gcc/libgfortran/intrinsics/random.c
Jakub Jelinek 5db042b2b8 fortran, libgfortran: Add remaining missing *_r17 symbols
Following patch adds remaining missing *_r17 entrypoints, so that
we have 91 *_r16 and 91 *_r17 entrypoints (and 24 *_c16 and 24 *_c17).

This fixes:
FAIL: gfortran.dg/dec_math.f90   -O0  execution test
FAIL: gfortran.dg/dec_math.f90   -O1  execution test
FAIL: gfortran.dg/dec_math.f90   -O2  execution test
FAIL: gfortran.dg/dec_math.f90   -O3 -fomit-frame-pointer -funroll-loops -fpeel-loops -ftracer -finline-functions  execution test
FAIL: gfortran.dg/dec_math.f90   -O3 -g  execution test
FAIL: gfortran.dg/dec_math.f90   -Os  execution test
FAIL: gfortran.dg/ieee/dec_math_1.f90   -O0  execution test
FAIL: gfortran.dg/ieee/dec_math_1.f90   -O1  execution test
FAIL: gfortran.dg/ieee/dec_math_1.f90   -O2  execution test
FAIL: gfortran.dg/ieee/dec_math_1.f90   -O3 -fomit-frame-pointer -funroll-loops -fpeel-loops -ftracer -finline-functions  execution test
FAIL: gfortran.dg/ieee/dec_math_1.f90   -O3 -g  execution test
FAIL: gfortran.dg/ieee/dec_math_1.f90   -Os  execution test

2022-01-04  Jakub Jelinek  <jakub@redhat.com>

gcc/fortran/
	* trans-intrinsic.c (gfc_get_intrinsic_lib_fndecl): Use
	gfc_type_abi_kind.
libgfortran/
	* libgfortran.h (GFC_REAL_17_INFINITY, GFC_REAL_17_QUIET_NAN): Define.
	(__erfcieee128): Declare.
	* intrinsics/trigd.c (_gfortran_sind_r17, _gfortran_cosd_r17,
	_gfortran_tand_r17): Define for HAVE_GFC_REAL_17.
	* intrinsics/random.c (random_r17, arandom_r17, rnumber_17): Define.
	* intrinsics/erfc_scaled.c (ERFC_SCALED): Define.
	(erfc_scaled_r16): Use ERFC_SCALED macro.
	(erfc_scaled_r17): Define.
2022-01-11 23:49:50 +01:00

1054 lines
25 KiB
C

/* Implementation of the RANDOM intrinsics
Copyright (C) 2002-2022 Free Software Foundation, Inc.
Contributed by Lars Segerlund <seger@linuxmail.org>,
Steve Kargl and Janne Blomqvist.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* For rand_s. */
#define _CRT_RAND_S
#include "libgfortran.h"
#include <gthr.h>
#include <string.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <sys/stat.h>
#include <fcntl.h>
#include "time_1.h"
#ifdef HAVE_SYS_RANDOM_H
#include <sys/random.h>
#endif
#ifdef __MINGW32__
#define HAVE_GETPID 1
#include <process.h>
#include <_mingw.h> /* For __MINGW64_VERSION_MAJOR */
#endif
extern void random_r4 (GFC_REAL_4 *);
iexport_proto(random_r4);
extern void random_r8 (GFC_REAL_8 *);
iexport_proto(random_r8);
extern void arandom_r4 (gfc_array_r4 *);
export_proto(arandom_r4);
extern void arandom_r8 (gfc_array_r8 *);
export_proto(arandom_r8);
#ifdef HAVE_GFC_REAL_10
extern void random_r10 (GFC_REAL_10 *);
iexport_proto(random_r10);
extern void arandom_r10 (gfc_array_r10 *);
export_proto(arandom_r10);
#endif
#ifdef HAVE_GFC_REAL_16
extern void random_r16 (GFC_REAL_16 *);
iexport_proto(random_r16);
extern void arandom_r16 (gfc_array_r16 *);
export_proto(arandom_r16);
#endif
#ifdef HAVE_GFC_REAL_17
extern void random_r17 (GFC_REAL_17 *);
iexport_proto(random_r17);
