mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-30 15:24:07 +08:00
220af55764
gcc/ChangeLog: * rtl.h (*rtx_equal_p_callback_function): Change return type from int to bool. (rtx_equal_p): Ditto. (*hash_rtx_callback_function): Ditto. * rtl.cc (rtx_equal_p): Change return type from int to bool and adjust function body accordingly. * early-remat.cc (scratch_equal): Ditto. * sel-sched-ir.cc (skip_unspecs_callback): Ditto. (hash_with_unspec_callback): Ditto.
6462 lines
172 KiB
C++
6462 lines
172 KiB
C++
/* Instruction scheduling pass. Selective scheduler and pipeliner.
|
||
Copyright (C) 2006-2023 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "cfghooks.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfganal.h"
|
||
#include "cfgbuild.h"
|
||
#include "insn-config.h"
|
||
#include "insn-attr.h"
|
||
#include "recog.h"
|
||
#include "target.h"
|
||
#include "sched-int.h"
|
||
#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
#include "regset.h"
|
||
#include "cfgloop.h"
|
||
#include "sel-sched-ir.h"
|
||
/* We don't have to use it except for sel_print_insn. */
|
||
#include "sel-sched-dump.h"
|
||
|
||
/* A vector holding bb info for whole scheduling pass. */
|
||
vec<sel_global_bb_info_def> sel_global_bb_info;
|
||
|
||
/* A vector holding bb info. */
|
||
vec<sel_region_bb_info_def> sel_region_bb_info;
|
||
|
||
/* A pool for allocating all lists. */
|
||
object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
|
||
|
||
/* This contains information about successors for compute_av_set. */
|
||
struct succs_info current_succs;
|
||
|
||
/* Data structure to describe interaction with the generic scheduler utils. */
|
||
static struct common_sched_info_def sel_common_sched_info;
|
||
|
||
/* The loop nest being pipelined. */
|
||
class loop *current_loop_nest;
|
||
|
||
/* LOOP_NESTS is a vector containing the corresponding loop nest for
|
||
each region. */
|
||
static vec<loop_p> loop_nests;
|
||
|
||
/* Saves blocks already in loop regions, indexed by bb->index. */
|
||
static sbitmap bbs_in_loop_rgns = NULL;
|
||
|
||
/* CFG hooks that are saved before changing create_basic_block hook. */
|
||
static struct cfg_hooks orig_cfg_hooks;
|
||
|
||
|
||
/* Array containing reverse topological index of function basic blocks,
|
||
indexed by BB->INDEX. */
|
||
static int *rev_top_order_index = NULL;
|
||
|
||
/* Length of the above array. */
|
||
static int rev_top_order_index_len = -1;
|
||
|
||
/* A regset pool structure. */
|
||
static struct
|
||
{
|
||
/* The stack to which regsets are returned. */
|
||
regset *v;
|
||
|
||
/* Its pointer. */
|
||
int n;
|
||
|
||
/* Its size. */
|
||
int s;
|
||
|
||
/* In VV we save all generated regsets so that, when destructing the
|
||
pool, we can compare it with V and check that every regset was returned
|
||
back to pool. */
|
||
regset *vv;
|
||
|
||
/* The pointer of VV stack. */
|
||
int nn;
|
||
|
||
/* Its size. */
|
||
int ss;
|
||
|
||
/* The difference between allocated and returned regsets. */
|
||
int diff;
|
||
} regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
|
||
|
||
/* This represents the nop pool. */
|
||
static struct
|
||
{
|
||
/* The vector which holds previously emitted nops. */
|
||
insn_t *v;
|
||
|
||
/* Its pointer. */
|
||
int n;
|
||
|
||
/* Its size. */
|
||
int s;
|
||
} nop_pool = { NULL, 0, 0 };
|
||
|
||
/* The pool for basic block notes. */
|
||
static vec<rtx_note *> bb_note_pool;
|
||
|
||
/* A NOP pattern used to emit placeholder insns. */
|
||
rtx nop_pattern = NULL_RTX;
|
||
/* A special instruction that resides in EXIT_BLOCK.
