gcc/libgfortran/generated/sum_r10.c
Thomas Koenig 97a6203866 re PR fortran/20935 (failed assertion for maxloc(n, mask=.true.))
2006-03-20  Thomas Koenig  <Thomas.Koenig@online.de>

	PR fortran/20935
	* iresolve.c (gfc_resolve_maxloc):   If mask is scalar,
	prefix the function name with an "s".  If the mask is scalar
	or if its kind is smaller than gfc_default_logical_kind,
	coerce it to default kind.
	(gfc_resolve_maxval):  Likewise.
	(gfc_resolve_minloc):  Likewise.
	(gfc_resolve_minval):  Likewise.
	(gfc_resolve_product):  Likewise.
	(gfc_resolve_sum):  Likewise.

2006-03-20  Thomas Koenig  <Thomas.Koenig@online.de>

	PR fortran/20935
	* m4/iforeach.m4:  Add SCALAR_FOREACH_FUNCTION macro.
	* m4/ifunction.m4:  Add SCALAR_ARRAY_FUNCTION macro.
	* m4/minloc0.m4:  Use SCALAR_FOREACH_FUNCTION.
	* m4/minloc1.m4:  Use SCALAR_ARRAY_FUNCTION.
	* m4/maxloc0.m4:  Use SCALAR_FOREACH_FUNCTION.
	* m4/maxloc1.m4:  Use SCALAR_ARRAY_FUNCTION.
	* m4/minval.m4:  Likewise.
	* m4/maxval.m4:  Likewise.
	* m4/product.m4:  Likewise.
	* m4/sum.m4:  Likewise.
	* minloc0_16_i16.c : Regenerated.
	* minloc0_16_i4.c : Regenerated.
	* minloc0_16_i8.c : Regenerated.
	* minloc0_16_r10.c : Regenerated.
	* minloc0_16_r16.c : Regenerated.
	* minloc0_16_r4.c : Regenerated.
	* minloc0_16_r8.c : Regenerated.
	* minloc0_4_i16.c : Regenerated.
	* minloc0_4_i4.c : Regenerated.
	* minloc0_4_i8.c : Regenerated.
	* minloc0_4_r10.c : Regenerated.
	* minloc0_4_r16.c : Regenerated.
	* minloc0_4_r4.c : Regenerated.
	* minloc0_4_r8.c : Regenerated.
	* minloc0_8_i16.c : Regenerated.
	* minloc0_8_i4.c : Regenerated.
	* minloc0_8_i8.c : Regenerated.
	* minloc0_8_r10.c : Regenerated.
	* minloc0_8_r16.c : Regenerated.
	* minloc0_8_r4.c : Regenerated.
	* minloc0_8_r8.c : Regenerated.
	* minloc1_16_i16.c : Regenerated.
	* minloc1_16_i4.c : Regenerated.
	* minloc1_16_i8.c : Regenerated.
	* minloc1_16_r10.c : Regenerated.
	* minloc1_16_r16.c : Regenerated.
	* minloc1_16_r4.c : Regenerated.
	* minloc1_16_r8.c : Regenerated.
	* minloc1_4_i16.c : Regenerated.
	* minloc1_4_i4.c : Regenerated.
	* minloc1_4_i8.c : Regenerated.
	* minloc1_4_r10.c : Regenerated.
	* minloc1_4_r16.c : Regenerated.
	* minloc1_4_r4.c : Regenerated.
	* minloc1_4_r8.c : Regenerated.
	* minloc1_8_i16.c : Regenerated.
	* minloc1_8_i4.c : Regenerated.
	* minloc1_8_i8.c : Regenerated.
	* minloc1_8_r10.c : Regenerated.
	* minloc1_8_r16.c : Regenerated.
	* minloc1_8_r4.c : Regenerated.
	* minloc1_8_r8.c : Regenerated.
	* maxloc0_16_i16.c : Regenerated.
	* maxloc0_16_i4.c : Regenerated.
