mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-29 06:44:27 +08:00
ff5f50c52c
Update to current version of Go library. Update testsuite for removed types. * go-lang.c (go_langhook_init): Omit float_type_size when calling go_create_gogo. * go-c.h: Update declaration of go_create_gogo. From-SVN: r169098
327 lines
6.2 KiB
Go
327 lines
6.2 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// This file implements multi-precision rational numbers.
|
|
|
|
package big
|
|
|
|
import "strings"
|
|
|
|
// A Rat represents a quotient a/b of arbitrary precision. The zero value for
|
|
// a Rat, 0/0, is not a legal Rat.
|
|
type Rat struct {
|
|
a Int
|
|
b nat
|
|
}
|
|
|
|
|
|
// NewRat creates a new Rat with numerator a and denominator b.
|
|
func NewRat(a, b int64) *Rat {
|
|
return new(Rat).SetFrac64(a, b)
|
|
}
|
|
|
|
|
|
// SetFrac sets z to a/b and returns z.
|
|
func (z *Rat) SetFrac(a, b *Int) *Rat {
|
|
z.a.Set(a)
|
|
z.a.neg = a.neg != b.neg
|
|
z.b = z.b.set(b.abs)
|
|
return z.norm()
|
|
}
|
|
|
|
|
|
// SetFrac64 sets z to a/b and returns z.
|
|
func (z *Rat) SetFrac64(a, b int64) *Rat {
|
|
z.a.SetInt64(a)
|
|
if b < 0 {
|
|
b = -b
|
|
z.a.neg = !z.a.neg
|
|
}
|
|
z.b = z.b.setUint64(uint64(b))
|
|
return z.norm()
|
|
}
|
|
|
|
|
|
// SetInt sets z to x (by making a copy of x) and returns z.
|
|
func (z *Rat) SetInt(x *Int) *Rat {
|
|
z.a.Set(x)
|
|
z.b = z.b.setWord(1)
|
|
return z
|
|
}
|
|
|
|
|
|
// SetInt64 sets z to x and returns z.
|
|
func (z *Rat) SetInt64(x int64) *Rat {
|
|
z.a.SetInt64(x)
|
|
z.b = z.b.setWord(1)
|
|
return z
|
|
}
|
|
|
|
|
|
// Sign returns:
|
|
//
|
|
// -1 if x < 0
|
|
// 0 if x == 0
|
|
// +1 if x > 0
|
|
//
|
|
func (x *Rat) Sign() int {
|
|
return x.a.Sign()
|
|
}
|
|
|
|
|
|
// IsInt returns true if the denominator of x is 1.
|
|
func (x *Rat) IsInt() bool {
|
|
return len(x.b) == 1 && x.b[0] == 1
|
|
}
|
|
|
|
|
|
// Num returns the numerator of z; it may be <= 0.
|
|
// The result is a reference to z's numerator; it
|
|
// may change if a new value is assigned to z.
|
|
func (z *Rat) Num() *Int {
|
|
return &z.a
|
|
}
|
|
|
|
|
|
// Demom returns the denominator of z; it is always > 0.
|
|
// The result is a reference to z's denominator; it
|
|
// may change if a new value is assigned to z.
|
|
func (z *Rat) Denom() *Int {
|
|
return &Int{false, z.b}
|
|
}
|
|
|
|
|
|
func gcd(x, y nat) nat {
|
|
// Euclidean algorithm.
|
|
var a, b nat
|
|
a = a.set(x)
|
|
b = b.set(y)
|
|
for len(b) != 0 {
|
|
var q, r nat
|
|
_, r = q.div(r, a, b)
|
|
a = b
|
|
b = r
|
|
}
|
|
return a
|
|
}
|
|
|
|
|
|
func (z *Rat) norm() *Rat {
|
|
f := gcd(z.a.abs, z.b)
|
|
if len(z.a.abs) == 0 {
|
|
// z == 0
|
|
z.a.neg = false // normalize sign
|
|
z.b = z.b.setWord(1)
|
|
return z
|
|
}
|
|
if f.cmp(natOne) != 0 {
|
|
z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
|
|
z.b, _ = z.b.div(nil, z.b, f)
|
|
}
|
|
return z
|
|
}
|
|
|
|
|
|
func mulNat(x *Int, y nat) *Int {
|
|
var z Int
|
|
z.abs = z.abs.mul(x.abs, y)
|
|
z.neg = len(z.abs) > 0 && x.neg
|
|
return &z
|
|
}
|
|
|
|
|
|
// Cmp compares x and y and returns:
|
|
//
|
|
// -1 if x < y
|
|
// 0 if x == y
|
|
// +1 if x > y
|
|
//
|
|
func (x *Rat) Cmp(y *Rat) (r int) {
|
|
return mulNat(&x.a, y.b).Cmp(mulNat(&y.a, x.b))
|
|
}
|
|
|
|
|
|
// Abs sets z to |x| (the absolute value of x) and returns z.
|
|
func (z *Rat) Abs(x *Rat) *Rat {
|
|
z.a.Abs(&x.a)
|
|
z.b = z.b.set(x.b)
|
|
return z
|
|
}
|
|
|
|
|
|
// Add sets z to the sum x+y and returns z.
|
|
func (z *Rat) Add(x, y *Rat) *Rat {
|
|
a1 := mulNat(&x.a, y.b)
|
|
a2 := mulNat(&y.a, x.b)
|
|
z.a.Add(a1, a2)
|
|
z.b = z.b.mul(x.b, y.b)
|
|
return z.norm()
|
|
}
|
|
|
|
|
|
// Sub sets z to the difference x-y and returns z.
