mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-27 13:54:19 +08:00
1101 lines
34 KiB
C++
1101 lines
34 KiB
C++
//===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is shared between run-time libraries of sanitizers.
|
|
//
|
|
// It declares common functions and classes that are used in both runtimes.
|
|
// Implementation of some functions are provided in sanitizer_common, while
|
|
// others must be defined by run-time library itself.
|
|
//===----------------------------------------------------------------------===//
|
|
#ifndef SANITIZER_COMMON_H
|
|
#define SANITIZER_COMMON_H
|
|
|
|
#include "sanitizer_flags.h"
|
|
#include "sanitizer_internal_defs.h"
|
|
#include "sanitizer_libc.h"
|
|
#include "sanitizer_list.h"
|
|
#include "sanitizer_mutex.h"
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
extern "C" void _ReadWriteBarrier();
|
|
#pragma intrinsic(_ReadWriteBarrier)
|
|
#endif
|
|
|
|
namespace __sanitizer {
|
|
|
|
struct AddressInfo;
|
|
struct BufferedStackTrace;
|
|
struct SignalContext;
|
|
struct StackTrace;
|
|
|
|
// Constants.
|
|
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
|
|
const uptr kWordSizeInBits = 8 * kWordSize;
|
|
|
|
const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
|
|
|
|
const uptr kMaxPathLength = 4096;
|
|
|
|
const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
|
|
|
|
const uptr kErrorMessageBufferSize = 1 << 16;
|
|
|
|
// Denotes fake PC values that come from JIT/JAVA/etc.
|
|
// For such PC values __tsan_symbolize_external_ex() will be called.
|
|
const u64 kExternalPCBit = 1ULL << 60;
|
|
|
|
extern const char *SanitizerToolName; // Can be changed by the tool.
|
|
|
|
extern atomic_uint32_t current_verbosity;
|
|
inline void SetVerbosity(int verbosity) {
|
|
atomic_store(¤t_verbosity, verbosity, memory_order_relaxed);
|
|
}
|
|
inline int Verbosity() {
|
|
return atomic_load(¤t_verbosity, memory_order_relaxed);
|
|
}
|
|
|
|
#if SANITIZER_ANDROID
|
|
inline uptr GetPageSize() {
|
|
// Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
|
|
return 4096;
|
|
}
|
|
inline uptr GetPageSizeCached() {
|
|
return 4096;
|
|
}
|
|
#else
|
|
uptr GetPageSize();
|
|
extern uptr PageSizeCached;
|
|
inline uptr GetPageSizeCached() {
|
|
if (!PageSizeCached)
|
|
PageSizeCached = GetPageSize();
|
|
return PageSizeCached;
|
|
}
|
|
#endif
|
|
uptr GetMmapGranularity();
|
|
uptr GetMaxVirtualAddress();
|
|
uptr GetMaxUserVirtualAddress();
|
|
// Threads
|
|
tid_t GetTid();
|
|
int TgKill(pid_t pid, tid_t tid, int sig);
|
|
uptr GetThreadSelf();
|
|
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
|
|
uptr *stack_bottom);
|
|
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
|
|
uptr *tls_addr, uptr *tls_size);
|
|
|
|
// Memory management
|
|
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
|
|
inline void *MmapOrDieQuietly(uptr size, const char *mem_type) {
|
|
return MmapOrDie(size, mem_type, /*raw_report*/ true);
|
|
}
|
|
void UnmapOrDie(void *addr, uptr size);
|
|
// Behaves just like MmapOrDie, but tolerates out of memory condition, in that
|
|
// case returns nullptr.
|
|
void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
|
|
bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
|
|
WARN_UNUSED_RESULT;
|
|
bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
|
|
const char *name = nullptr) WARN_UNUSED_RESULT;
|
|
void *MmapNoReserveOrDie(uptr size, const char *mem_type);
|
|
void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
|
|
// Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
|
|
// that case returns nullptr.
|
|
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
|
|
const char *name = nullptr);
|
|
void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
|
|
void *MmapNoAccess(uptr size);
|
|
// Map aligned chunk of address space; size and alignment are powers of two.
|
|
// Dies on all but out of memory errors, in the latter case returns nullptr.
|
|
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
|
|
const char *mem_type);
|
|
// Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
|
|
// unaccessible memory.
|
|
bool MprotectNoAccess(uptr addr, uptr size);
|
|
bool MprotectReadOnly(uptr addr, uptr size);
|
|
|
|
void MprotectMallocZones(void *addr, int prot);
|
|
|
|
#if SANITIZER_WINDOWS
|
|
// Zero previously mmap'd memory. Currently used only on Windows.
|
|
bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT;
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX
|
|
// Unmap memory. Currently only used on Linux.
|
|
void UnmapFromTo(uptr from, uptr to);
|
|
#endif
|
|
|
|
// Maps shadow_size_bytes of shadow memory and returns shadow address. It will
|
|
// be aligned to the mmap granularity * 2^shadow_scale, or to
|
|
// 2^min_shadow_base_alignment if that is larger. The returned address will
|
|
// have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
|
|
// shadow_size_bytes bytes on the right, which on linux is mapped no access.
