mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-12-31 23:23:38 +08:00
a554497024
From-SVN: r267494
239 lines
6.8 KiB
C
239 lines
6.8 KiB
C
/* Implementation of the MATMUL intrinsic
|
|
Copyright (C) 2002-2019 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 3 of the License, or (at your option) any later version.
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libgfortran.h"
|
|
#include <assert.h>
|
|
|
|
|
|
#if defined (HAVE_GFC_LOGICAL_8)
|
|
|
|
/* Dimensions: retarray(x,y) a(x, count) b(count,y).
|
|
Either a or b can be rank 1. In this case x or y is 1. */
|
|
|
|
extern void matmul_l8 (gfc_array_l8 * const restrict,
|
|
gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
|
|
export_proto(matmul_l8);
|
|
|
|
void
|
|
matmul_l8 (gfc_array_l8 * const restrict retarray,
|
|
gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
|
|
{
|
|
const GFC_LOGICAL_1 * restrict abase;
|
|
const GFC_LOGICAL_1 * restrict bbase;
|
|
GFC_LOGICAL_8 * restrict dest;
|
|
index_type rxstride;
|
|
index_type rystride;
|
|
index_type xcount;
|
|
index_type ycount;
|
|
index_type xstride;
|
|
index_type ystride;
|
|
index_type x;
|
|
index_type y;
|
|
int a_kind;
|
|
int b_kind;
|
|
|
|
const GFC_LOGICAL_1 * restrict pa;
|
|
const GFC_LOGICAL_1 * restrict pb;
|
|
index_type astride;
|
|
index_type bstride;
|
|
index_type count;
|
|
index_type n;
|
|
|
|
assert (GFC_DESCRIPTOR_RANK (a) == 2
|
|
|| GFC_DESCRIPTOR_RANK (b) == 2);
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
|
}
|
|
else
|
|
{
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0,
|
|
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[1], 0,
|
|
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
|
|
GFC_DESCRIPTOR_EXTENT(retarray,0));
|
|
}
|
|
|
|
retarray->base_addr
|
|
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_LOGICAL_8));
|
|
retarray->offset = 0;
|
|
}
|
|
else if (unlikely (compile_options.bounds_check))
|
|
{
|
|
index_type ret_extent, arg_extent;
|
|
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Incorrect extent in return array in"
|
|
" MATMUL intrinsic: is %ld, should be %ld",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
else if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Incorrect extent in return array in"
|
|
" MATMUL intrinsic: is %ld, should be %ld",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
else
|
|
{
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Incorrect extent in return array in"
|
|
" MATMUL intrinsic for dimension 1:"
|
|
" is %ld, should be %ld",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
|
|
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
|
|
if (arg_extent != ret_extent)
|
|
runtime_error ("Incorrect extent in return array in"
|
|
" MATMUL intrinsic for dimension 2:"
|
|
" is %ld, should be %ld",
|
|
(long int) ret_extent, (long int) arg_extent);
|
|
}
|
|
}
|
|
|
|
abase = a->base_addr;
|
|
a_kind = GFC_DESCRIPTOR_SIZE (a);
|
|
|
|
if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| a_kind == 16
|
|
#endif
|
|
)
|
|
abase = GFOR_POINTER_TO_L1 (abase, a_kind);
|
|
else
|
|
internal_error (NULL, "Funny sized logical array");
|
|
|
|
bbase = b->base_addr;
|
|
b_kind = GFC_DESCRIPTOR_SIZE (b);
|
|
|
|
if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| b_kind == 16
|
|
#endif
|
|
)
|
|
bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
|
|
else
|
|
internal_error (NULL, "Funny sized logical array");
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
|
|
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
|
|
{
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
rystride = rxstride;
|
|
}
|
|
else
|
|
{
|
|
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
|
|
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
|
|
}
|
|
|
|
/* If we have rank 1 parameters, zero the absent stride, and set the size to
|
|
one. */
|
|
if (GFC_DESCRIPTOR_RANK (a) == 1)
|
|
{
|
|
astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
|
|
count = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
xstride = 0;
|
|
rxstride = 0;
|
|
xcount = 1;
|
|
}
|
|
else
|
|
{
|
|
astride = GFC_DESCRIPTOR_STRIDE_BYTES(a,1);
|
|
count = GFC_DESCRIPTOR_EXTENT(a,1);
|
|
xstride = GFC_DESCRIPTOR_STRIDE_BYTES(a,0);
|
|
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
|
|
}
|
|
if (GFC_DESCRIPTOR_RANK (b) == 1)
|
|
{
|
|
bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
|
|
assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
|
|
ystride = 0;
|
|
rystride = 0;
|
|
ycount = 1;
|
|
}
|
|
else
|
|
{
|
|
bstride = GFC_DESCRIPTOR_STRIDE_BYTES(b,0);
|
|
assert(count == GFC_DESCRIPTOR_EXTENT(b,0));
|
|
ystride = GFC_DESCRIPTOR_STRIDE_BYTES(b,1);
|
|
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
|
|
}
|
|
|
|
for (y = 0; y < ycount; y++)
|
|
{
|
|
for (x = 0; x < xcount; x++)
|
|
{
|
|
/* Do the summation for this element. For real and integer types
|
|
this is the same as DOT_PRODUCT. For complex types we use do
|
|
a*b, not conjg(a)*b. */
|
|
pa = abase;
|
|
pb = bbase;
|
|
*dest = 0;
|
|
|
|
for (n = 0; n < count; n++)
|
|
{
|
|
if (*pa && *pb)
|
|
{
|
|
*dest = 1;
|
|
break;
|
|
}
|
|
pa += astride;
|
|
pb += bstride;
|
|
}
|
|
|
|
dest += rxstride;
|
|
abase += xstride;
|
|
}
|
|
abase -= xstride * xcount;
|
|
bbase += ystride;
|
|
dest += rystride - (rxstride * xcount);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|