extern void arandom_r17 (gfc_array_r17 *);
export_proto(arandom_r17);
#endif
#ifdef __GTHREAD_MUTEX_INIT
static __gthread_mutex_t random_lock = __GTHREAD_MUTEX_INIT;
#else
static __gthread_mutex_t random_lock;
#endif
/* Helper routines to map a GFC_UINTEGER_* to the corresponding
GFC_REAL_* types in the range of [0,1). If GFC_REAL_*_RADIX are 2
or 16, respectively, we mask off the bits that don't fit into the
correct GFC_REAL_*, convert to the real type, then multiply by the
correct offset. */
static void
rnumber_4 (GFC_REAL_4 *f, GFC_UINTEGER_4 v)
{
GFC_UINTEGER_4 mask;
#if GFC_REAL_4_RADIX == 2
mask = ~ (GFC_UINTEGER_4) 0u << (32 - GFC_REAL_4_DIGITS);
#elif GFC_REAL_4_RADIX == 16
mask = ~ (GFC_UINTEGER_4) 0u << ((8 - GFC_REAL_4_DIGITS) * 4);
#else
#error "GFC_REAL_4_RADIX has unknown value"
#endif
v = v & mask;
*f = (GFC_REAL_4) v * GFC_REAL_4_LITERAL(0x1.p-32);
}
static void
rnumber_8 (GFC_REAL_8 *f, GFC_UINTEGER_8 v)
{
GFC_UINTEGER_8 mask;
#if GFC_REAL_8_RADIX == 2
mask = ~ (GFC_UINTEGER_8) 0u << (64 - GFC_REAL_8_DIGITS);
#elif GFC_REAL_8_RADIX == 16
mask = ~ (GFC_UINTEGER_8) 0u << (16 - GFC_REAL_8_DIGITS) * 4);
#else
#error "GFC_REAL_8_RADIX has unknown value"
#endif
v = v & mask;
*f = (GFC_REAL_8) v * GFC_REAL_8_LITERAL(0x1.p-64);
}
#ifdef HAVE_GFC_REAL_10
static void
rnumber_10 (GFC_REAL_10 *f, GFC_UINTEGER_8 v)
{
GFC_UINTEGER_8 mask;
#if GFC_REAL_10_RADIX == 2
mask = ~ (GFC_UINTEGER_8) 0u << (64 - GFC_REAL_10_DIGITS);
#elif GFC_REAL_10_RADIX == 16
mask = ~ (GFC_UINTEGER_10) 0u << ((16 - GFC_REAL_10_DIGITS) * 4);
#else
#error "GFC_REAL_10_RADIX has unknown value"
#endif
v = v & mask;
*f = (GFC_REAL_10) v * GFC_REAL_10_LITERAL(0x1.p-64);
}
#endif
#ifdef HAVE_GFC_REAL_16
/* For REAL(KIND=16), we only need to mask off the lower bits. */
static void
rnumber_16 (GFC_REAL_16 *f, GFC_UINTEGER_8 v1, GFC_UINTEGER_8 v2)
{
GFC_UINTEGER_8 mask;
#if GFC_REAL_16_RADIX == 2
mask = ~ (GFC_UINTEGER_8) 0u << (128 - GFC_REAL_16_DIGITS);
#elif GFC_REAL_16_RADIX == 16
mask = ~ (GFC_UINTEGER_8) 0u << ((32 - GFC_REAL_16_DIGITS) * 4);
#else
#error "GFC_REAL_16_RADIX has unknown value"
#endif
v2 = v2 & mask;
*f = (GFC_REAL_16) v1 * GFC_REAL_16_LITERAL(0x1.p-64)
+ (GFC_REAL_16) v2 * GFC_REAL_16_LITERAL(0x1.p-128);
}
#endif
#ifdef HAVE_GFC_REAL_17
/* For REAL(KIND=16), we only need to mask off the lower bits. */
static void
rnumber_17 (GFC_REAL_17 *f, GFC_UINTEGER_8 v1, GFC_UINTEGER_8 v2)
{
GFC_UINTEGER_8 mask;
#if GFC_REAL_17_RADIX == 2
mask = ~ (GFC_UINTEGER_8) 0u << (128 - GFC_REAL_17_DIGITS);
#elif GFC_REAL_17_RADIX == 16
mask = ~ (GFC_UINTEGER_8) 0u << ((32 - GFC_REAL_17_DIGITS) * 4);
#else
#error "GFC_REAL_17_RADIX has unknown value"
#endif
v2 = v2 & mask;
*f = (GFC_REAL_17) v1 * GFC_REAL_17_LITERAL(0x1.p-64)
+ (GFC_REAL_17) v2 * GFC_REAL_17_LITERAL(0x1.p-128);
}
#endif
/*
We use the xoshiro256** generator, a fast high-quality generator
that:
- passes TestU1 without any failures
- provides a "jump" function making it easy to provide many
independent parallel streams.