|
|
// The high_mem_end may be updated if the original shadow size doesn't fit.
|
|
uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
|
|
uptr min_shadow_base_alignment, uptr &high_mem_end);
|
|
|
|
// Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size).
|
|
// Reserves 2*S bytes of address space to the right of the returned address and
|
|
// ring_buffer_size bytes to the left. The returned address is aligned to 2*S.
|
|
// Also creates num_aliases regions of accessible memory starting at offset S
|
|
// from the returned address. Each region has size alias_size and is backed by
|
|
// the same physical memory.
|
|
uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
|
|
uptr num_aliases, uptr ring_buffer_size);
|
|
|
|
// Reserve memory range [beg, end]. If madvise_shadow is true then apply
|
|
// madvise (e.g. hugepages, core dumping) requested by options.
|
|
void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name,
|
|
bool madvise_shadow = true);
|
|
|
|
// Protect size bytes of memory starting at addr. Also try to protect
|
|
// several pages at the start of the address space as specified by
|
|
// zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
|
|
void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start,
|
|
uptr zero_base_max_shadow_start);
|
|
|
|
// Find an available address space.
|
|
uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
|
|
uptr *largest_gap_found, uptr *max_occupied_addr);
|
|
|
|
// Used to check if we can map shadow memory to a fixed location.
|
|
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
|
|
// Releases memory pages entirely within the [beg, end] address range. Noop if
|
|
// the provided range does not contain at least one entire page.
|
|
void ReleaseMemoryPagesToOS(uptr beg, uptr end);
|
|
void IncreaseTotalMmap(uptr size);
|
|
void DecreaseTotalMmap(uptr size);
|
|
uptr GetRSS();
|
|
void SetShadowRegionHugePageMode(uptr addr, uptr length);
|
|
bool DontDumpShadowMemory(uptr addr, uptr length);
|
|
// Check if the built VMA size matches the runtime one.
|
|
void CheckVMASize();
|
|
void RunMallocHooks(void *ptr, uptr size);
|
|
void RunFreeHooks(void *ptr);
|
|
|
|
class ReservedAddressRange {
|
|
public:
|
|
uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
|
|
uptr InitAligned(uptr size, uptr align, const char *name = nullptr);
|
|
uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
|
|
uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
|
|
void Unmap(uptr addr, uptr size);
|
|
void *base() const { return base_; }
|
|
uptr size() const { return size_; }
|
|
|
|
private:
|
|
void* base_;
|
|
uptr size_;
|
|
const char* name_;
|
|
uptr os_handle_;
|
|
};
|
|
|
|
typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
|
|
/*out*/ uptr *stats);
|
|
|
|
// Parse the contents of /proc/self/smaps and generate a memory profile.
|
|
// |cb| is a tool-specific callback that fills the |stats| array.
|
|
void GetMemoryProfile(fill_profile_f cb, uptr *stats);
|
|
void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps,
|
|
uptr smaps_len);
|
|
|
|
// Simple low-level (mmap-based) allocator for internal use. Doesn't have
|
|
// constructor, so all instances of LowLevelAllocator should be
|
|
// linker initialized.
|
|
class LowLevelAllocator {
|
|
public:
|
|
// Requires an external lock.
|
|
void *Allocate(uptr size);
|
|
private:
|
|
char *allocated_end_;
|
|
char *allocated_current_;
|
|
};
|
|
// Set the min alignment of LowLevelAllocator to at least alignment.
|
|
void SetLowLevelAllocateMinAlignment(uptr alignment);
|
|
typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
|
|
// Allows to register tool-specific callbacks for LowLevelAllocator.
|
|
// Passing NULL removes the callback.
|
|
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
|
|
|
|
// IO
|
|
void CatastrophicErrorWrite(const char *buffer, uptr length);
|
|
void RawWrite(const char *buffer);
|
|
bool ColorizeReports();
|
|
void RemoveANSIEscapeSequencesFromString(char *buffer);
|
|
void Printf(const char *format, ...) FORMAT(1, 2);
|
|
void Report(const char *format, ...) FORMAT(1, 2);
|
|
void SetPrintfAndReportCallback(void (*callback)(const char *));
|
|
#define VReport(level, ...) \
|
|
do { \
|
|
if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
|
|
} while (0)
|
|
#define VPrintf(level, ...) \
|
|
do { \
|
|
if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
// Lock sanitizer error reporting and protects against nested errors.
|
|
class ScopedErrorReportLock {
|
|
public:
|
|
ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); }
|
|
~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); }
|
|
|
|
static void Lock() SANITIZER_ACQUIRE(mutex_);
|
|
static void Unlock() SANITIZER_RELEASE(mutex_);
|
|
static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_);
|
|
|
|
private:
|
|
static atomic_uintptr_t reporting_thread_;
|
|
static StaticSpinMutex mutex_;
|
|
};
|
|
|
|
extern uptr stoptheworld_tracer_pid;
|
|
extern uptr stoptheworld_tracer_ppid;
|
|
|
|
bool IsAccessibleMemoryRange(uptr beg, uptr size);
|
|
|
|
// Error report formatting.