|
||
EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
|
||
rtx_insn *exit_insn = NULL;
|
||
|
||
/* TRUE if while scheduling current region, which is loop, its preheader
|
||
was removed. */
|
||
bool preheader_removed = false;
|
||
|
||
|
||
/* Forward static declarations. */
|
||
static void fence_clear (fence_t);
|
||
|
||
static void deps_init_id (idata_t, insn_t, bool);
|
||
static void init_id_from_df (idata_t, insn_t, bool);
|
||
static expr_t set_insn_init (expr_t, vinsn_t, int);
|
||
|
||
static void cfg_preds (basic_block, insn_t **, int *);
|
||
static void prepare_insn_expr (insn_t, int);
|
||
static void free_history_vect (vec<expr_history_def> &);
|
||
|
||
static void move_bb_info (basic_block, basic_block);
|
||
static void remove_empty_bb (basic_block, bool);
|
||
static void sel_merge_blocks (basic_block, basic_block);
|
||
static void sel_remove_loop_preheader (void);
|
||
static bool bb_has_removable_jump_to_p (basic_block, basic_block);
|
||
|
||
static bool insn_is_the_only_one_in_bb_p (insn_t);
|
||
static void create_initial_data_sets (basic_block);
|
||
|
||
static void free_av_set (basic_block);
|
||
static void invalidate_av_set (basic_block);
|
||
static void extend_insn_data (void);
|
||
static void sel_init_new_insn (insn_t, int, int = -1);
|
||
static void finish_insns (void);
|
||
|
||
/* Various list functions. */
|
||
|
||
/* Copy an instruction list L. */
|
||
ilist_t
|
||
ilist_copy (ilist_t l)
|
||
{
|
||
ilist_t head = NULL, *tailp = &head;
|
||
|
||
while (l)
|
||
{
|
||
ilist_add (tailp, ILIST_INSN (l));
|
||
tailp = &ILIST_NEXT (*tailp);
|
||
l = ILIST_NEXT (l);
|
||
}
|
||
|
||
return head;
|
||
}
|
||
|
||
/* Invert an instruction list L. */
|
||
ilist_t
|
||
ilist_invert (ilist_t l)
|
||
{
|
||
ilist_t res = NULL;
|
||
|
||
while (l)
|
||
{
|
||
ilist_add (&res, ILIST_INSN (l));
|
||
l = ILIST_NEXT (l);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
|
||
void
|
||
blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
|
||
{
|
||
bnd_t bnd;
|
||
|
||
_list_add (lp);
|
||
bnd = BLIST_BND (*lp);
|
||
|
||
BND_TO (bnd) = to;
|
||
BND_PTR (bnd) = ptr;
|
||
BND_AV (bnd) = NULL;
|
||
BND_AV1 (bnd) = NULL;
|
||
BND_DC (bnd) = dc;
|
||
}
|
||
|
||
/* Remove the list note pointed to by LP. */
|
||
void
|
||
blist_remove (blist_t *lp)
|
||
{
|
||
bnd_t b = BLIST_BND (*lp);
|
||
|
||
av_set_clear (&BND_AV (b));
|
||
av_set_clear (&BND_AV1 (b));
|
||
ilist_clear (&BND_PTR (b));
|
||
|
||
_list_remove (lp);
|
||
}
|
||
|
||
/* Init a fence tail L. */
|
||
void
|
||
flist_tail_init (flist_tail_t l)
|
||
{
|
||
FLIST_TAIL_HEAD (l) = NULL;
|
||
FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
|
||
}
|
||
|
||
/* Try to find fence corresponding to INSN in L. */
|
||
fence_t
|
||
flist_lookup (flist_t l, insn_t insn)
|
||
{
|
||
while (l)
|
||
{
|
||
if (FENCE_INSN (FLIST_FENCE (l)) == insn)
|
||
return FLIST_FENCE (l);
|
||
|
||
l = FLIST_NEXT (l);
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Init the fields of F before running fill_insns. */
|
||
static void
|
||
init_fence_for_scheduling (fence_t f)
|
||
{
|
||
FENCE_BNDS (f) = NULL;
|
||
FENCE_PROCESSED_P (f) = false;
|
||
FENCE_SCHEDULED_P (f) = false;
|
||
}
|
||
|
||
/* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
|
||
static void
|
||
flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
|
||
insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
|
||
int *ready_ticks, int ready_ticks_size, insn_t sched_next,
|
||
int cycle, int cycle_issued_insns, int issue_more,
