mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-23 19:03:59 +08:00
94792057ad
Like in r12-7519-g027e30414492d50feb2854aff38227b14300dc4b, I've done git grep -v 'long long\|optab optab\|template template\|double double' | grep ' \([a-zA-Z]\+\) \1 ' This is just part of the changes, mostly for non-gcc directories. I'll try to get to the rest soon. Obviously, the above command also finds cases which are correct as is and shouldn't be changed, so one needs to manually inspect everything. I'd hope most of it is pretty obvious, but the config/ and libstdc++-v3/ hunks include a tweak in a license wording, though other copies of the similar license have the wording right. 2024-04-02 Jakub Jelinek <jakub@redhat.com> * Makefile.tpl: Fix duplicated words; returns returns -> returns. config/ * lcmessage.m4: Fix duplicated words; can can -> can, package package -> package. libdecnumber/ * decCommon.c (decFinalize): Fix duplicated words in comment; the the -> the. libgcc/ * unwind-dw2-fde.c (struct fde_accumulator): Fix duplicated words in comment; is is -> is. libgfortran/ * configure.host: Fix duplicated words; the the -> the. libgm2/ * configure.host: Fix duplicated words; the the -> the. libgomp/ * libgomp.texi (OpenMP 5.2): Fix duplicated words; with with -> with. (omp_target_associate_ptr): Fix duplicated words; either either -> either. (omp_init_allocator): Fix duplicated words; be be -> be. (omp_realloc): Fix duplicated words; is is -> is. (OMP_ALLOCATOR): Fix duplicated words; other other -> other. * priority_queue.h (priority_queue_multi_p): Fix duplicated words; to to -> to. libiberty/ * regex.c (byte_re_match_2_internal): Fix duplicated words in comment; next next -> next. * dyn-string.c (dyn_string_init): Fix duplicated words in comment; of of -> of. libitm/ * beginend.cc (GTM::gtm_thread::begin_transaction): Fix duplicated words in comment; not not -> not to. libobjc/ * init.c (duplicate_classes): Fix duplicated words in comment; in in -> in. * sendmsg.c (__objc_prepare_dtable_for_class): Fix duplicated words in comment; the the -> the. * encoding.c (objc_layout_structure): Likewise. libstdc++-v3/ * acinclude.m4: Fix duplicated words; file file -> file can. * configure.host: Fix duplicated words; the the -> the. libvtv/ * vtv_rts.cc (vtv_fail): Fix duplicated words; to to -> to. * vtv_fail.cc (vtv_fail): Likewise.
1280 lines
33 KiB
C
1280 lines
33 KiB
C
/* Subroutines needed for unwinding stack frames for exception handling. */
|
||
/* Copyright (C) 1997-2024 Free Software Foundation, Inc.
|
||
Contributed by Jason Merrill <jason@cygnus.com>.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
Under Section 7 of GPL version 3, you are granted additional
|
||
permissions described in the GCC Runtime Library Exception, version
|
||
3.1, as published by the Free Software Foundation.
|
||
|
||
You should have received a copy of the GNU General Public License and
|
||
a copy of the GCC Runtime Library Exception along with this program;
|
||
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#ifndef _Unwind_Find_FDE
|
||
#include "tconfig.h"
|
||
#include "tsystem.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "libgcc_tm.h"
|
||
#include "dwarf2.h"
|
||
#include "unwind.h"
|
||
#define NO_BASE_OF_ENCODED_VALUE
|
||
#include "unwind-pe.h"
|
||
#include "unwind-dw2-fde.h"
|
||
#include "gthr.h"
|
||
#else
|
||
#if (defined(__GTHREAD_MUTEX_INIT) || defined(__GTHREAD_MUTEX_INIT_FUNCTION)) \
|
||
&& defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4)
|
||
#define ATOMIC_FDE_FAST_PATH 1
|
||
#endif
|
||
#endif
|
||
|
||
typedef __UINTPTR_TYPE__ uintptr_type;
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
#include "unwind-dw2-btree.h"
|
||
|
||
static struct btree registered_frames;
|
||
static struct btree registered_objects;
|
||
static bool in_shutdown;
|
||
|
||
static void
|
||
release_registered_frames (void) __attribute__ ((destructor));
|
||
static void
|
||
release_registered_frames (void)
|
||
{
|
||
/* Release the b-tree and all frames. Frame releases that happen later are
|
||
* silently ignored */
|
||
btree_destroy (®istered_frames);
|
||
btree_destroy (®istered_objects);
|
||
in_shutdown = true;
|
||
}
|
||
|
||
static void
|
||
get_pc_range (const struct object *ob, uintptr_type *range);
|
||
|
||
#else
|
||
/* Without fast path frame deregistration must always succeed. */
|
||
static const int in_shutdown = 0;
|
||
|
||
/* The unseen_objects list contains objects that have been registered
|
||
but not yet categorized in any way. The seen_objects list has had
|
||
its pc_begin and count fields initialized at minimum, and is sorted
|
||
by decreasing value of pc_begin. */
|
||
static struct object *unseen_objects;
|
||
static struct object *seen_objects;
|
||
#endif
|
||
|
||
#ifdef __GTHREAD_MUTEX_INIT
|
||
static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
|
||
#define init_object_mutex_once()
|
||
#else
|
||
#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
|
||
static __gthread_mutex_t object_mutex;
|
||
|
||
static void
|
||
init_object_mutex (void)
|
||
{
|
||
__GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
|
||
}
|
||
|
||
static void
|
||
init_object_mutex_once (void)
|
||
{
|
||
static __gthread_once_t once = __GTHREAD_ONCE_INIT;
|
||
__gthread_once (&once, init_object_mutex);
|
||
}
|
||
#else
|
||
/* ??? Several targets include this file with stubbing parts of gthr.h
|
||
and expect no locking to be done. */
|
||
#define init_object_mutex_once()
|
||
static __gthread_mutex_t object_mutex;
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
// Register the pc range for a given object in the lookup structure.