|
|
const char *StripPathPrefix(const char *filepath,
|
|
const char *strip_file_prefix);
|
|
// Strip the directories from the module name.
|
|
const char *StripModuleName(const char *module);
|
|
|
|
// OS
|
|
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
|
|
uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
|
|
uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len);
|
|
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
|
|
const char *GetProcessName();
|
|
void UpdateProcessName();
|
|
void CacheBinaryName();
|
|
void DisableCoreDumperIfNecessary();
|
|
void DumpProcessMap();
|
|
const char *GetEnv(const char *name);
|
|
bool SetEnv(const char *name, const char *value);
|
|
|
|
u32 GetUid();
|
|
void ReExec();
|
|
void CheckASLR();
|
|
void CheckMPROTECT();
|
|
char **GetArgv();
|
|
char **GetEnviron();
|
|
void PrintCmdline();
|
|
bool StackSizeIsUnlimited();
|
|
void SetStackSizeLimitInBytes(uptr limit);
|
|
bool AddressSpaceIsUnlimited();
|
|
void SetAddressSpaceUnlimited();
|
|
void AdjustStackSize(void *attr);
|
|
void PlatformPrepareForSandboxing(void *args);
|
|
void SetSandboxingCallback(void (*f)());
|
|
|
|
void InitializeCoverage(bool enabled, const char *coverage_dir);
|
|
|
|
void InitTlsSize();
|
|
uptr GetTlsSize();
|
|
|
|
// Other
|
|
void WaitForDebugger(unsigned seconds, const char *label);
|
|
void SleepForSeconds(unsigned seconds);
|
|
void SleepForMillis(unsigned millis);
|
|
u64 NanoTime();
|
|
u64 MonotonicNanoTime();
|
|
int Atexit(void (*function)(void));
|
|
bool TemplateMatch(const char *templ, const char *str);
|
|
|
|
// Exit
|
|
void NORETURN Abort();
|
|
void NORETURN Die();
|
|
void NORETURN
|
|
CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
|
|
void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
|
|
const char *mmap_type, error_t err,
|
|
bool raw_report = false);
|
|
|
|
// Returns true if the platform-specific error reported is an OOM error.
|
|
bool ErrorIsOOM(error_t err);
|
|
|
|
// This reports an error in the form:
|
|
//
|
|
// `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}`
|
|
//
|
|
// Downstream tools that read sanitizer output will know that errors starting
|
|
// in this format are specifically OOM errors.
|
|
#define ERROR_OOM(err_msg, ...) \
|
|
Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__)
|
|
|
|
// Specific tools may override behavior of "Die" function to do tool-specific
|
|
// job.
|
|
typedef void (*DieCallbackType)(void);
|
|
|
|
// It's possible to add several callbacks that would be run when "Die" is
|
|
// called. The callbacks will be run in the opposite order. The tools are
|
|
// strongly recommended to setup all callbacks during initialization, when there
|
|
// is only a single thread.
|
|
bool AddDieCallback(DieCallbackType callback);
|
|
bool RemoveDieCallback(DieCallbackType callback);
|
|
|
|
void SetUserDieCallback(DieCallbackType callback);
|
|
|
|
void SetCheckUnwindCallback(void (*callback)());
|
|
|
|
// Functions related to signal handling.
|
|
typedef void (*SignalHandlerType)(int, void *, void *);
|
|
HandleSignalMode GetHandleSignalMode(int signum);
|
|
void InstallDeadlySignalHandlers(SignalHandlerType handler);
|
|
|
|
// Signal reporting.
|
|
// Each sanitizer uses slightly different implementation of stack unwinding.
|
|
typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
|
|
const void *callback_context,
|
|
BufferedStackTrace *stack);
|
|
// Print deadly signal report and die.
|
|
void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
|
|
UnwindSignalStackCallbackType unwind,
|
|
const void *unwind_context);
|
|
|
|
// Part of HandleDeadlySignal, exposed for asan.
|
|
void StartReportDeadlySignal();
|
|
// Part of HandleDeadlySignal, exposed for asan.
|
|
void ReportDeadlySignal(const SignalContext &sig, u32 tid,
|
|
UnwindSignalStackCallbackType unwind,
|
|
const void *unwind_context);
|
|
|
|
// Alternative signal stack (POSIX-only).
|
|
void SetAlternateSignalStack();
|
|
void UnsetAlternateSignalStack();
|
|
|
|
// Construct a one-line string:
|
|
// SUMMARY: SanitizerToolName: error_message
|
|
// and pass it to __sanitizer_report_error_summary.
|
|
// If alt_tool_name is provided, it's used in place of SanitizerToolName.