|
||
bool starts_cycle_p, bool after_stall_p)
|
||
{
|
||
fence_t f;
|
||
|
||
_list_add (lp);
|
||
f = FLIST_FENCE (*lp);
|
||
|
||
FENCE_INSN (f) = insn;
|
||
|
||
gcc_assert (state != NULL);
|
||
FENCE_STATE (f) = state;
|
||
|
||
FENCE_CYCLE (f) = cycle;
|
||
FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
|
||
FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
|
||
FENCE_AFTER_STALL_P (f) = after_stall_p;
|
||
|
||
gcc_assert (dc != NULL);
|
||
FENCE_DC (f) = dc;
|
||
|
||
gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
|
||
FENCE_TC (f) = tc;
|
||
|
||
FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
|
||
FENCE_ISSUE_MORE (f) = issue_more;
|
||
FENCE_EXECUTING_INSNS (f) = executing_insns;
|
||
FENCE_READY_TICKS (f) = ready_ticks;
|
||
FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
|
||
FENCE_SCHED_NEXT (f) = sched_next;
|
||
|
||
init_fence_for_scheduling (f);
|
||
}
|
||
|
||
/* Remove the head node of the list pointed to by LP. */
|
||
static void
|
||
flist_remove (flist_t *lp)
|
||
{
|
||
if (FENCE_INSN (FLIST_FENCE (*lp)))
|
||
fence_clear (FLIST_FENCE (*lp));
|
||
_list_remove (lp);
|
||
}
|
||
|
||
/* Clear the fence list pointed to by LP. */
|
||
void
|
||
flist_clear (flist_t *lp)
|
||
{
|
||
while (*lp)
|
||
flist_remove (lp);
|
||
}
|
||
|
||
/* Add ORIGINAL_INSN the def list DL honoring CROSSED_CALL_ABIS. */
|
||
void
|
||
def_list_add (def_list_t *dl, insn_t original_insn,
|
||
unsigned int crossed_call_abis)
|
||
{
|
||
def_t d;
|
||
|
||
_list_add (dl);
|
||
d = DEF_LIST_DEF (*dl);
|
||
|
||
d->orig_insn = original_insn;
|
||
d->crossed_call_abis = crossed_call_abis;
|
||
}
|
||
|
||
|
||
/* Functions to work with target contexts. */
|
||
|
||
/* Bulk target context. It is convenient for debugging purposes to ensure
|
||
that there are no uninitialized (null) target contexts. */
|
||
static tc_t bulk_tc = (tc_t) 1;
|
||
|
||
/* Target hooks wrappers. In the future we can provide some default
|
||
implementations for them. */
|
||
|
||
/* Allocate a store for the target context. */
|
||
static tc_t
|
||
alloc_target_context (void)
|
||
{
|
||
return (targetm.sched.alloc_sched_context
|
||
? targetm.sched.alloc_sched_context () : bulk_tc);
|
||
}
|
||
|
||
/* Init target context TC.
|
||
If CLEAN_P is true, then make TC as it is beginning of the scheduler.
|
||
Overwise, copy current backend context to TC. */
|
||
static void
|
||
init_target_context (tc_t tc, bool clean_p)
|
||
{
|
||
if (targetm.sched.init_sched_context)
|
||
targetm.sched.init_sched_context (tc, clean_p);
|
||
}
|
||
|
||
/* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
|
||
int init_target_context (). */
|
||
tc_t
|
||
create_target_context (bool clean_p)
|
||
{
|
||
tc_t tc = alloc_target_context ();
|
||
|
||
init_target_context (tc, clean_p);
|
||
return tc;
|
||
}
|
||
|
||
/* Copy TC to the current backend context. */
|
||
void
|
||
set_target_context (tc_t tc)
|
||
{
|
||
if (targetm.sched.set_sched_context)
|
||
targetm.sched.set_sched_context (tc);
|
||
}
|
||
|
||
/* TC is about to be destroyed. Free any internal data. */
|
||
static void
|
||
clear_target_context (tc_t tc)
|
||
{
|
||
if (targetm.sched.clear_sched_context)
|
||
targetm.sched.clear_sched_context (tc);
|
||
}
|
||
|
||
/* Clear and free it. */
|
||
static void
|
||
delete_target_context (tc_t tc)
|
||
{
|
||
clear_target_context (tc);
|
||
|
||
if (targetm.sched.free_sched_context)
|
||
targetm.sched.free_sched_context (tc);
|
||
}
|
||
|
||
/* Make a copy of FROM in TO.
