mirror of
https://gcc.gnu.org/git/gcc.git
synced 2025-01-22 12:24:38 +08:00
644cb69f80
PR libfortran/19308 PR fortran/20120 PR libfortran/22437 * Makefile.am: Add generated files for large real and integers kinds. Add a rule to create the kinds.inc c99_protos.inc files. Use kinds.inc to preprocess Fortran generated files. * libgfortran.h: Add macro definitions for GFC_INTEGER_16_HUGE, GFC_REAL_10_HUGE and GFC_REAL_16_HUGE. Add types gfc_array_i16, gfc_array_r10, gfc_array_r16, gfc_array_c10, gfc_array_c16, gfc_array_l16. * mk-kinds-h.sh: Define macros HAVE_GFC_LOGICAL_* and HAVE_GFC_COMPLEX_* when these types are available. * intrinsics/ishftc.c (ishftc16): New function for GFC_INTEGER_16. * m4/all.m4, m4/any.m4, m4/count.m4, m4/cshift1.m4, m4/dotprod.m4, m4/dotprodc.m4, m4/dotprodl.m4, m4/eoshift1.m4, m4/eoshift3.m4, m4/exponent.m4, m4/fraction.m4, m4/in_pack.m4, m4/in_unpack.m4, m4/matmul.m4, m4/matmull.m4, m4/maxloc0.m4, m4/maxloc1.m4, m4/maxval.m4, m4/minloc0.m4, m4/minloc1.m4, m4/minval.m4, m4/mtype.m4, m4/nearest.m4, m4/pow.m4, m4/product.m4, m4/reshape.m4, m4/set_exponent.m4, m4/shape.m4, m4/specific.m4, m4/specific2.m4, m4/sum.m4, m4/transpose.m4: Protect generated functions with appropriate "#if defined (HAVE_GFC_type_kind)" preprocessor directives. * Makefile.in: Regenerate. * all files in generated/: Regenerate. * f95-lang.c (DO_DEFINE_MATH_BUILTIN): Add support for long double builtin function. (gfc_init_builtin_functions): Add mfunc_longdouble, mfunc_clongdouble and func_clongdouble_longdouble trees. Build them for round, trunc, cabs, copysign and pow functions. * iresolve.c (gfc_resolve_reshape, gfc_resolve_transpose): Add case for kind 10 and 16. * trans-decl.c: Add trees for cpowl10, cpowl16, ishftc16, exponent10 and exponent16. (gfc_build_intrinsic_function_decls): Build nodes for int16, real10, real16, complex10 and complex16 types. Build all possible combinations for function _gfortran_pow_?n_?n. Build function calls cpowl10, cpowl16, ishftc16, exponent10 and exponent16. * trans-expr.c (gfc_conv_power_op): Add case for integer(16), real(10) and real(16). * trans-intrinsic.c: Add suppport for long double builtin functions in BUILT_IN_FUNCTION, LIBM_FUNCTION and LIBF_FUNCTION macros. (gfc_conv_intrinsic_aint): Add case for integer(16), real(10) and real(16) kinds. (gfc_build_intrinsic_lib_fndecls): Add support for real10_decl and real16_decl in library functions. (gfc_get_intrinsic_lib_fndecl): Add cases for real and complex kinds 10 and 16. (gfc_conv_intrinsic_exponent): Add cases for real(10) and real(16) kinds. (gfc_conv_intrinsic_sign): Likewise. (gfc_conv_intrinsic_ishftc): Add case for integer(16) kind. * trans-types.c (gfc_get_int_type, gfc_get_real_type, gfc_get_complex_type, gfc_get_logical_type): Doesn't error out in the case of kinds not available. * trans.h: Declare trees for cpowl10, cpowl16, ishftc16, exponent10 and exponent16. * gfortran.dg/large_real_kind_2.F90: New test. * gfortran.dg/large_integer_kind_2.f90: New test. From-SVN: r104889
348 lines
8.9 KiB
C
348 lines
8.9 KiB
C
/* Implementation of the MINLOC intrinsic
|
|
Copyright 2002 Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
|
|
|
Libgfortran is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2 of the License, or (at your option) any later version.
|
|
|
|
In addition to the permissions in the GNU General Public License, the
|
|
Free Software Foundation gives you unlimited permission to link the
|
|
compiled version of this file into combinations with other programs,
|
|
and to distribute those combinations without any restriction coming
|
|
from the use of this file. (The General Public License restrictions
|
|
do apply in other respects; for example, they cover modification of
|
|
the file, and distribution when not linked into a combine
|
|
executable.)