|
|
void ReportErrorSummary(const char *error_message,
|
|
const char *alt_tool_name = nullptr);
|
|
// Same as above, but construct error_message as:
|
|
// error_type file:line[:column][ function]
|
|
void ReportErrorSummary(const char *error_type, const AddressInfo &info,
|
|
const char *alt_tool_name = nullptr);
|
|
// Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
|
|
void ReportErrorSummary(const char *error_type, const StackTrace *trace,
|
|
const char *alt_tool_name = nullptr);
|
|
|
|
void ReportMmapWriteExec(int prot, int mflags);
|
|
|
|
// Math
|
|
#if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
|
|
extern "C" {
|
|
unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
|
|
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
|
|
#if defined(_WIN64)
|
|
unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
|
|
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
inline uptr MostSignificantSetBitIndex(uptr x) {
|
|
CHECK_NE(x, 0U);
|
|
unsigned long up;
|
|
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
|
|
# ifdef _WIN64
|
|
up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
|
|
# else
|
|
up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
|
|
# endif
|
|
#elif defined(_WIN64)
|
|
_BitScanReverse64(&up, x);
|
|
#else
|
|
_BitScanReverse(&up, x);
|
|
#endif
|
|
return up;
|
|
}
|
|
|
|
inline uptr LeastSignificantSetBitIndex(uptr x) {
|
|
CHECK_NE(x, 0U);
|
|
unsigned long up;
|
|
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
|
|
# ifdef _WIN64
|
|
up = __builtin_ctzll(x);
|
|
# else
|
|
up = __builtin_ctzl(x);
|
|
# endif
|
|
#elif defined(_WIN64)
|
|
_BitScanForward64(&up, x);
|
|
#else
|
|
_BitScanForward(&up, x);
|
|
#endif
|
|
return up;
|
|
}
|
|
|
|
inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; }
|
|
|
|
inline uptr RoundUpToPowerOfTwo(uptr size) {
|
|
CHECK(size);
|
|
if (IsPowerOfTwo(size)) return size;
|
|
|
|
uptr up = MostSignificantSetBitIndex(size);
|
|
CHECK_LT(size, (1ULL << (up + 1)));
|
|
CHECK_GT(size, (1ULL << up));
|
|
return 1ULL << (up + 1);
|
|
}
|
|
|
|
inline constexpr uptr RoundUpTo(uptr size, uptr boundary) {
|
|
RAW_CHECK(IsPowerOfTwo(boundary));
|
|
return (size + boundary - 1) & ~(boundary - 1);
|
|
}
|
|
|
|
inline constexpr uptr RoundDownTo(uptr x, uptr boundary) {
|
|
return x & ~(boundary - 1);
|
|
}
|
|
|
|
inline constexpr bool IsAligned(uptr a, uptr alignment) {
|
|
return (a & (alignment - 1)) == 0;
|
|
}
|
|
|
|
inline uptr Log2(uptr x) {
|
|
CHECK(IsPowerOfTwo(x));
|
|
return LeastSignificantSetBitIndex(x);
|
|
}
|
|
|
|
// Don't use std::min, std::max or std::swap, to minimize dependency
|
|
// on libstdc++.
|
|
template <class T>
|
|
constexpr T Min(T a, T b) {
|
|
return a < b ? a : b;
|
|
}
|
|
template <class T>
|
|
constexpr T Max(T a, T b) {
|
|
return a > b ? a : b;
|
|
}
|
|
template <class T>
|
|
constexpr T Abs(T a) {
|
|
return a < 0 ? -a : a;
|
|
}
|
|
template<class T> void Swap(T& a, T& b) {
|
|
T tmp = a;
|
|
a = b;
|
|
b = tmp;
|
|
}
|
|
|
|
// Char handling
|
|
inline bool IsSpace(int c) {
|
|
return (c == ' ') || (c == '\n') || (c == '\t') ||
|
|
(c == '\f') || (c == '\r') || (c == '\v');
|
|
}
|
|
inline bool IsDigit(int c) {
|
|
return (c >= '0') && (c <= '9');
|
|
}
|
|
inline int ToLower(int c) {
|
|
return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
|
|
}
|
|
|
|
// A low-level vector based on mmap. May incur a significant memory overhead for
|
|
// small vectors.
|
|
// WARNING: The current implementation supports only POD types.
|
|
template<typename T>
|
|
class InternalMmapVectorNoCtor {
|
|
public:
|
|
using value_type = T;
|
|
void Initialize(uptr initial_capacity) {
|
|
capacity_bytes_ = 0;
|
|
size_ = 0;
|
|
data_ = 0;
|
|
reserve(initial_capacity);
|
|
}
|
|
void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
|
|
T &operator[](uptr i) {
|
|
CHECK_LT(i, size_);
|
|
return data_[i];
|
|
}
|
|
const T &operator[](uptr i) const {
|
|
CHECK_LT(i, size_);
|
|
return data_[i];
|
|
}
|
|
void push_back(const T &element) {
|
|
CHECK_LE(size_, capacity());
|
|
if (size_ == capacity()) {
|
|
uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
|
|
Realloc(new_capacity);
|
|
}
|
|
internal_memcpy(&data_[size_++], &element, sizeof(T));
|
|
}
|
|
T &back() {
|
|
CHECK_GT(size_, 0);
|
|
return data_[size_ - 1];
|
|
}
|
|
void pop_back() {
|
|
CHECK_GT(size_, 0);
|
|
size_--;
|
|
}
|
|
uptr size() const {
|
|
return size_;
|
|
}
|
|
const T *data() const {
|
|
return data_;
|
|
}
|
|
T *data() {
|
|
return data_;
|
|
}
|
|
uptr capacity() const { return capacity_bytes_ / sizeof(T); }
|
|
void reserve(uptr new_size) {
|
|
// Never downsize internal buffer.