|
||
static void
|
||
register_pc_range_for_object (uintptr_type begin, struct object *ob)
|
||
{
|
||
// Register the object itself to know the base pointer on deregistration.
|
||
btree_insert (®istered_objects, begin, 1, ob);
|
||
|
||
// Register the frame in the b-tree
|
||
uintptr_type range[2];
|
||
get_pc_range (ob, range);
|
||
btree_insert (®istered_frames, range[0], range[1] - range[0], ob);
|
||
}
|
||
#endif
|
||
|
||
/* Called from crtbegin.o to register the unwind info for an object. */
|
||
|
||
void
|
||
__register_frame_info_bases (const void *begin, struct object *ob,
|
||
void *tbase, void *dbase)
|
||
{
|
||
/* If .eh_frame is empty, don't register at all. */
|
||
if ((const uword *) begin == 0 || *(const uword *) begin == 0)
|
||
return;
|
||
|
||
ob->pc_begin = (void *)-1;
|
||
ob->tbase = tbase;
|
||
ob->dbase = dbase;
|
||
ob->u.single = begin;
|
||
ob->s.i = 0;
|
||
ob->s.b.encoding = DW_EH_PE_omit;
|
||
#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
|
||
ob->fde_end = NULL;
|
||
#endif
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
register_pc_range_for_object ((uintptr_type) begin, ob);
|
||
#else
|
||
init_object_mutex_once ();
|
||
__gthread_mutex_lock (&object_mutex);
|
||
|
||
ob->next = unseen_objects;
|
||
unseen_objects = ob;
|
||
|
||
__gthread_mutex_unlock (&object_mutex);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
__register_frame_info (const void *begin, struct object *ob)
|
||
{
|
||
__register_frame_info_bases (begin, ob, 0, 0);
|
||
}
|
||
|
||
void
|
||
__register_frame (void *begin)
|
||
{
|
||
struct object *ob;
|
||
|
||
/* If .eh_frame is empty, don't register at all. */
|
||
if (*(uword *) begin == 0)
|
||
return;
|
||
|
||
ob = malloc (sizeof (struct object));
|
||
__register_frame_info (begin, ob);
|
||
}
|
||
|
||
/* Similar, but BEGIN is actually a pointer to a table of unwind entries
|
||
for different translation units. Called from the file generated by
|
||
collect2. */
|
||
|
||
void
|
||
__register_frame_info_table_bases (void *begin, struct object *ob,
|
||
void *tbase, void *dbase)
|
||
{
|
||
ob->pc_begin = (void *)-1;
|
||
ob->tbase = tbase;
|
||
ob->dbase = dbase;
|
||
ob->u.array = begin;
|
||
ob->s.i = 0;
|
||
ob->s.b.from_array = 1;
|
||
ob->s.b.encoding = DW_EH_PE_omit;
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
register_pc_range_for_object ((uintptr_type) begin, ob);
|
||
#else
|
||
init_object_mutex_once ();
|
||
__gthread_mutex_lock (&object_mutex);
|
||
|
||
ob->next = unseen_objects;
|
||
unseen_objects = ob;
|
||
|
||
__gthread_mutex_unlock (&object_mutex);
|
||
#endif
|
||
}
|
||
|
||
void
|
||
__register_frame_info_table (void *begin, struct object *ob)
|
||
{
|
||
__register_frame_info_table_bases (begin, ob, 0, 0);
|
||
}
|
||
|
||
void
|
||
__register_frame_table (void *begin)
|
||
{
|
||
struct object *ob = malloc (sizeof (struct object));
|
||
__register_frame_info_table (begin, ob);
|
||
}
|
||
|
||
/* Called from crtbegin.o to deregister the unwind info for an object. */
|
||
/* ??? Glibc has for a while now exported __register_frame_info and
|
||
__deregister_frame_info. If we call __register_frame_info_bases
|
||
from crtbegin (wherein it is declared weak), and this object does
|
||
not get pulled from libgcc.a for other reasons, then the
|
||
invocation of __deregister_frame_info will be resolved from glibc.
|
||
Since the registration did not happen there, we'll die.
|
||
|
||
Therefore, declare a new deregistration entry point that does the
|
||
exact same thing, but will resolve to the same library as
|
||
implements __register_frame_info_bases. */
|
||
|
||
void *
|
||
__deregister_frame_info_bases (const void *begin)
|
||
{
|
||
struct object *ob = 0;
|
||
|
||
/* If .eh_frame is empty, we haven't registered. */
|
||
if ((const uword *) begin == 0 || *(const uword *) begin == 0)
|
||
return ob;
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
// Find the originally registered object to get the base pointer.
|
||
ob = btree_remove (®istered_objects, (uintptr_type) begin);
|
||
|
||
// Remove the corresponding PC range.
|
||
if (ob)
|
||
{
|
||
uintptr_type range[2];
|
||
get_pc_range (ob, range);
|
||
if (range[0] != range[1])
|
||
btree_remove (®istered_frames, range[0]);
|
||
}
|
||
|
||
// Deallocate the sort array if any.