|
|
|
|
Libgfortran is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public
|
|
License along with libgfortran; see the file COPYING. If not,
|
|
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include "libgfortran.h"
|
|
|
|
|
|
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_4)
|
|
|
|
|
|
extern void minloc1_4_r10 (gfc_array_i4 *, gfc_array_r10 *, index_type *);
|
|
export_proto(minloc1_4_r10);
|
|
|
|
void
|
|
minloc1_4_r10 (gfc_array_i4 *retarray, gfc_array_r10 *array, index_type *pdim)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
GFC_REAL_10 *base;
|
|
GFC_INTEGER_4 *dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type dim;
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
/* TODO: It should be a front end job to correctly set the strides. */
|
|
|
|
if (array->dim[0].stride == 0)
|
|
array->dim[0].stride = 1;
|
|
|
|
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
|
|
delta = array->dim[dim].stride;
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = array->dim[n].stride;
|
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = array->dim[n + 1].stride;
|
|
extent[n] =
|
|
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
|
}
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
retarray->dim[n].lbound = 0;
|
|
retarray->dim[n].ubound = extent[n]-1;
|
|
if (n == 0)
|
|
retarray->dim[n].stride = 1;
|
|
else
|
|
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
|
}
|
|
|
|
retarray->data
|
|
= internal_malloc_size (sizeof (GFC_INTEGER_4)
|
|
* retarray->dim[rank-1].stride
|
|
* extent[rank-1]);
|
|
retarray->offset = 0;
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
}
|
|
else
|
|
{
|
|
if (retarray->dim[0].stride == 0)
|
|
retarray->dim[0].stride = 1;
|
|
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect");
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = retarray->dim[n].stride;
|
|
if (extent[n] <= 0)
|
|
len = 0;
|
|
}
|
|
|
|
base = array->data;
|
|
dest = retarray->data;
|
|
|
|
while (base)
|
|
{
|
|
GFC_REAL_10 *src;
|
|
GFC_INTEGER_4 result;
|
|
src = base;
|
|
{
|
|
|
|
GFC_REAL_10 minval;
|
|
minval = GFC_REAL_10_HUGE;
|
|
result = 1;
|
|
if (len <= 0)
|
|
*dest = 0;
|
|
else
|
|
{
|
|
for (n = 0; n < len; n++, src += delta)
|
|
{
|
|
|
|
if (*src < minval)
|
|
{
|
|
minval = *src;
|
|
result = (GFC_INTEGER_4)n + 1;
|
|
}
|
|
}
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so proabably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
/* Break out of the look. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
extern void mminloc1_4_r10 (gfc_array_i4 *, gfc_array_r10 *, index_type *,
|
|
gfc_array_l4 *);
|
|
export_proto(mminloc1_4_r10);
|
|
|
|
void
|
|
mminloc1_4_r10 (gfc_array_i4 * retarray, gfc_array_r10 * array,
|
|
index_type *pdim, gfc_array_l4 * mask)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
GFC_INTEGER_4 *dest;
|
|
GFC_REAL_10 *base;
|
|
GFC_LOGICAL_4 *mbase;
|
|
int rank;
|
|
int dim;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type mdelta;
|
|
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
/* TODO: It should be a front end job to correctly set the strides. */
|
|
|
|
if (array->dim[0].stride == 0)
|
|
array->dim[0].stride = 1;
|
|
|
|
if (mask->dim[0].stride == 0)
|
|
mask->dim[0].stride = 1;
|
|
|
|
len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
|
|
if (len <= 0)
|
|
return;
|
|
delta = array->dim[dim].stride;
|
|
mdelta = mask->dim[dim].stride;
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = array->dim[n].stride;
|
|
mstride[n] = mask->dim[n].stride;
|
|
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = array->dim[n + 1].stride;
|
|
mstride[n] = mask->dim[n + 1].stride;
|
|
extent[n] =
|
|
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
|
}
|
|
|
|
if (retarray->data == NULL)
|
|
{
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
retarray->dim[n].lbound = 0;
|
|
retarray->dim[n].ubound = extent[n]-1;
|
|
if (n == 0)
|
|
retarray->dim[n].stride = 1;
|
|
else
|
|
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
|
}
|
|
|
|
retarray->data
|
|
= internal_malloc_size (sizeof (GFC_INTEGER_4)
|
|
* retarray->dim[rank-1].stride
|
|
* extent[rank-1]);
|
|
retarray->offset = 0;
|
|
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
}
|
|
else
|
|
{
|
|
if (retarray->dim[0].stride == 0)
|
|
retarray->dim[0].stride = 1;
|
|
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect");
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = retarray->dim[n].stride;
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
dest = retarray->data;
|
|
base = array->data;
|
|
mbase = mask->data;
|
|
|
|
if (GFC_DESCRIPTOR_SIZE (mask) != 4)
|
|
{
|
|
/* This allows the same loop to be used for all logical types. */
|
|
assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
|
|
for (n = 0; n < rank; n++)
|
|
mstride[n] <<= 1;
|
|
mdelta <<= 1;
|
|
mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
|
|
}
|
|
|
|
while (base)
|
|
{
|
|
GFC_REAL_10 *src;
|
|
GFC_LOGICAL_4 *msrc;
|
|
GFC_INTEGER_4 result;
|
|
src = base;
|
|
msrc = mbase;
|
|
{
|
|
|
|
GFC_REAL_10 minval;
|
|
minval = GFC_REAL_10_HUGE;
|
|
result = 1;
|
|
if (len <= 0)
|
|
*dest = 0;
|
|
else
|
|
{
|
|
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
|
{
|
|
|
|
if (*msrc && *src < minval)
|
|
{
|
|
minval = *src;
|
|
result = (GFC_INTEGER_4)n + 1;
|
|
}
|
|
}
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
mbase += mstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so proabably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
mbase -= mstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n == rank)
|
|
{
|
|
/* Break out of the look. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
mbase += mstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|