|
|
if (new_size > capacity())
|
|
Realloc(new_size);
|
|
}
|
|
void resize(uptr new_size) {
|
|
if (new_size > size_) {
|
|
reserve(new_size);
|
|
internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
|
|
}
|
|
size_ = new_size;
|
|
}
|
|
|
|
void clear() { size_ = 0; }
|
|
bool empty() const { return size() == 0; }
|
|
|
|
const T *begin() const {
|
|
return data();
|
|
}
|
|
T *begin() {
|
|
return data();
|
|
}
|
|
const T *end() const {
|
|
return data() + size();
|
|
}
|
|
T *end() {
|
|
return data() + size();
|
|
}
|
|
|
|
void swap(InternalMmapVectorNoCtor &other) {
|
|
Swap(data_, other.data_);
|
|
Swap(capacity_bytes_, other.capacity_bytes_);
|
|
Swap(size_, other.size_);
|
|
}
|
|
|
|
private:
|
|
void Realloc(uptr new_capacity) {
|
|
CHECK_GT(new_capacity, 0);
|
|
CHECK_LE(size_, new_capacity);
|
|
uptr new_capacity_bytes =
|
|
RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
|
|
T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
|
|
internal_memcpy(new_data, data_, size_ * sizeof(T));
|
|
UnmapOrDie(data_, capacity_bytes_);
|
|
data_ = new_data;
|
|
capacity_bytes_ = new_capacity_bytes;
|
|
}
|
|
|
|
T *data_;
|
|
uptr capacity_bytes_;
|
|
uptr size_;
|
|
};
|
|
|
|
template <typename T>
|
|
bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
|
|
const InternalMmapVectorNoCtor<T> &rhs) {
|
|
if (lhs.size() != rhs.size()) return false;
|
|
return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
|
|
}
|
|
|
|
template <typename T>
|
|
bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
|
|
const InternalMmapVectorNoCtor<T> &rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
template<typename T>
|
|
class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
|
|
public:
|
|
InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
|
|
explicit InternalMmapVector(uptr cnt) {
|
|
InternalMmapVectorNoCtor<T>::Initialize(cnt);
|
|
this->resize(cnt);
|
|
}
|
|
~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
|
|
// Disallow copies and moves.
|
|
InternalMmapVector(const InternalMmapVector &) = delete;
|
|
InternalMmapVector &operator=(const InternalMmapVector &) = delete;
|
|
InternalMmapVector(InternalMmapVector &&) = delete;
|
|
InternalMmapVector &operator=(InternalMmapVector &&) = delete;
|
|
};
|
|
|
|
class InternalScopedString {
|
|
public:
|
|
InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; }
|
|
|
|
uptr length() const { return buffer_.size() - 1; }
|
|
void clear() {
|
|
buffer_.resize(1);
|
|
buffer_[0] = '\0';
|
|
}
|
|
void append(const char *format, ...) FORMAT(2, 3);
|
|
const char *data() const { return buffer_.data(); }
|
|
char *data() { return buffer_.data(); }
|
|
|
|
private:
|
|
InternalMmapVector<char> buffer_;
|
|
};
|
|
|
|
template <class T>
|
|
struct CompareLess {
|
|
bool operator()(const T &a, const T &b) const { return a < b; }
|
|
};
|
|
|
|
// HeapSort for arrays and InternalMmapVector.
|
|
template <class T, class Compare = CompareLess<T>>
|
|
void Sort(T *v, uptr size, Compare comp = {}) {
|
|
if (size < 2)
|
|
return;
|
|
// Stage 1: insert elements to the heap.
|
|
for (uptr i = 1; i < size; i++) {
|
|
uptr j, p;
|
|
for (j = i; j > 0; j = p) {
|
|
p = (j - 1) / 2;
|
|
if (comp(v[p], v[j]))
|
|
Swap(v[j], v[p]);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
// Stage 2: swap largest element with the last one,
|
|
// and sink the new top.
|
|
for (uptr i = size - 1; i > 0; i--) {
|
|
Swap(v[0], v[i]);
|
|
uptr j, max_ind;
|
|
for (j = 0; j < i; j = max_ind) {
|
|
uptr left = 2 * j + 1;
|
|
uptr right = 2 * j + 2;
|
|
max_ind = j;
|
|
if (left < i && comp(v[max_ind], v[left]))
|
|
max_ind = left;
|
|
if (right < i && comp(v[max_ind], v[right]))
|
|
max_ind = right;
|
|
if (max_ind != j)
|
|
Swap(v[j], v[max_ind]);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Works like std::lower_bound: finds the first element that is not less
|
|
// than the val.