|
||
if (ob && ob->s.b.sorted)
|
||
{
|
||
free (ob->u.sort);
|
||
}
|
||
#else
|
||
init_object_mutex_once ();
|
||
__gthread_mutex_lock (&object_mutex);
|
||
|
||
struct object **p;
|
||
for (p = &unseen_objects; *p ; p = &(*p)->next)
|
||
if ((*p)->u.single == begin)
|
||
{
|
||
ob = *p;
|
||
*p = ob->next;
|
||
goto out;
|
||
}
|
||
|
||
for (p = &seen_objects; *p ; p = &(*p)->next)
|
||
if ((*p)->s.b.sorted)
|
||
{
|
||
if ((*p)->u.sort->orig_data == begin)
|
||
{
|
||
ob = *p;
|
||
*p = ob->next;
|
||
free (ob->u.sort);
|
||
goto out;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ((*p)->u.single == begin)
|
||
{
|
||
ob = *p;
|
||
*p = ob->next;
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
out:
|
||
__gthread_mutex_unlock (&object_mutex);
|
||
#endif
|
||
|
||
// If we didn't find anything in the lookup data structures then they
|
||
// were either already destroyed or we tried to remove an empty range.
|
||
gcc_assert (in_shutdown || ob);
|
||
return (void *) ob;
|
||
}
|
||
|
||
void *
|
||
__deregister_frame_info (const void *begin)
|
||
{
|
||
return __deregister_frame_info_bases (begin);
|
||
}
|
||
|
||
void
|
||
__deregister_frame (void *begin)
|
||
{
|
||
/* If .eh_frame is empty, we haven't registered. */
|
||
if (*(uword *) begin != 0)
|
||
free (__deregister_frame_info (begin));
|
||
}
|
||
|
||
|
||
/* Like base_of_encoded_value, but take the base from a struct object
|
||
instead of an _Unwind_Context. */
|
||
|
||
static _Unwind_Ptr
|
||
base_from_object (unsigned char encoding, const struct object *ob)
|
||
{
|
||
if (encoding == DW_EH_PE_omit)
|
||
return 0;
|
||
|
||
switch (encoding & 0x70)
|
||
{
|
||
case DW_EH_PE_absptr:
|
||
case DW_EH_PE_pcrel:
|
||
case DW_EH_PE_aligned:
|
||
return 0;
|
||
|
||
case DW_EH_PE_textrel:
|
||
return (_Unwind_Ptr) ob->tbase;
|
||
case DW_EH_PE_datarel:
|
||
return (_Unwind_Ptr) ob->dbase;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return the FDE pointer encoding from the CIE. */
|
||
/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
|
||
|
||
static int
|
||
get_cie_encoding (const struct dwarf_cie *cie)
|
||
{
|
||
const unsigned char *aug, *p;
|
||
_Unwind_Ptr dummy;
|
||
_uleb128_t utmp;
|
||
_sleb128_t stmp;
|
||
|
||
aug = cie->augmentation;
|
||
p = aug + strlen ((const char *)aug) + 1; /* Skip the augmentation string. */
|
||
if (__builtin_expect (cie->version >= 4, 0))
|
||
{
|
||
if (p[0] != sizeof (void *) || p[1] != 0)
|
||
return DW_EH_PE_omit; /* We are not prepared to handle unexpected
|
||
address sizes or segment selectors. */
|
||
p += 2; /* Skip address size and segment size. */
|
||
}
|
||
|
||
if (aug[0] != 'z')
|
||
return DW_EH_PE_absptr;
|
||
|
||
p = read_uleb128 (p, &utmp); /* Skip code alignment. */
|
||
p = read_sleb128 (p, &stmp); /* Skip data alignment. */
|
||
if (cie->version == 1) /* Skip return address column. */
|
||
p++;
|
||
else
|
||
p = read_uleb128 (p, &utmp);
|
||
|
||
aug++; /* Skip 'z' */
|
||
p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
|
||
while (1)
|
||
{
|
||
/* This is what we're looking for. */
|
||
if (*aug == 'R')
|
||
return *p;
|
||
/* Personality encoding and pointer. */
|
||
else if (*aug == 'P')
|
||
{
|
||
/* ??? Avoid dereferencing indirect pointers, since we're
|
||
faking the base address. Gotta keep DW_EH_PE_aligned
|
||
intact, however. */
|
||
p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
|
||
}
|
||
/* LSDA encoding. */
|
||
else if (*aug == 'L')
|
||
p++;
|
||
/* aarch64 b-key pointer authentication. */
|
||
else if (*aug == 'B')
|
||
p++;
|
||
/* Otherwise end of string, or unknown augmentation. */
|
||
else
|
||
return DW_EH_PE_absptr;
|
||
aug++;
|
||
}
|
||
}
|
||
|
||
static inline int
|
||
get_fde_encoding (const struct dwarf_fde *f)
|
||
{
|
||
return get_cie_encoding (get_cie (f));
|
||
}
|
||
|
||
|
||
/* Sorting an array of FDEs by address.
|
||
(Ideally we would have the linker sort the FDEs so we don't have to do
|
||
it at run time. But the linkers are not yet prepared for this.) */
|
||
|
||
/* Comparison routines. Three variants of increasing complexity. */
|
||
|
||
static int
|
||
fde_unencoded_compare (struct object *ob __attribute__((unused)),
|
||
const fde *x, const fde *y)
|
||
{
|
||
_Unwind_Ptr x_ptr, y_ptr;
|
||
memcpy (&x_ptr, x->pc_begin, sizeof (_Unwind_Ptr));
|
||
memcpy (&y_ptr, y->pc_begin, sizeof (_Unwind_Ptr));
|
||
|
||
if (x_ptr > y_ptr)
|
||
return 1;
|
||
if (x_ptr < y_ptr)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
|
||
{
|
||
_Unwind_Ptr base, x_ptr, y_ptr;
|
||
|
||
base = base_from_object (ob->s.b.encoding, ob);
|
||
read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
|
||
read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
|
||
|
||
if (x_ptr > y_ptr)
|
||
return 1;
|
||
if (x_ptr < y_ptr)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
|
||
{
|
||
int x_encoding, y_encoding;
|
||
_Unwind_Ptr x_ptr, y_ptr;
|
||
|
||
x_encoding = get_fde_encoding (x);
|
||
read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
|
||
x->pc_begin, &x_ptr);
|
||
|
||
y_encoding = get_fde_encoding (y);
|
||
read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
|
||
y->pc_begin, &y_ptr);
|
||
|
||
if (x_ptr > y_ptr)
|
||
return 1;
|
||
if (x_ptr < y_ptr)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
|
||
|
||
// The extractor functions compute the pointer values for a block of
|
||
// fdes. The block processing hides the call overhead.