	* maxloc0_16_i8.c : Regenerated.
	* maxloc0_16_r10.c : Regenerated.
	* maxloc0_16_r16.c : Regenerated.
	* maxloc0_16_r4.c : Regenerated.
	* maxloc0_16_r8.c : Regenerated.
	* maxloc0_4_i16.c : Regenerated.
	* maxloc0_4_i4.c : Regenerated.
	* maxloc0_4_i8.c : Regenerated.
	* maxloc0_4_r10.c : Regenerated.
	* maxloc0_4_r16.c : Regenerated.
	* maxloc0_4_r4.c : Regenerated.
	* maxloc0_4_r8.c : Regenerated.
	* maxloc0_8_i16.c : Regenerated.
	* maxloc0_8_i4.c : Regenerated.
	* maxloc0_8_i8.c : Regenerated.
	* maxloc0_8_r10.c : Regenerated.
	* maxloc0_8_r16.c : Regenerated.
	* maxloc0_8_r4.c : Regenerated.
	* maxloc0_8_r8.c : Regenerated.
	* maxloc1_16_i16.c : Regenerated.
	* maxloc1_16_i4.c : Regenerated.
	* maxloc1_16_i8.c : Regenerated.
	* maxloc1_16_r10.c : Regenerated.
	* maxloc1_16_r16.c : Regenerated.
	* maxloc1_16_r4.c : Regenerated.
	* maxloc1_16_r8.c : Regenerated.
	* maxloc1_4_i16.c : Regenerated.
	* maxloc1_4_i4.c : Regenerated.
	* maxloc1_4_i8.c : Regenerated.
	* maxloc1_4_r10.c : Regenerated.
	* maxloc1_4_r16.c : Regenerated.
	* maxloc1_4_r4.c : Regenerated.
	* maxloc1_4_r8.c : Regenerated.
	* maxloc1_8_i16.c : Regenerated.
	* maxloc1_8_i4.c : Regenerated.
	* maxloc1_8_i8.c : Regenerated.
	* maxloc1_8_r10.c : Regenerated.
	* maxloc1_8_r16.c : Regenerated.
	* maxloc1_8_r4.c : Regenerated.
	* maxloc1_8_r8.c : Regenerated.
	* maxval_i16.c : Regenerated.
	* maxval_i4.c : Regenerated.
	* maxval_i8.c : Regenerated.
	* maxval_r10.c : Regenerated.
	* maxval_r16.c : Regenerated.
	* maxval_r4.c : Regenerated.
	* maxval_r8.c : Regenerated.
	* minval_i16.c : Regenerated.
	* minval_i4.c : Regenerated.
	* minval_i8.c : Regenerated.
	* minval_r10.c : Regenerated.
	* minval_r16.c : Regenerated.
	* minval_r4.c : Regenerated.
	* minval_r8.c : Regenerated.
	* sum_c10.c : Regenerated.
	* sum_c16.c : Regenerated.
	* sum_c4.c : Regenerated.
	* sum_c8.c : Regenerated.
	* sum_i16.c : Regenerated.
	* sum_i4.c : Regenerated.
	* sum_i8.c : Regenerated.
	* sum_r10.c : Regenerated.
	* sum_r16.c : Regenerated.
	* sum_r4.c : Regenerated.
	* sum_r8.c : Regenerated.
	* product_c10.c : Regenerated.
	* product_c16.c : Regenerated.
	* product_c4.c : Regenerated.
	* product_c8.c : Regenerated.
	* product_i16.c : Regenerated.
	* product_i4.c : Regenerated.
	* product_i8.c : Regenerated.
	* product_r10.c : Regenerated.
	* product_r16.c : Regenerated.
	* product_r4.c : Regenerated.
	* product_r8.c : Regenerated.

2006-03-20  Thomas Koenig  <Thomas.Koenig@online.de>

	PR fortran/20935
	* gfortran.dg/scalar_mask_2.f90:  New test case.