|
|
template <class Container, class T,
|
|
class Compare = CompareLess<typename Container::value_type>>
|
|
uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) {
|
|
uptr first = 0;
|
|
uptr last = v.size();
|
|
while (last > first) {
|
|
uptr mid = (first + last) / 2;
|
|
if (comp(v[mid], val))
|
|
first = mid + 1;
|
|
else
|
|
last = mid;
|
|
}
|
|
return first;
|
|
}
|
|
|
|
enum ModuleArch {
|
|
kModuleArchUnknown,
|
|
kModuleArchI386,
|
|
kModuleArchX86_64,
|
|
kModuleArchX86_64H,
|
|
kModuleArchARMV6,
|
|
kModuleArchARMV7,
|
|
kModuleArchARMV7S,
|
|
kModuleArchARMV7K,
|
|
kModuleArchARM64,
|
|
kModuleArchLoongArch64,
|
|
kModuleArchRISCV64,
|
|
kModuleArchHexagon
|
|
};
|
|
|
|
// Sorts and removes duplicates from the container.
|
|
template <class Container,
|
|
class Compare = CompareLess<typename Container::value_type>>
|
|
void SortAndDedup(Container &v, Compare comp = {}) {
|
|
Sort(v.data(), v.size(), comp);
|
|
uptr size = v.size();
|
|
if (size < 2)
|
|
return;
|
|
uptr last = 0;
|
|
for (uptr i = 1; i < size; ++i) {
|
|
if (comp(v[last], v[i])) {
|
|
++last;
|
|
if (last != i)
|
|
v[last] = v[i];
|
|
} else {
|
|
CHECK(!comp(v[i], v[last]));
|
|
}
|
|
}
|
|
v.resize(last + 1);
|
|
}
|
|
|
|
constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28);
|
|
|
|
// Opens the file 'file_name" and reads up to 'max_len' bytes.
|
|
// The resulting buffer is mmaped and stored in '*buff'.
|
|
// Returns true if file was successfully opened and read.
|
|
bool ReadFileToVector(const char *file_name,
|
|
InternalMmapVectorNoCtor<char> *buff,
|
|
uptr max_len = kDefaultFileMaxSize,
|
|
error_t *errno_p = nullptr);
|
|
|
|
// Opens the file 'file_name" and reads up to 'max_len' bytes.
|
|
// This function is less I/O efficient than ReadFileToVector as it may reread
|
|
// file multiple times to avoid mmap during read attempts. It's used to read
|
|
// procmap, so short reads with mmap in between can produce inconsistent result.
|
|
// The resulting buffer is mmaped and stored in '*buff'.
|
|
// The size of the mmaped region is stored in '*buff_size'.
|
|
// The total number of read bytes is stored in '*read_len'.
|
|
// Returns true if file was successfully opened and read.
|
|
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
|
|
uptr *read_len, uptr max_len = kDefaultFileMaxSize,
|
|
error_t *errno_p = nullptr);
|
|
|
|
int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len,
|
|
uptr *pc_offset);
|
|
|
|
// When adding a new architecture, don't forget to also update
|
|
// script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
|
|
inline const char *ModuleArchToString(ModuleArch arch) {
|
|
switch (arch) {
|
|
case kModuleArchUnknown:
|
|
return "";
|
|
case kModuleArchI386:
|
|
return "i386";
|
|
case kModuleArchX86_64:
|
|
return "x86_64";
|
|
case kModuleArchX86_64H:
|
|
return "x86_64h";
|
|
case kModuleArchARMV6:
|
|
return "armv6";
|
|
case kModuleArchARMV7:
|
|
return "armv7";
|
|
case kModuleArchARMV7S:
|
|
return "armv7s";
|
|
case kModuleArchARMV7K:
|
|
return "armv7k";
|
|
case kModuleArchARM64:
|
|
return "arm64";
|
|
case kModuleArchLoongArch64:
|
|
return "loongarch64";
|
|
case kModuleArchRISCV64:
|
|
return "riscv64";
|
|
case kModuleArchHexagon:
|
|
return "hexagon";
|
|
}
|
|
CHECK(0 && "Invalid module arch");
|
|
return "";
|
|
}
|
|
|
|
const uptr kModuleUUIDSize = 32;
|
|
const uptr kMaxSegName = 16;
|
|
|
|
// Represents a binary loaded into virtual memory (e.g. this can be an
|
|
// executable or a shared object).
|
|
class LoadedModule {
|
|
public:
|
|
LoadedModule()
|
|
: full_name_(nullptr),
|
|
base_address_(0),
|
|
max_address_(0),
|
|
arch_(kModuleArchUnknown),
|
|
uuid_size_(0),
|
|
instrumented_(false) {
|
|
internal_memset(uuid_, 0, kModuleUUIDSize);
|
|
ranges_.clear();
|
|
}
|
|
void set(const char *module_name, uptr base_address);
|
|
void set(const char *module_name, uptr base_address, ModuleArch arch,
|
|
u8 uuid[kModuleUUIDSize], bool instrumented);
|
|
void setUuid(const char *uuid, uptr size);
|
|
void clear();
|
|
void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
|
|
const char *name = nullptr);
|
|
bool containsAddress(uptr address) const;
|
|
|
|
const char *full_name() const { return full_name_; }
|
|
uptr base_address() const { return base_address_; }
|
|
uptr max_address() const { return max_address_; }
|
|
ModuleArch arch() const { return arch_; }
|
|
const u8 *uuid() const { return uuid_; }
|
|
uptr uuid_size() const { return uuid_size_; }
|
|
bool instrumented() const { return instrumented_; }
|
|
|
|
struct AddressRange {
|
|
AddressRange *next;
|
|
uptr beg;
|
|
uptr end;
|
|
bool executable;
|
|
bool writable;
|
|
char name[kMaxSegName];
|
|
|
|
AddressRange(uptr beg, uptr end, bool executable, bool writable,
|
|
const char *name)
|
|
: next(nullptr),
|
|
beg(beg),
|
|
end(end),
|
|
executable(executable),
|
|
writable(writable) {
|
|
internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
|
|
}
|
|
};
|
|
|
|
const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
|
|
|
|
private:
|
|
char *full_name_; // Owned.