- Long period of 2**256 - 1
A description can be found at
http://prng.di.unimi.it/
or
https://arxiv.org/abs/1805.01407
The paper includes public domain source code which is the basis for
the implementation below.
*/
typedef struct
{
bool init;
uint64_t s[4];
}
prng_state;
/* master_state is the only variable protected by random_lock. */
static prng_state master_state = { .init = false, .s = {
0xad63fa1ed3b55f36ULL, 0xd94473e78978b497ULL, 0xbc60592a98172477ULL,
0xa3de7c6e81265301ULL }
};
static __gthread_key_t rand_state_key;
static prng_state*
get_rand_state (void)
{
/* For single threaded apps. */
static prng_state rand_state;
if (__gthread_active_p ())
{
void* p = __gthread_getspecific (rand_state_key);
if (!p)
{
p = xcalloc (1, sizeof (prng_state));
__gthread_setspecific (rand_state_key, p);
}
return p;
}
else
return &rand_state;
}
static inline uint64_t
rotl (const uint64_t x, int k)
{
return (x << k) | (x >> (64 - k));
}
static uint64_t
prng_next (prng_state* rs)
{
const uint64_t result = rotl(rs->s[1] * 5, 7) * 9;
const uint64_t t = rs->s[1] << 17;
rs->s[2] ^= rs->s[0];
rs->s[3] ^= rs->s[1];
rs->s[1] ^= rs->s[2];
rs->s[0] ^= rs->s[3];
rs->s[2] ^= t;
rs->s[3] = rotl(rs->s[3], 45);
return result;
}
/* This is the jump function for the generator. It is equivalent to
2^128 calls to prng_next(); it can be used to generate 2^128
non-overlapping subsequences for parallel computations. */
static void
jump (prng_state* rs)
{
static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
uint64_t s0 = 0;
uint64_t s1 = 0;
uint64_t s2 = 0;
uint64_t s3 = 0;
for(size_t i = 0; i < sizeof JUMP / sizeof *JUMP; i++)
for(int b = 0; b < 64; b++) {
if (JUMP[i] & UINT64_C(1) << b) {
s0 ^= rs->s[0];
s1 ^= rs->s[1];
s2 ^= rs->s[2];
s3 ^= rs->s[3];
}
prng_next (rs);
}
rs->s[0] = s0;
rs->s[1] = s1;
rs->s[2] = s2;
rs->s[3] = s3;
}
/* Splitmix64 recommended by xoshiro author for initializing. After
getting one uint64_t value from the OS, this is used to fill in the
rest of the xoshiro state. */
static uint64_t
splitmix64 (uint64_t x)
{
uint64_t z = (x += 0x9e3779b97f4a7c15);
z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
return z ^ (z >> 31);
}
/* Get some bytes from the operating system in order to seed
the PRNG. */
static int
getosrandom (void *buf, size_t buflen)
{
/* rand_s is available in MinGW-w64 but not plain MinGW. */
#if defined(__MINGW64_VERSION_MAJOR)
unsigned int* b = buf;
for (size_t i = 0; i < buflen / sizeof (unsigned int); i++)
rand_s (&b[i]);
return buflen;
#else
#ifdef HAVE_GETENTROPY
if (getentropy (buf, buflen) == 0)
return buflen;
#endif
int flags = O_RDONLY;
#ifdef O_CLOEXEC
flags |= O_CLOEXEC;
#endif
int fd = open("/dev/urandom", flags);
if (fd != -1)
{
int res = read(fd, buf, buflen);
close (fd);
return res;
}
uint64_t seed = 0x047f7684e9fc949dULL;
time_t secs;
long usecs;
if (gf_gettime (&secs, &usecs) == 0)
{
seed ^= secs;
seed ^= usecs;
}
#ifdef HAVE_GETPID
pid_t pid = getpid();
seed ^= pid;
#endif
size_t size = buflen < sizeof (uint64_t) ? buflen : sizeof (uint64_t);
memcpy (buf, &seed, size);
return size;
#endif /* __MINGW64_VERSION_MAJOR */
}
/* Initialize the random number generator for the current thread,
using the master state and the number of times we must jump. */
static void
init_rand_state (prng_state* rs, const bool locked)
{