From-SVN: r112230
2006-03-20 21:56:00 +00:00

395 lines
10 KiB
C

/* Implementation of the SUM intrinsic
Copyright 2002 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file. (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with libgfortran; see the file COPYING. If not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include <stdlib.h>
#include <assert.h>
#include "libgfortran.h"
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_REAL_10)
extern void sum_r10 (gfc_array_r10 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict);
export_proto(sum_r10);
void
sum_r10 (gfc_array_r10 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_REAL_10 * restrict base;
GFC_REAL_10 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
/* TODO: It should be a front end job to correctly set the strides. */
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
delta = array->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
}
if (retarray->data == NULL)
{
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
retarray->data
= internal_malloc_size (sizeof (GFC_REAL_10)
* retarray->dim[rank-1].stride
* extent[rank-1]);
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
}
else
{
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
len = 0;
}
base = array->data;
dest = retarray->data;
while (base)
{
const GFC_REAL_10 * restrict src;
GFC_REAL_10 result;
src = base;
{
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta)
{
result += *src;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
extern void msum_r10 (gfc_array_r10 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict,
gfc_array_l4 * const restrict);
export_proto(msum_r10);
void
msum_r10 (gfc_array_r10 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim,
gfc_array_l4 * const restrict mask)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
GFC_REAL_10 * restrict dest;
const GFC_REAL_10 * restrict base;
const GFC_LOGICAL_4 * restrict mbase;
int rank;
int dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
/* TODO: It should be a front end job to correctly set the strides. */
if (array->dim[0].stride == 0)
array->dim[0].stride = 1;
if (mask->dim[0].stride == 0)
mask->dim[0].stride = 1;
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
if (len <= 0)
return;
delta = array->dim[dim].stride;
mdelta = mask->dim[dim].stride;
for (n = 0; n < dim; n++)
{
sstride[n] = array->dim[n].stride;
mstride[n] = mask->dim[n].stride;
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
}
for (n = dim; n < rank; n++)
{
sstride[n] = array->dim[n + 1].stride;
mstride[n] = mask->dim[n + 1].stride;
extent[n] =
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
}
if (retarray->data == NULL)
{
for (n = 0; n < rank; n++)
{
retarray->dim[n].lbound = 0;
retarray->dim[n].ubound = extent[n]-1;
if (n == 0)
retarray->dim[n].stride = 1;
else
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
}
retarray->data
= internal_malloc_size (sizeof (GFC_REAL_10)
* retarray->dim[rank-1].stride
* extent[rank-1]);
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
}
else
{
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = retarray->dim[n].stride;
if (extent[n] <= 0)
return;
}
dest = retarray->data;
base = array->data;
mbase = mask->data;
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
{
/* This allows the same loop to be used for all logical types. */
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
for (n = 0; n < rank; n++)
mstride[n] <<= 1;
mdelta <<= 1;
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
}
while (base)
{
const GFC_REAL_10 * restrict src;
const GFC_LOGICAL_4 * restrict msrc;
GFC_REAL_10 result;
src = base;
msrc = mbase;
{
result = 0;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc)
result += *src;
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so proabably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n == rank)
{
/* Break out of the look. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}
extern void ssum_r10 (gfc_array_r10 * const restrict,
gfc_array_r10 * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *);
export_proto(ssum_r10);
void
ssum_r10 (gfc_array_r10 * const restrict retarray,
gfc_array_r10 * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask)
{
index_type rank;
index_type n;
index_type dstride;
GFC_REAL_10 *dest;
if (*mask)
{
sum_r10 (retarray, array, pdim);
return;
}
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->data == NULL)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = rank-1;
retarray->dim[0].stride = 1;
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
retarray->offset = 0;
retarray->data = internal_malloc_size (sizeof (GFC_REAL_10) * rank);
}
else
{
if (GFC_DESCRIPTOR_RANK (retarray) != 1)
runtime_error ("rank of return array does not equal 1");
if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
runtime_error ("dimension of return array incorrect");
if (retarray->dim[0].stride == 0)
retarray->dim[0].stride = 1;
}
dstride = retarray->dim[0].stride;
dest = retarray->data;
for (n = 0; n < rank; n++)
dest[n * dstride] = 0 ;
}
#endif