|
|
uptr base_address_;
|
|
uptr max_address_;
|
|
ModuleArch arch_;
|
|
uptr uuid_size_;
|
|
u8 uuid_[kModuleUUIDSize];
|
|
bool instrumented_;
|
|
IntrusiveList<AddressRange> ranges_;
|
|
};
|
|
|
|
// List of LoadedModules. OS-dependent implementation is responsible for
|
|
// filling this information.
|
|
class ListOfModules {
|
|
public:
|
|
ListOfModules() : initialized(false) {}
|
|
~ListOfModules() { clear(); }
|
|
void init();
|
|
void fallbackInit(); // Uses fallback init if available, otherwise clears
|
|
const LoadedModule *begin() const { return modules_.begin(); }
|
|
LoadedModule *begin() { return modules_.begin(); }
|
|
const LoadedModule *end() const { return modules_.end(); }
|
|
LoadedModule *end() { return modules_.end(); }
|
|
uptr size() const { return modules_.size(); }
|
|
const LoadedModule &operator[](uptr i) const {
|
|
CHECK_LT(i, modules_.size());
|
|
return modules_[i];
|
|
}
|
|
|
|
private:
|
|
void clear() {
|
|
for (auto &module : modules_) module.clear();
|
|
modules_.clear();
|
|
}
|
|
void clearOrInit() {
|
|
initialized ? clear() : modules_.Initialize(kInitialCapacity);
|
|
initialized = true;
|
|
}
|
|
|
|
InternalMmapVectorNoCtor<LoadedModule> modules_;
|
|
// We rarely have more than 16K loaded modules.
|
|
static const uptr kInitialCapacity = 1 << 14;
|
|
bool initialized;
|
|
};
|
|
|
|
// Callback type for iterating over a set of memory ranges.
|
|
typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
|
|
|
|
enum AndroidApiLevel {
|
|
ANDROID_NOT_ANDROID = 0,
|
|
ANDROID_KITKAT = 19,
|
|
ANDROID_LOLLIPOP_MR1 = 22,
|
|
ANDROID_POST_LOLLIPOP = 23
|
|
};
|
|
|
|
void WriteToSyslog(const char *buffer);
|
|
|
|
#if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
|
|
#define SANITIZER_WIN_TRACE 1
|
|
#else
|
|
#define SANITIZER_WIN_TRACE 0
|
|
#endif
|
|
|
|
#if SANITIZER_APPLE || SANITIZER_WIN_TRACE
|
|
void LogFullErrorReport(const char *buffer);
|
|
#else
|
|
inline void LogFullErrorReport(const char *buffer) {}
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX || SANITIZER_APPLE
|
|
void WriteOneLineToSyslog(const char *s);
|
|
void LogMessageOnPrintf(const char *str);
|
|
#else
|
|
inline void WriteOneLineToSyslog(const char *s) {}
|
|
inline void LogMessageOnPrintf(const char *str) {}
|
|
#endif
|
|
|
|
#if SANITIZER_LINUX || SANITIZER_WIN_TRACE
|
|
// Initialize Android logging. Any writes before this are silently lost.
|
|
void AndroidLogInit();
|
|
void SetAbortMessage(const char *);
|
|
#else
|
|
inline void AndroidLogInit() {}
|
|
// FIXME: MacOS implementation could use CRSetCrashLogMessage.
|
|
inline void SetAbortMessage(const char *) {}
|
|
#endif
|
|
|
|
#if SANITIZER_ANDROID
|
|
void SanitizerInitializeUnwinder();
|
|
AndroidApiLevel AndroidGetApiLevel();
|
|
#else
|
|
inline void AndroidLogWrite(const char *buffer_unused) {}
|
|
inline void SanitizerInitializeUnwinder() {}
|
|
inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
|
|
#endif
|
|
|
|
inline uptr GetPthreadDestructorIterations() {
|
|
#if SANITIZER_ANDROID
|
|
return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
|
|
#elif SANITIZER_POSIX
|
|
return 4;
|
|
#else
|
|
// Unused on Windows.