|
|
func (z *Rat) Sub(x, y *Rat) *Rat {
|
|
a1 := mulNat(&x.a, y.b)
|
|
a2 := mulNat(&y.a, x.b)
|
|
z.a.Sub(a1, a2)
|
|
z.b = z.b.mul(x.b, y.b)
|
|
return z.norm()
|
|
}
|
|
|
|
|
|
// Mul sets z to the product x*y and returns z.
|
|
func (z *Rat) Mul(x, y *Rat) *Rat {
|
|
z.a.Mul(&x.a, &y.a)
|
|
z.b = z.b.mul(x.b, y.b)
|
|
return z.norm()
|
|
}
|
|
|
|
|
|
// Quo sets z to the quotient x/y and returns z.
|
|
// If y == 0, a division-by-zero run-time panic occurs.
|
|
func (z *Rat) Quo(x, y *Rat) *Rat {
|
|
if len(y.a.abs) == 0 {
|
|
panic("division by zero")
|
|
}
|
|
a := mulNat(&x.a, y.b)
|
|
b := mulNat(&y.a, x.b)
|
|
z.a.abs = a.abs
|
|
z.b = b.abs
|
|
z.a.neg = a.neg != b.neg
|
|
return z.norm()
|
|
}
|
|
|
|
|
|
// Neg sets z to -x (by making a copy of x if necessary) and returns z.
|
|
func (z *Rat) Neg(x *Rat) *Rat {
|
|
z.a.Neg(&x.a)
|
|
z.b = z.b.set(x.b)
|
|
return z
|
|
}
|
|
|
|
|
|
// Set sets z to x (by making a copy of x if necessary) and returns z.
|
|
func (z *Rat) Set(x *Rat) *Rat {
|
|
z.a.Set(&x.a)
|
|
z.b = z.b.set(x.b)
|
|
return z
|
|
}
|
|
|
|
|
|
// SetString sets z to the value of s and returns z and a boolean indicating
|
|
// success. s can be given as a fraction "a/b" or as a floating-point number
|
|
// optionally followed by an exponent. If the operation failed, the value of z
|
|
// is undefined.
|
|
func (z *Rat) SetString(s string) (*Rat, bool) {
|
|
if len(s) == 0 {
|
|
return z, false
|
|
}
|
|
|
|
// check for a quotient
|
|
sep := strings.Index(s, "/")
|
|
if sep >= 0 {
|
|
if _, ok := z.a.SetString(s[0:sep], 10); !ok {
|
|
return z, false
|
|
}
|
|
s = s[sep+1:]
|
|
var n int
|
|
if z.b, _, n = z.b.scan(s, 10); n != len(s) {
|
|
return z, false
|
|
}
|
|
return z.norm(), true
|
|
}
|
|
|
|
// check for a decimal point
|
|
sep = strings.Index(s, ".")
|
|
// check for an exponent
|
|
e := strings.IndexAny(s, "eE")
|
|
var exp Int
|
|
if e >= 0 {
|
|
if e < sep {
|
|
// The E must come after the decimal point.
|
|
return z, false
|
|
}
|
|
if _, ok := exp.SetString(s[e+1:], 10); !ok {
|
|
return z, false
|
|
}
|
|
s = s[0:e]
|
|
}
|
|
if sep >= 0 {
|
|
s = s[0:sep] + s[sep+1:]
|
|
exp.Sub(&exp, NewInt(int64(len(s)-sep)))
|
|
}
|
|
|
|
if _, ok := z.a.SetString(s, 10); !ok {
|
|
return z, false
|
|
}
|
|
powTen := nat{}.expNN(natTen, exp.abs, nil)
|
|
if exp.neg {
|
|
z.b = powTen
|
|
z.norm()
|
|
} else {
|
|
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
|
|
z.b = z.b.setWord(1)
|
|
}
|
|
|
|
return z, true
|
|
}
|
|
|
|
|
|
// String returns a string representation of z in the form "a/b" (even if b == 1).
|
|
func (z *Rat) String() string {
|
|
return z.a.String() + "/" + z.b.string(10)
|
|
}
|
|
|
|
|
|
// RatString returns a string representation of z in the form "a/b" if b != 1,
|
|
// and in the form "a" if b == 1.
|
|
func (z *Rat) RatString() string {
|
|
if z.IsInt() {
|
|
return z.a.String()
|
|
}
|
|
return z.String()
|
|
}
|
|
|
|
|
|
// FloatString returns a string representation of z in decimal form with prec
|
|
// digits of precision after the decimal point and the last digit rounded.
|
|
func (z *Rat) FloatString(prec int) string {
|
|
if z.IsInt() {
|
|
return z.a.String()
|
|
}
|
|
|
|
q, r := nat{}.div(nat{}, z.a.abs, z.b)
|
|
|
|
p := natOne
|
|
if prec > 0 {
|
|
p = nat{}.expNN(natTen, nat{}.setUint64(uint64(prec)), nil)
|
|
}
|
|
|
|
r = r.mul(r, p)
|
|
r, r2 := r.div(nat{}, r, z.b)
|
|
|
|
// see if we need to round up
|
|
r2 = r2.add(r2, r2)
|
|
if z.b.cmp(r2) <= 0 {
|
|
r = r.add(r, natOne)
|
|
if r.cmp(p) >= 0 {
|
|
q = nat{}.add(q, natOne)
|
|
r = nat{}.sub(r, p)
|
|
}
|
|
}
|
|
|
|
s := q.string(10)
|
|
if z.a.neg {
|
|
s = "-" + s
|
|
}
|
|
|
|
if prec > 0 {
|
|
rs := r.string(10)
|
|
leadingZeros := prec - len(rs)
|
|
s += "." + strings.Repeat("0", leadingZeros) + rs
|
|
}
|
|
|
|
return s
|
|
}
|