|
||
|
||
static void
|
||
fde_unencoded_extract (struct object *ob __attribute__ ((unused)),
|
||
_Unwind_Ptr *target, const fde **x, int count)
|
||
{
|
||
for (int index = 0; index < count; ++index)
|
||
memcpy (target + index, x[index]->pc_begin, sizeof (_Unwind_Ptr));
|
||
}
|
||
|
||
static void
|
||
fde_single_encoding_extract (struct object *ob, _Unwind_Ptr *target,
|
||
const fde **x, int count)
|
||
{
|
||
_Unwind_Ptr base;
|
||
|
||
base = base_from_object (ob->s.b.encoding, ob);
|
||
for (int index = 0; index < count; ++index)
|
||
read_encoded_value_with_base (ob->s.b.encoding, base, x[index]->pc_begin,
|
||
target + index);
|
||
}
|
||
|
||
static void
|
||
fde_mixed_encoding_extract (struct object *ob, _Unwind_Ptr *target,
|
||
const fde **x, int count)
|
||
{
|
||
for (int index = 0; index < count; ++index)
|
||
{
|
||
int encoding = get_fde_encoding (x[index]);
|
||
read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
|
||
x[index]->pc_begin, target + index);
|
||
}
|
||
}
|
||
|
||
typedef void (*fde_extractor_t) (struct object *, _Unwind_Ptr *, const fde **,
|
||
int);
|
||
|
||
// Data is sorted using radix sort if possible, using an temporary
|
||
// auxiliary data structure of the same size as the input. When running
|
||
// out of memory do in-place heap sort.
|
||
|
||
struct fde_accumulator
|
||
{
|
||
struct fde_vector *linear;
|
||
struct fde_vector *aux;
|
||
};
|
||
|
||
static inline int
|
||
start_fde_sort (struct fde_accumulator *accu, size_t count)
|
||
{
|
||
size_t size;
|
||
if (! count)
|
||
return 0;
|
||
|
||
size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
|
||
if ((accu->linear = malloc (size)))
|
||
{
|
||
accu->linear->count = 0;
|
||
if ((accu->aux = malloc (size)))
|
||
accu->aux->count = 0;
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static inline void
|
||
fde_insert (struct fde_accumulator *accu, const fde *this_fde)
|
||
{
|
||
if (accu->linear)
|
||
accu->linear->array[accu->linear->count++] = this_fde;
|
||
}
|
||
|
||
#define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
|
||
|
||
/* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
|
||
for the first (root) node; push it down to its rightful place. */
|
||
|
||
static void
|
||
frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
|
||
int lo, int hi)
|
||
{
|
||
int i, j;
|
||
|
||
for (i = lo, j = 2*i+1;
|
||
j < hi;
|
||
j = 2*i+1)
|
||
{
|
||
if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
|
||
++j;
|
||
|
||
if (fde_compare (ob, a[i], a[j]) < 0)
|
||
{
|
||
SWAP (a[i], a[j]);
|
||
i = j;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
|
||
use a name that does not conflict. */
|
||
|
||
static void
|
||
frame_heapsort (struct object *ob, fde_compare_t fde_compare,
|
||
struct fde_vector *erratic)
|
||
{
|
||
/* For a description of this algorithm, see:
|
||
Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
|
||
p. 60-61. */
|
||
const fde ** a = erratic->array;
|
||
/* A portion of the array is called a "heap" if for all i>=0:
|
||
If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
|
||
If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
|
||
size_t n = erratic->count;
|
||
int m;
|
||
|
||
/* Expand our heap incrementally from the end of the array, heapifying
|
||
each resulting semi-heap as we go. After each step, a[m] is the top
|
||
of a heap. */
|
||
for (m = n/2-1; m >= 0; --m)
|
||
frame_downheap (ob, fde_compare, a, m, n);
|
||
|
||
/* Shrink our heap incrementally from the end of the array, first
|
||
swapping out the largest element a[0] and then re-heapifying the
|
||
resulting semi-heap. After each step, a[0..m) is a heap. */
|
||
for (m = n-1; m >= 1; --m)
|
||
{
|
||
SWAP (a[0], a[m]);
|
||
frame_downheap (ob, fde_compare, a, 0, m);
|
||
}
|
||
#undef SWAP
|
||
}
|
||
|
||
// Radix sort data in V1 using V2 as aux memory. Runtime O(n).
|
||
static inline void
|
||
fde_radixsort (struct object *ob, fde_extractor_t fde_extractor,
|
||
struct fde_vector *v1, struct fde_vector *v2)
|
||
{
|
||
#define FANOUTBITS 8
|
||
#define FANOUT (1 << FANOUTBITS)
|
||
#define BLOCKSIZE 128
|
||
const unsigned rounds
|
||
= (__CHAR_BIT__ * sizeof (_Unwind_Ptr) + FANOUTBITS - 1) / FANOUTBITS;
|
||
const fde **a1 = v1->array, **a2 = v2->array;
|
||
_Unwind_Ptr ptrs[BLOCKSIZE + 1];
|
||
unsigned n = v1->count;
|
||
for (unsigned round = 0; round != rounds; ++round)
|
||
{
|
||
unsigned counts[FANOUT] = {0};
|
||
unsigned violations = 0;
|
||
|
||
// Count the number of elements per bucket and check if we are already
|
||
// sorted.