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void *internal_start_thread(void *(*func)(void*), void *arg);
|
|
void internal_join_thread(void *th);
|
|
void MaybeStartBackgroudThread();
|
|
|
|
// Make the compiler think that something is going on there.
|
|
// Use this inside a loop that looks like memset/memcpy/etc to prevent the
|
|
// compiler from recognising it and turning it into an actual call to
|
|
// memset/memcpy/etc.
|
|
static inline void SanitizerBreakOptimization(void *arg) {
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
_ReadWriteBarrier();
|
|
#else
|
|
__asm__ __volatile__("" : : "r" (arg) : "memory");
|
|
#endif
|
|
}
|
|
|
|
struct SignalContext {
|
|
void *siginfo;
|
|
void *context;
|
|
uptr addr;
|
|
uptr pc;
|
|
uptr sp;
|
|
uptr bp;
|
|
bool is_memory_access;
|
|
enum WriteFlag { Unknown, Read, Write } write_flag;
|
|
|
|
// In some cases the kernel cannot provide the true faulting address; `addr`
|
|
// will be zero then. This field allows to distinguish between these cases
|
|
// and dereferences of null.
|
|
bool is_true_faulting_addr;
|
|
|
|
// VS2013 doesn't implement unrestricted unions, so we need a trivial default
|
|
// constructor
|
|
SignalContext() = default;
|
|
|
|
// Creates signal context in a platform-specific manner.
|
|
// SignalContext is going to keep pointers to siginfo and context without
|
|
// owning them.
|
|
SignalContext(void *siginfo, void *context)
|
|
: siginfo(siginfo),
|
|
context(context),
|
|
addr(GetAddress()),
|
|
is_memory_access(IsMemoryAccess()),
|
|
write_flag(GetWriteFlag()),
|
|
is_true_faulting_addr(IsTrueFaultingAddress()) {
|
|
InitPcSpBp();
|
|
}
|
|
|
|
static void DumpAllRegisters(void *context);
|
|
|
|
// Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
|
|
int GetType() const;
|
|
|
|
// String description of the signal.
|
|
const char *Describe() const;
|
|
|
|
// Returns true if signal is stack overflow.
|
|
bool IsStackOverflow() const;
|
|
|
|
private:
|
|
// Platform specific initialization.
|
|
void InitPcSpBp();
|
|
uptr GetAddress() const;
|
|
WriteFlag GetWriteFlag() const;
|
|
bool IsMemoryAccess() const;
|
|
bool IsTrueFaultingAddress() const;
|
|
};
|
|
|
|
void InitializePlatformEarly();
|
|
|
|
template <typename Fn>
|
|
class RunOnDestruction {
|
|
public:
|
|
explicit RunOnDestruction(Fn fn) : fn_(fn) {}
|
|
~RunOnDestruction() { fn_(); }
|
|
|
|
private:
|
|
Fn fn_;
|
|
};
|
|
|
|
// A simple scope guard. Usage:
|
|
// auto cleanup = at_scope_exit([]{ do_cleanup; });
|
|
template <typename Fn>
|
|
RunOnDestruction<Fn> at_scope_exit(Fn fn) {
|
|
return RunOnDestruction<Fn>(fn);
|
|
}
|
|
|
|
// Linux on 64-bit s390 had a nasty bug that crashes the whole machine
|
|
// if a process uses virtual memory over 4TB (as many sanitizers like
|
|
// to do). This function will abort the process if running on a kernel
|
|
// that looks vulnerable.
|
|
#if SANITIZER_LINUX && SANITIZER_S390_64
|
|
void AvoidCVE_2016_2143();
|
|
#else
|
|
inline void AvoidCVE_2016_2143() {}
|
|
#endif
|
|
|
|
struct StackDepotStats {
|
|
uptr n_uniq_ids;
|
|
uptr allocated;
|
|
};
|
|
|
|
// The default value for allocator_release_to_os_interval_ms common flag to
|
|
// indicate that sanitizer allocator should not attempt to release memory to OS.
|
|
const s32 kReleaseToOSIntervalNever = -1;
|
|
|
|
void CheckNoDeepBind(const char *filename, int flag);
|
|
|
|
// Returns the requested amount of random data (up to 256 bytes) that can then
|
|
// be used to seed a PRNG. Defaults to blocking like the underlying syscall.
|
|
bool GetRandom(void *buffer, uptr length, bool blocking = true);
|
|
|
|
// Returns the number of logical processors on the system.
|
|
u32 GetNumberOfCPUs();
|
|
extern u32 NumberOfCPUsCached;
|
|
inline u32 GetNumberOfCPUsCached() {
|
|
if (!NumberOfCPUsCached)
|
|
NumberOfCPUsCached = GetNumberOfCPUs();
|
|
return NumberOfCPUsCached;
|
|
}
|
|
|
|
template <typename T>
|
|
class ArrayRef {
|
|
public:
|
|
ArrayRef() {}
|
|
ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {}
|
|
|
|
T *begin() { return begin_; }
|
|
T *end() { return end_; }
|
|
|
|
private:
|
|
T *begin_ = nullptr;
|
|
T *end_ = nullptr;
|
|
};
|
|
|
|
} // namespace __sanitizer
|
|
|
|
inline void *operator new(__sanitizer::operator_new_size_type size,
|
|
__sanitizer::LowLevelAllocator &alloc) {
|
|
return alloc.Allocate(size);
|
|
}
|
|
|
|
#endif // SANITIZER_COMMON_H
|