if (!locked)
__gthread_mutex_lock (&random_lock);
if (!master_state.init)
{
uint64_t os_seed;
getosrandom (&os_seed, sizeof (os_seed));
for (uint64_t i = 0; i < sizeof (master_state.s) / sizeof (uint64_t); i++)
{
os_seed = splitmix64 (os_seed);
master_state.s[i] = os_seed;
}
master_state.init = true;
}
memcpy (&rs->s, master_state.s, sizeof (master_state.s));
jump (&master_state);
if (!locked)
__gthread_mutex_unlock (&random_lock);
rs->init = true;
}
/* This function produces a REAL(4) value from the uniform distribution
with range [0,1). */
void
random_r4 (GFC_REAL_4 *x)
{
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
uint64_t r = prng_next (rs);
/* Take the higher bits, ensuring that a stream of real(4), real(8),
and real(10) will be identical (except for precision). */
uint32_t high = (uint32_t) (r >> 32);
rnumber_4 (x, high);
}
iexport(random_r4);
/* This function produces a REAL(8) value from the uniform distribution
with range [0,1). */
void
random_r8 (GFC_REAL_8 *x)
{
GFC_UINTEGER_8 r;
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
r = prng_next (rs);
rnumber_8 (x, r);
}
iexport(random_r8);
#ifdef HAVE_GFC_REAL_10
/* This function produces a REAL(10) value from the uniform distribution
with range [0,1). */
void
random_r10 (GFC_REAL_10 *x)
{
GFC_UINTEGER_8 r;
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
r = prng_next (rs);
rnumber_10 (x, r);
}
iexport(random_r10);
#endif
/* This function produces a REAL(16) value from the uniform distribution
with range [0,1). */
#ifdef HAVE_GFC_REAL_16
void
random_r16 (GFC_REAL_16 *x)
{
GFC_UINTEGER_8 r1, r2;
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
r1 = prng_next (rs);
r2 = prng_next (rs);
rnumber_16 (x, r1, r2);
}
iexport(random_r16);
#endif
/* This function produces a REAL(16) value from the uniform distribution
with range [0,1). */
#ifdef HAVE_GFC_REAL_17
void
random_r17 (GFC_REAL_17 *x)
{
GFC_UINTEGER_8 r1, r2;
prng_state* rs = get_rand_state();
if (unlikely (!rs->init))
init_rand_state (rs, false);
r1 = prng_next (rs);
r2 = prng_next (rs);
rnumber_17 (x, r1, r2);
}
iexport(random_r17);
#endif
/* This function fills a REAL(4) array with values from the uniform
distribution with range [0,1). */
void
arandom_r4 (gfc_array_r4 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_REAL_4 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_r4 (dest); */
uint64_t r = prng_next (rs);
uint32_t high = (uint32_t) (r >> 32);
rnumber_4 (dest, high);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
/* This function fills a REAL(8) array with values from the uniform
distribution with range [0,1). */
void
arandom_r8 (gfc_array_r8 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_REAL_8 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_r8 (dest); */
uint64_t r = prng_next (rs);
rnumber_8 (dest, r);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#ifdef HAVE_GFC_REAL_10
/* This function fills a REAL(10) array with values from the uniform
distribution with range [0,1). */
void
arandom_r10 (gfc_array_r10 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_REAL_10 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_r10 (dest); */
uint64_t r = prng_next (rs);
rnumber_10 (dest, r);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif
#ifdef HAVE_GFC_REAL_16