|
||
_Unwind_Ptr last = 0;
|
||
for (unsigned i = 0; i < n;)
|
||
{
|
||
unsigned chunk = ((n - i) <= BLOCKSIZE) ? (n - i) : BLOCKSIZE;
|
||
fde_extractor (ob, ptrs + 1, a1 + i, chunk);
|
||
ptrs[0] = last;
|
||
for (unsigned j = 0; j < chunk; ++j)
|
||
{
|
||
unsigned b = (ptrs[j + 1] >> (round * FANOUTBITS)) & (FANOUT - 1);
|
||
counts[b]++;
|
||
// Use summation instead of an if to eliminate branches.
|
||
violations += ptrs[j + 1] < ptrs[j];
|
||
}
|
||
i += chunk;
|
||
last = ptrs[chunk];
|
||
}
|
||
|
||
// Stop if we are already sorted.
|
||
if (!violations)
|
||
{
|
||
break;
|
||
}
|
||
|
||
// Compute the prefix sum.
|
||
unsigned sum = 0;
|
||
for (unsigned i = 0; i != FANOUT; ++i)
|
||
{
|
||
unsigned s = sum;
|
||
sum += counts[i];
|
||
counts[i] = s;
|
||
}
|
||
|
||
// Place all elements.
|
||
for (unsigned i = 0; i < n;)
|
||
{
|
||
unsigned chunk = ((n - i) <= BLOCKSIZE) ? (n - i) : BLOCKSIZE;
|
||
fde_extractor (ob, ptrs, a1 + i, chunk);
|
||
for (unsigned j = 0; j < chunk; ++j)
|
||
{
|
||
unsigned b = (ptrs[j] >> (round * FANOUTBITS)) & (FANOUT - 1);
|
||
a2[counts[b]++] = a1[i + j];
|
||
}
|
||
i += chunk;
|
||
}
|
||
|
||
// Swap a1 and a2.
|
||
const fde **tmp = a1;
|
||
a1 = a2;
|
||
a2 = tmp;
|
||
}
|
||
#undef BLOCKSIZE
|
||
#undef FANOUT
|
||
#undef FANOUTBITS
|
||
|
||
// The data is in a1 now, move in place if needed.
|
||
if (a1 != v1->array)
|
||
memcpy (v1->array, a1, sizeof (const fde *) * n);
|
||
}
|
||
|
||
static inline void
|
||
end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
|
||
{
|
||
gcc_assert (!accu->linear || accu->linear->count == count);
|
||
|
||
if (accu->aux)
|
||
{
|
||
fde_extractor_t fde_extractor;
|
||
if (ob->s.b.mixed_encoding)
|
||
fde_extractor = fde_mixed_encoding_extract;
|
||
else if (ob->s.b.encoding == DW_EH_PE_absptr)
|
||
fde_extractor = fde_unencoded_extract;
|
||
else
|
||
fde_extractor = fde_single_encoding_extract;
|
||
|
||
fde_radixsort (ob, fde_extractor, accu->linear, accu->aux);
|
||
free (accu->aux);
|
||
}
|
||
else
|
||
{
|
||
fde_compare_t fde_compare;
|
||
if (ob->s.b.mixed_encoding)
|
||
fde_compare = fde_mixed_encoding_compare;
|
||
else if (ob->s.b.encoding == DW_EH_PE_absptr)
|
||
fde_compare = fde_unencoded_compare;
|
||
else
|
||
fde_compare = fde_single_encoding_compare;
|
||
|
||
/* We've not managed to malloc an aux array,
|
||
so heap sort in the linear one. */
|
||
frame_heapsort (ob, fde_compare, accu->linear);
|
||
}
|
||
}
|
||
|
||
/* Inspect the fde array beginning at this_fde. This
|
||
function can be used either in query mode (RANGE is
|
||
not null, OB is const), or in update mode (RANGE is
|
||
null, OB is modified). In query mode the function computes
|
||
the range of PC values and stores it in RANGE. In
|
||
update mode it updates encoding, mixed_encoding, and pc_begin
|
||
for OB. Return the number of fdes encountered along the way. */
|
||
|
||
static size_t
|
||
classify_object_over_fdes (struct object *ob, const fde *this_fde,
|
||
uintptr_type *range)
|
||
{
|
||
const struct dwarf_cie *last_cie = 0;
|
||
size_t count = 0;
|
||
int encoding = DW_EH_PE_absptr;
|
||
_Unwind_Ptr base = 0;
|
||
|
||
for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
|
||
{
|
||
const struct dwarf_cie *this_cie;
|
||
_Unwind_Ptr mask, pc_begin;
|
||
|
||
/* Skip CIEs. */
|
||
if (this_fde->CIE_delta == 0)
|
||
continue;
|
||
|
||
/* Determine the encoding for this FDE. Note mixed encoded
|
||
objects for later. */
|
||
this_cie = get_cie (this_fde);
|
||
if (this_cie != last_cie)
|
||
{
|
||
last_cie = this_cie;
|
||
encoding = get_cie_encoding (this_cie);
|
||
if (encoding == DW_EH_PE_omit)
|
||
return -1;
|
||
base = base_from_object (encoding, ob);
|
||
if (!range)
|
||
{
|
||
if (ob->s.b.encoding == DW_EH_PE_omit)
|
||
ob->s.b.encoding = encoding;
|
||
else if (ob->s.b.encoding != encoding)
|
||
ob->s.b.mixed_encoding = 1;
|
||
}
|
||
}
|
||
|
||
const unsigned char *p;
|
||
p = read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
|
||
&pc_begin);
|
||
|
||
/* Take care to ignore link-once functions that were removed.
