIT will put these
|
|
// in registers and make this fast
|
|
int p1 = start;
|
|
int p2 = mid;
|
|
int i = start + srcDestDiff;
|
|
|
|
// The main merge loop; terminates as soon as either
|
|
// half is ended
|
|
while (p1 < mid && p2 < end)
|
|
{
|
|
dest[i++] =
|
|
src[c.compare(src[p1], src[p2]) <= 0 ? p1++ : p2++];
|
|
}
|
|
|
|
// Finish up by copying the remainder of whichever half
|
|
// wasn't finished.
|
|
if (p1 < mid)
|
|
System.arraycopy(src, p1, dest, i, mid - p1);
|
|
else
|
|
System.arraycopy(src, p2, dest, i, end - p2);
|
|
}
|
|
}
|
|
// swap src and dest ready for the next merge
|
|
t = src; src = dest; dest = t;
|
|
from += srcDestDiff;
|
|
to += srcDestDiff;
|
|
srcDestDiff = -srcDestDiff;
|
|
}
|
|
|
|
// make sure the result ends up back in the right place. Note
|
|
// that src and dest may have been swapped above, so src
|
|
// contains the sorted array.
|
|
if (src != a)
|
|
{
|
|
// Note that from == 0.
|
|
System.arraycopy(src, 0, a, srcDestDiff, to);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sort an array of Objects according to their natural ordering. The sort is
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
|
* element of one half comes before the first element of the other half. This
|
|
* algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
|
|
* copy of the array.
|
|
*
|
|
* @param a the array to be sorted
|
|
* @exception ClassCastException if any two elements are not mutually
|
|
* comparable
|
|
* @exception NullPointerException if an element is null (since
|
|
* null.compareTo cannot work)
|
|
*/
|
|
public static void sort(Object[] a) {
|
|
mergeSort(a, 0, a.length, defaultComparator);
|
|
}
|
|
|
|
/**
|
|
* Sort an array of Objects according to a Comparator. The sort is
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
|
* element of one half comes before the first element of the other half. This
|
|
* algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
|
|
* copy of the array.
|
|
*
|
|
* @param a the array to be sorted
|
|
* @param c a Comparator to use in sorting the array
|
|
* @exception ClassCastException if any two elements are not mutually
|
|
* comparable by the Comparator provided
|
|
*/
|
|
public static void sort(Object[] a, Comparator c) {
|
|
mergeSort(a, 0, a.length, c);
|
|
}
|
|
|
|
/**
|
|
* Sort an array of Objects according to their natural ordering. The sort is
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
|
* element of one half comes before the first element of the other half. This
|
|
* algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
|
|
* copy of the array.
|
|
*
|
|
* @param a the array to be sorted
|
|
* @param fromIndex the index of the first element to be sorted.
|
|
* @param toIndex the index of the last element to be sorted plus one.
|
|
* @exception ClassCastException if any two elements are not mutually
|
|
* comparable by the Comparator provided
|
|
* @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex
|
|
* are not in range.
|
|
* @exception IllegalArgumentException if fromIndex > toIndex
|
|
*/
|
|
public static void sort(Object[] a, int fromIndex,
|
|
int toIndex) {
|
|
if (fromIndex > toIndex)
|
|
throw new IllegalArgumentException("fromIndex "+fromIndex
|
|
+" > toIndex "+toIndex);
|
|
mergeSort(a, fromIndex, toIndex, defaultComparator);
|
|
}
|
|
|
|
/**
|
|
* Sort an array of Objects according to a Comparator. The sort is
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
|
* element of one half comes before the first element of the other half. This
|
|
* algorithm gives guaranteed O(nlog(n)) time, at the expense of making a
|
|
* copy of the array.
|
|
*
|
|
* @param a the array to be sorted
|
|
* @param fromIndex the index of the first element to be sorted.
|
|
* @param toIndex the index of the last element to be sorted plus one.
|
|
* @param c a Comparator to use in sorting the array
|
|
* @exception ClassCastException if any two elements are not mutually
|
|
* comparable by the Comparator provided
|
|
* @exception ArrayIndexOutOfBoundsException, if fromIndex and toIndex
|
|
* are not in range.
|
|
* @exception IllegalArgumentException if fromIndex > toIndex
|
|
*/
|
|
public static void sort(Object[] a, int fromIndex,
|
|
int toIndex, Comparator c) {
|
|
if (fromIndex > toIndex)
|
|
throw new IllegalArgumentException("fromIndex "+fromIndex
|
|
+" > toIndex "+toIndex);
|
|
mergeSort(a, fromIndex, toIndex, c);
|
|
}
|
|
|
|
/**
|
|
* Returns a list "view" of the specified array. This method is intended to
|
|
* make it easy to use the Collections API with existing array-based APIs and
|
|
* programs.
|
|
*
|
|
* @param a the array to return a view of
|
|
* @returns a fixed-size list, changes to which "write through" to the array
|
|
*/
|
|
public static List asList(final Object[] a) {
|
|
|
|
if (a == null) {
|
|
throw new NullPointerException();
|
|
}
|
|
|
|
return new ListImpl( a );
|
|
}
|
|
|
|
|
|
/**
|
|
* Inner class used by asList(Object[]) to provide a list interface
|
|
* to an array. The methods are all simple enough to be self documenting.
|
|
* Note: When Sun fully specify serialized forms, this class will have to
|
|
* be renamed.
|
|
*/
|
|
private static class ListImpl extends AbstractList {
|
|
|
|
ListImpl(Object[] a) {
|
|
this.a = a;
|
|
}
|
|
|
|
public Object get(int index) {
|
|
return a[index];
|
|
}
|
|
|
|
public int size() {
|
|
return a.length;
|
|
}
|
|
|
|
public Object set(int index, Object element) {
|
|
Object old = a[index];
|
|
a[index] = element;
|
|
return old;
|
|
}
|
|
|
|
private Object[] a;
|
|
}
|
|
|
|
}
|