/* This function fills a REAL(16) array with values from the uniform
distribution with range [0,1). */
void
arandom_r16 (gfc_array_r16 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_REAL_16 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_r16 (dest); */
uint64_t r1 = prng_next (rs);
uint64_t r2 = prng_next (rs);
rnumber_16 (dest, r1, r2);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif
#ifdef HAVE_GFC_REAL_17
/* This function fills a REAL(16) array with values from the uniform
distribution with range [0,1). */
void
arandom_r17 (gfc_array_r17 *x)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
GFC_REAL_17 *dest;
prng_state* rs = get_rand_state();
dest = x->base_addr;
dim = GFC_DESCRIPTOR_RANK (x);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE(x,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(x,n);
if (extent[n] <= 0)
return;
}
stride0 = stride[0];
if (unlikely (!rs->init))
init_rand_state (rs, false);
while (dest)
{
/* random_r17 (dest); */
uint64_t r1 = prng_next (rs);
uint64_t r2 = prng_next (rs);
rnumber_17 (dest, r1, r2);
/* Advance to the next element. */
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
#endif
/* Number of elements in master_state array. */
#define SZU64 (sizeof (master_state.s) / sizeof (uint64_t))
/* Equivalent number of elements in an array of GFC_INTEGER_{4,8}. */
#define SZ_IN_INT_4 (SZU64 * (sizeof (uint64_t) / sizeof (GFC_INTEGER_4)))
#define SZ_IN_INT_8 (SZU64 * (sizeof (uint64_t) / sizeof (GFC_INTEGER_8)))
/* Keys for scrambling the seed in order to avoid poor seeds. */
static const uint64_t xor_keys[] = {
0xbd0c5b6e50c2df49ULL, 0xd46061cd46e1df38ULL, 0xbb4f4d4ed6103544ULL,
0x114a583d0756ad39ULL
};
/* Since a XOR cipher is symmetric, we need only one routine, and we
can use it both for encryption and decryption. */
static void
scramble_seed (uint64_t *dest, const uint64_t *src)
{
for (size_t i = 0; i < SZU64; i++)
dest[i] = src[i] ^ xor_keys[i];
}
/* random_seed is used to seed the PRNG with either a default
set of seeds or user specified set of seeds. random_seed
must be called with no argument or exactly one argument. */
void
random_seed_i4 (GFC_INTEGER_4 *size, gfc_array_i4 *put, gfc_array_i4 *get)
{
uint64_t seed[SZU64];
/* Check that we only have one argument present. */
if ((size ? 1 : 0) + (put ? 1 : 0) + (get ? 1 : 0) > 1)
runtime_error ("RANDOM_SEED should have at most one argument present.");
if (size != NULL)
*size = SZ_IN_INT_4;
prng_state* rs = get_rand_state();
/* Return the seed to GET data. */
if (get != NULL)
{
/* If the rank of the array is not 1, abort. */
if (GFC_DESCRIPTOR_RANK (get) != 1)
runtime_error ("Array rank of GET is not 1.");
/* If the array is too small, abort. */
if (GFC_DESCRIPTOR_EXTENT(get,0) < (index_type) SZ_IN_INT_4)
runtime_error ("Array size of GET is too small.");
if (!rs->init)
init_rand_state (rs, false);
/* Unscramble the seed. */
scramble_seed (seed, rs->s);
/* Then copy it back to the user variable. */
for (size_t i = 0; i < SZ_IN_INT_4 ; i++)
memcpy (&(get->base_addr[(SZ_IN_INT_4 - 1 - i) *
GFC_DESCRIPTOR_STRIDE(get,0)]),
(unsigned char*) seed + i * sizeof(GFC_UINTEGER_4),
sizeof(GFC_UINTEGER_4));
}
else
{
__gthread_mutex_lock (&random_lock);
/* From the standard: "If no argument is present, the processor assigns
a processor-dependent value to the seed." */