|
||
In these cases, the function address will be NULL, but if
|
||
the encoding is smaller than a pointer a true NULL may not
|
||
be representable. Assume 0 in the representable bits is NULL. */
|
||
mask = size_of_encoded_value (encoding);
|
||
if (mask < sizeof (void *))
|
||
mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
|
||
else
|
||
mask = -1;
|
||
|
||
if ((pc_begin & mask) == 0)
|
||
continue;
|
||
|
||
count += 1;
|
||
if (range)
|
||
{
|
||
_Unwind_Ptr pc_range, pc_end;
|
||
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
||
pc_end = pc_begin + pc_range;
|
||
if ((!range[0]) && (!range[1]))
|
||
{
|
||
range[0] = pc_begin;
|
||
range[1] = pc_end;
|
||
}
|
||
else
|
||
{
|
||
if (pc_begin < range[0])
|
||
range[0] = pc_begin;
|
||
if (pc_end > range[1])
|
||
range[1] = pc_end;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ((void *) pc_begin < ob->pc_begin)
|
||
ob->pc_begin = (void *) pc_begin;
|
||
}
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
static void
|
||
add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
|
||
{
|
||
const struct dwarf_cie *last_cie = 0;
|
||
int encoding = ob->s.b.encoding;
|
||
_Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
|
||
|
||
for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
|
||
{
|
||
const struct dwarf_cie *this_cie;
|
||
|
||
/* Skip CIEs. */
|
||
if (this_fde->CIE_delta == 0)
|
||
continue;
|
||
|
||
if (ob->s.b.mixed_encoding)
|
||
{
|
||
/* Determine the encoding for this FDE. Note mixed encoded
|
||
objects for later. */
|
||
this_cie = get_cie (this_fde);
|
||
if (this_cie != last_cie)
|
||
{
|
||
last_cie = this_cie;
|
||
encoding = get_cie_encoding (this_cie);
|
||
base = base_from_object (encoding, ob);
|
||
}
|
||
}
|
||
|
||
if (encoding == DW_EH_PE_absptr)
|
||
{
|
||
_Unwind_Ptr ptr;
|
||
memcpy (&ptr, this_fde->pc_begin, sizeof (_Unwind_Ptr));
|
||
if (ptr == 0)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
_Unwind_Ptr pc_begin, mask;
|
||
|
||
read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
|
||
&pc_begin);
|
||
|
||
/* Take care to ignore link-once functions that were removed.
|
||
In these cases, the function address will be NULL, but if
|
||
the encoding is smaller than a pointer a true NULL may not
|
||
be representable. Assume 0 in the representable bits is NULL. */
|
||
mask = size_of_encoded_value (encoding);
|
||
if (mask < sizeof (void *))
|
||
mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
|
||
else
|
||
mask = -1;
|
||
|
||
if ((pc_begin & mask) == 0)
|
||
continue;
|
||
}
|
||
|
||
fde_insert (accu, this_fde);
|
||
}
|
||
}
|
||
|
||
/* Set up a sorted array of pointers to FDEs for a loaded object. We
|
||
count up the entries before allocating the array because it's likely to
|
||
be faster. We can be called multiple times, should we have failed to
|
||
allocate a sorted fde array on a previous occasion. */
|
||
|
||
static inline void
|
||
init_object (struct object* ob)
|
||
{
|
||
struct fde_accumulator accu;
|
||
size_t count;
|
||
|
||
count = ob->s.b.count;
|
||
if (count == 0)
|
||
{
|
||
if (ob->s.b.from_array)
|
||
{
|
||
fde **p = ob->u.array;
|
||
for (count = 0; *p; ++p)
|
||
{
|
||
size_t cur_count = classify_object_over_fdes (ob, *p, NULL);
|
||
if (cur_count == (size_t) -1)
|
||
goto unhandled_fdes;
|
||
count += cur_count;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
count = classify_object_over_fdes (ob, ob->u.single, NULL);
|
||
if (count == (size_t) -1)
|
||
{
|
||
static const fde terminator;
|
||
unhandled_fdes:
|
||
ob->s.i = 0;
|
||
ob->s.b.encoding = DW_EH_PE_omit;
|
||
ob->u.single = &terminator;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* The count field we have in the main struct object is somewhat
|
||
limited, but should suffice for virtually all cases. If the
|
||
counted value doesn't fit, re-write a zero. The worst that
|
||
happens is that we re-count next time -- admittedly non-trivial
|
||
in that this implies some 2M fdes, but at least we function. */
|
||
ob->s.b.count = count;
|
||
if (ob->s.b.count != count)
|
||
ob->s.b.count = 0;
|
||
}
|
||
|
||
if (!start_fde_sort (&accu, count))
|
||
return;
|
||
|
||
if (ob->s.b.from_array)
|
||
{
|
||
fde **p;
|
||
for (p = ob->u.array; *p; ++p)
|
||
add_fdes (ob, &accu, *p);
|
||
}
|
||
else
|
||
add_fdes (ob, &accu, ob->u.single);
|
||
|
||
end_fde_sort (ob, &accu, count);
|
||
|
||
/* Save the original fde pointer, since this is the key by which the
|
||
DSO will deregister the object. */
|
||
accu.linear->orig_data = ob->u.single;
|
||
ob->u.sort = accu.linear;
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
// We must update the sorted bit with an atomic operation
|
||
struct object tmp;
|
||
tmp.s.b = ob->s.b;
|
||
tmp.s.b.sorted = 1;
|
||
__atomic_store (&(ob->s.b), &(tmp.s.b), __ATOMIC_RELEASE);
|
||
#else
|
||
ob->s.b.sorted = 1;
|
||
#endif
|
||
}
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
/* Get the PC range for lookup */
|
||
static void
|
||
get_pc_range (const struct object *ob, uintptr_type *range)
|
||
{
|
||
// It is safe to cast to non-const object* here as
|
||
// classify_object_over_fdes does not modify ob in query mode.
|
||
struct object *ncob = (struct object *) (uintptr_type) ob;
|
||
range[0] = range[1] = 0;
|
||
if (ob->s.b.sorted)
|
||
{
|
||
classify_object_over_fdes (ncob, ob->u.sort->orig_data, range);
|
||
}
|
||
else if (ob->s.b.from_array)
|
||
{
|
||
fde **p = ob->u.array;
|
||
for (; *p; ++p)
|
||
classify_object_over_fdes (ncob, *p, range);
|
||
}
|
||
else
|
||
{
|
||
classify_object_over_fdes (ncob, ob->u.single, range);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* A linear search through a set of FDEs for the given PC. This is
|
||
used when there was insufficient memory to allocate and sort an
|
||
array. */
|
||
|
||
static const fde *
|
||
linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
|
||
{
|
||
const struct dwarf_cie *last_cie = 0;
|
||
int encoding = ob->s.b.encoding;
|
||
_Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
|
||
|
||
for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
|
||
{
|
||
const struct dwarf_cie *this_cie;
|
||
_Unwind_Ptr pc_begin, pc_range;
|
||
|
||
/* Skip CIEs. */
|
||
if (this_fde->CIE_delta == 0)
|
||
continue;
|
||
|
||
if (ob->s.b.mixed_encoding)
|
||
{
|
||
/* Determine the encoding for this FDE. Note mixed encoded
|
||
objects for later. */
|
||
this_cie = get_cie (this_fde);
|
||
if (this_cie != last_cie)
|
||
{
|
||
last_cie = this_cie;
|
||
encoding = get_cie_encoding (this_cie);
|
||
base = base_from_object (encoding, ob);
|
||
}
|
||
}
|
||
|
||
if (encoding == DW_EH_PE_absptr)
|
||
{
|
||
const _Unwind_Ptr *pc_array = (const _Unwind_Ptr *) this_fde->pc_begin;
|
||
pc_begin = pc_array[0];
|
||
pc_range = pc_array[1];
|
||
if (pc_begin == 0)
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
_Unwind_Ptr mask;
|
||
const unsigned char *p;
|
||
|
||
p = read_encoded_value_with_base (encoding, base,
|
||
this_fde->pc_begin, &pc_begin);
|
||
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
||
|
||
/* Take care to ignore link-once functions that were removed.
|
||
In these cases, the function address will be NULL, but if
|
||
the encoding is smaller than a pointer a true NULL may not
|
||
be representable. Assume 0 in the representable bits is NULL. */
|
||
mask = size_of_encoded_value (encoding);
|
||
if (mask < sizeof (void *))
|
||
mask = (((_Unwind_Ptr) 1) << (mask << 3)) - 1;
|
||
else
|
||
mask = -1;
|
||
|
||
if ((pc_begin & mask) == 0)
|
||
continue;
|
||
}
|
||
|
||
if ((_Unwind_Ptr) pc - pc_begin < pc_range)
|
||
return this_fde;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Binary search for an FDE containing the given PC. Here are three
|
||
implementations of increasing complexity. */
|
||
|
||
static inline const fde *
|
||
binary_search_unencoded_fdes (struct object *ob, void *pc)
|
||
{
|
||
struct fde_vector *vec = ob->u.sort;
|
||
size_t lo, hi;
|
||
|
||
for (lo = 0, hi = vec->count; lo < hi; )
|
||
{
|
||
size_t i = (lo + hi) / 2;
|
||
const fde *const f = vec->array[i];
|
||
void *pc_begin;
|
||
uaddr pc_range;
|
||
memcpy (&pc_begin, (const void * const *) f->pc_begin, sizeof (void *));
|
||
memcpy (&pc_range, (const uaddr *) f->pc_begin + 1, sizeof (uaddr));
|
||
|
||
if (pc < pc_begin)
|
||
hi = i;
|
||
else if (pc >= pc_begin + pc_range)
|
||
lo = i + 1;
|
||
else
|
||
return f;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static inline const fde *
|
||
binary_search_single_encoding_fdes (struct object *ob, void *pc)
|
||
{
|
||
struct fde_vector *vec = ob->u.sort;
|
||
int encoding = ob->s.b.encoding;
|
||
_Unwind_Ptr base = base_from_object (encoding, ob);
|
||
size_t lo, hi;
|
||
|
||
for (lo = 0, hi = vec->count; lo < hi; )
|
||
{
|
||
size_t i = (lo + hi) / 2;
|
||
const fde *f = vec->array[i];
|
||
_Unwind_Ptr pc_begin, pc_range;
|
||
const unsigned char *p;
|
||
|
||
p = read_encoded_value_with_base (encoding, base, f->pc_begin,
|
||
&pc_begin);
|
||
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
||
|
||
if ((_Unwind_Ptr) pc < pc_begin)
|
||
hi = i;
|
||
else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
|
||
lo = i + 1;
|
||
else
|
||
return f;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static inline const fde *
|
||
binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
|
||
{
|
||
struct fde_vector *vec = ob->u.sort;
|
||
size_t lo, hi;
|
||
|
||
for (lo = 0, hi = vec->count; lo < hi; )
|
||
{
|
||
size_t i = (lo + hi) / 2;
|
||
const fde *f = vec->array[i];
|
||
_Unwind_Ptr pc_begin, pc_range;
|
||
const unsigned char *p;
|
||
int encoding;
|
||
|
||
encoding = get_fde_encoding (f);
|
||
p = read_encoded_value_with_base (encoding,
|
||
base_from_object (encoding, ob),
|
||
f->pc_begin, &pc_begin);
|
||
read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
|
||
|
||
if ((_Unwind_Ptr) pc < pc_begin)
|
||
hi = i;
|
||
else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
|
||
lo = i + 1;
|
||
else
|
||
return f;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static const fde *
|
||
search_object (struct object* ob, void *pc)
|
||
{
|
||
/* The fast path initializes objects eagerly to avoid locking.