if (size == NULL && put == NULL && get == NULL)
{
master_state.init = false;
init_rand_state (rs, true);
}
if (put != NULL)
{
/* If the rank of the array is not 1, abort. */
if (GFC_DESCRIPTOR_RANK (put) != 1)
runtime_error ("Array rank of PUT is not 1.");
/* If the array is too small, abort. */
if (GFC_DESCRIPTOR_EXTENT(put,0) < (index_type) SZ_IN_INT_4)
runtime_error ("Array size of PUT is too small.");
/* We copy the seed given by the user. */
for (size_t i = 0; i < SZ_IN_INT_4; i++)
memcpy ((unsigned char*) seed + i * sizeof(GFC_UINTEGER_4),
&(put->base_addr[(SZ_IN_INT_4 - 1 - i) *
GFC_DESCRIPTOR_STRIDE(put,0)]),
sizeof(GFC_UINTEGER_4));
/* We put it after scrambling the bytes, to paper around users who
provide seeds with quality only in the lower or upper part. */
scramble_seed (master_state.s, seed);
master_state.init = true;
init_rand_state (rs, true);
}
__gthread_mutex_unlock (&random_lock);
}
}
iexport(random_seed_i4);
void
random_seed_i8 (GFC_INTEGER_8 *size, gfc_array_i8 *put, gfc_array_i8 *get)
{
uint64_t seed[SZU64];
/* Check that we only have one argument present. */
if ((size ? 1 : 0) + (put ? 1 : 0) + (get ? 1 : 0) > 1)
runtime_error ("RANDOM_SEED should have at most one argument present.");
if (size != NULL)
*size = SZ_IN_INT_8;
prng_state* rs = get_rand_state();
/* Return the seed to GET data. */
if (get != NULL)
{
/* If the rank of the array is not 1, abort. */
if (GFC_DESCRIPTOR_RANK (get) != 1)
runtime_error ("Array rank of GET is not 1.");
/* If the array is too small, abort. */
if (GFC_DESCRIPTOR_EXTENT(get,0) < (index_type) SZ_IN_INT_8)
runtime_error ("Array size of GET is too small.");
if (!rs->init)
init_rand_state (rs, false);
/* Unscramble the seed. */
scramble_seed (seed, rs->s);
/* This code now should do correct strides. */
for (size_t i = 0; i < SZ_IN_INT_8; i++)
memcpy (&(get->base_addr[i * GFC_DESCRIPTOR_STRIDE(get,0)]), &seed[i],
sizeof (GFC_UINTEGER_8));
}
else
{
__gthread_mutex_lock (&random_lock);
/* From the standard: "If no argument is present, the processor assigns
a processor-dependent value to the seed." */
if (size == NULL && put == NULL && get == NULL)
{
master_state.init = false;
init_rand_state (rs, true);
}
if (put != NULL)
{
/* If the rank of the array is not 1, abort. */
if (GFC_DESCRIPTOR_RANK (put) != 1)
runtime_error ("Array rank of PUT is not 1.");
/* If the array is too small, abort. */
if (GFC_DESCRIPTOR_EXTENT(put,0) < (index_type) SZ_IN_INT_8)
runtime_error ("Array size of PUT is too small.");
/* This code now should do correct strides. */
for (size_t i = 0; i < SZ_IN_INT_8; i++)
memcpy (&seed[i], &(put->base_addr[i * GFC_DESCRIPTOR_STRIDE(put,0)]),
sizeof (GFC_UINTEGER_8));
scramble_seed (master_state.s, seed);
master_state.init = true;
init_rand_state (rs, true);
}
__gthread_mutex_unlock (&random_lock);
}
}
iexport(random_seed_i8);
#if !defined __GTHREAD_MUTEX_INIT || defined __GTHREADS
static void __attribute__((constructor))
constructor_random (void)
{
#ifndef __GTHREAD_MUTEX_INIT
__GTHREAD_MUTEX_INIT_FUNCTION (&random_lock);
#endif
if (__gthread_active_p ())
__gthread_key_create (&rand_state_key, &free);
}
#endif
#ifdef __GTHREADS
static void __attribute__((destructor))
destructor_random (void)
{
if (__gthread_active_p ())
__gthread_key_delete (rand_state_key);
}
#endif