|
||
* On the slow path we initialize them now */
|
||
#ifndef ATOMIC_FDE_FAST_PATH
|
||
/* If the data hasn't been sorted, try to do this now. We may have
|
||
more memory available than last time we tried. */
|
||
if (! ob->s.b.sorted)
|
||
{
|
||
init_object (ob);
|
||
|
||
/* Despite the above comment, the normal reason to get here is
|
||
that we've not processed this object before. A quick range
|
||
check is in order. */
|
||
if (pc < ob->pc_begin)
|
||
return NULL;
|
||
}
|
||
#endif
|
||
|
||
if (ob->s.b.sorted)
|
||
{
|
||
if (ob->s.b.mixed_encoding)
|
||
return binary_search_mixed_encoding_fdes (ob, pc);
|
||
else if (ob->s.b.encoding == DW_EH_PE_absptr)
|
||
return binary_search_unencoded_fdes (ob, pc);
|
||
else
|
||
return binary_search_single_encoding_fdes (ob, pc);
|
||
}
|
||
else
|
||
{
|
||
/* Long slow laborious linear search, cos we've no memory. */
|
||
if (ob->s.b.from_array)
|
||
{
|
||
fde **p;
|
||
for (p = ob->u.array; *p ; p++)
|
||
{
|
||
const fde *f = linear_search_fdes (ob, *p, pc);
|
||
if (f)
|
||
return f;
|
||
}
|
||
return NULL;
|
||
}
|
||
else
|
||
return linear_search_fdes (ob, ob->u.single, pc);
|
||
}
|
||
}
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
|
||
// Check if the object was already initialized
|
||
static inline bool
|
||
is_object_initialized (struct object *ob)
|
||
{
|
||
// We have to use acquire atomics for the read, which
|
||
// is a bit involved as we read from a bitfield
|
||
struct object tmp;
|
||
__atomic_load (&(ob->s.b), &(tmp.s.b), __ATOMIC_ACQUIRE);
|
||
return tmp.s.b.sorted;
|
||
}
|
||
|
||
#endif
|
||
|
||
const fde *
|
||
_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
|
||
{
|
||
struct object *ob;
|
||
const fde *f = NULL;
|
||
|
||
#ifdef ATOMIC_FDE_FAST_PATH
|
||
ob = btree_lookup (®istered_frames, (uintptr_type) pc);
|
||
if (!ob)
|
||
return NULL;
|
||
|
||
// Initialize the object lazily
|
||
if (!is_object_initialized (ob))
|
||
{
|
||
// Check again under mutex
|
||
init_object_mutex_once ();
|
||
__gthread_mutex_lock (&object_mutex);
|
||
|
||
if (!ob->s.b.sorted)
|
||
{
|
||
init_object (ob);
|
||
}
|
||
|
||
__gthread_mutex_unlock (&object_mutex);
|
||
}
|
||
|
||
f = search_object (ob, pc);
|
||
#else
|
||
|
||
init_object_mutex_once ();
|
||
__gthread_mutex_lock (&object_mutex);
|
||
|
||
/* Linear search through the classified objects, to find the one
|
||
containing the pc. Note that pc_begin is sorted descending, and
|
||
we expect objects to be non-overlapping. */
|
||
for (ob = seen_objects; ob; ob = ob->next)
|
||
if (pc >= ob->pc_begin)
|
||
{
|
||
f = search_object (ob, pc);
|
||
if (f)
|
||
goto fini;
|
||
break;
|
||
}
|
||
|
||
/* Classify and search the objects we've not yet processed. */
|
||
while ((ob = unseen_objects))
|
||
{
|
||
struct object **p;
|
||
|
||
unseen_objects = ob->next;
|
||
f = search_object (ob, pc);
|
||
|
||
/* Insert the object into the classified list. */
|
||
for (p = &seen_objects; *p ; p = &(*p)->next)
|
||
if ((*p)->pc_begin < ob->pc_begin)
|
||
break;
|
||
ob->next = *p;
|
||
*p = ob;
|
||
|
||
if (f)
|
||
goto fini;
|
||
}
|
||
|
||
fini:
|
||
__gthread_mutex_unlock (&object_mutex);
|
||
#endif
|
||
|
||
if (f)
|
||
{
|
||
int encoding;
|
||
_Unwind_Ptr func;
|
||
|
||
bases->tbase = ob->tbase;
|
||
bases->dbase = ob->dbase;
|
||
|
||
encoding = ob->s.b.encoding;
|
||
if (ob->s.b.mixed_encoding)
|
||
encoding = get_fde_encoding (f);
|
||
read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
|
||
f->pc_begin, &func);
|
||
bases->func = (void *) func;
|
||
}
|
||
|
||
return f;
|
||
}
|