|
||
NB: May be this should be a hook. */
|
||
static void
|
||
copy_target_context (tc_t to, tc_t from)
|
||
{
|
||
tc_t tmp = create_target_context (false);
|
||
|
||
set_target_context (from);
|
||
init_target_context (to, false);
|
||
|
||
set_target_context (tmp);
|
||
delete_target_context (tmp);
|
||
}
|
||
|
||
/* Create a copy of TC. */
|
||
static tc_t
|
||
create_copy_of_target_context (tc_t tc)
|
||
{
|
||
tc_t copy = alloc_target_context ();
|
||
|
||
copy_target_context (copy, tc);
|
||
|
||
return copy;
|
||
}
|
||
|
||
/* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
|
||
is the same as in init_target_context (). */
|
||
void
|
||
reset_target_context (tc_t tc, bool clean_p)
|
||
{
|
||
clear_target_context (tc);
|
||
init_target_context (tc, clean_p);
|
||
}
|
||
|
||
/* Functions to work with dependence contexts.
|
||
Dc (aka deps context, aka deps_t, aka class deps_desc *) is short for dependence
|
||
context. It accumulates information about processed insns to decide if
|
||
current insn is dependent on the processed ones. */
|
||
|
||
/* Make a copy of FROM in TO. */
|
||
static void
|
||
copy_deps_context (deps_t to, deps_t from)
|
||
{
|
||
init_deps (to, false);
|
||
deps_join (to, from);
|
||
}
|
||
|
||
/* Allocate store for dep context. */
|
||
static deps_t
|
||
alloc_deps_context (void)
|
||
{
|
||
return XNEW (class deps_desc);
|
||
}
|
||
|
||
/* Allocate and initialize dep context. */
|
||
static deps_t
|
||
create_deps_context (void)
|
||
{
|
||
deps_t dc = alloc_deps_context ();
|
||
|
||
init_deps (dc, false);
|
||
return dc;
|
||
}
|
||
|
||
/* Create a copy of FROM. */
|
||
static deps_t
|
||
create_copy_of_deps_context (deps_t from)
|
||
{
|
||
deps_t to = alloc_deps_context ();
|
||
|
||
copy_deps_context (to, from);
|
||
return to;
|
||
}
|
||
|
||
/* Clean up internal data of DC. */
|
||
static void
|
||
clear_deps_context (deps_t dc)
|
||
{
|
||
free_deps (dc);
|
||
}
|
||
|
||
/* Clear and free DC. */
|
||
static void
|
||
delete_deps_context (deps_t dc)
|
||
{
|
||
clear_deps_context (dc);
|
||
free (dc);
|
||
}
|
||
|
||
/* Clear and init DC. */
|
||
static void
|
||
reset_deps_context (deps_t dc)
|
||
{
|
||
clear_deps_context (dc);
|
||
init_deps (dc, false);
|
||
}
|
||
|
||
/* This structure describes the dependence analysis hooks for advancing
|
||
dependence context. */
|
||
static struct sched_deps_info_def advance_deps_context_sched_deps_info =
|
||
{
|
||
NULL,
|
||
|
||
NULL, /* start_insn */
|
||
NULL, /* finish_insn */
|
||
NULL, /* start_lhs */
|
||
NULL, /* finish_lhs */
|
||
NULL, /* start_rhs */
|
||
NULL, /* finish_rhs */
|
||
haifa_note_reg_set,
|
||
haifa_note_reg_clobber,
|
||
haifa_note_reg_use,
|
||
NULL, /* note_mem_dep */
|
||
NULL, /* note_dep */
|
||
|
||
0, 0, 0
|
||
};
|
||
|
||
/* Process INSN and add its impact on DC. */
|
||
void
|
||
advance_deps_context (deps_t dc, insn_t insn)
|
||
{
|
||
sched_deps_info = &advance_deps_context_sched_deps_info;
|
||
deps_analyze_insn (dc, insn);
|
||
}
|
||
|
||
|
||
/* Functions to work with DFA states. */
|
||
|
||
/* Allocate store for a DFA state. */
|
||
static state_t
|
||
state_alloc (void)
|
||
{
|
||
return xmalloc (dfa_state_size);
|
||
}
|
||
|
||
/* Allocate and initialize DFA state. */
|
||
static state_t
|
||
state_create (void)
|
||
{
|
||
state_t state = state_alloc ();
|
||
|
||
state_reset (state);
|
||
advance_state (state);
|
||
return state;
|
||
}
|
||
|
||
/* Free DFA state. */
|
||
static void
|
||
state_free (state_t state)
|
||
{
|
||
free (state);
|
||
}
|
||
|
||
/* Make a copy of FROM in TO. */
|
||
static void
|
||
state_copy (state_t to, state_t from)
|
||
{
|
||
memcpy (to, from, dfa_state_size);
|
||
}
|
||
|
||
/* Create a copy of FROM. */
|
||
static state_t
|
||
state_create_copy (state_t from)
|
||
{
|
||
state_t to = state_alloc ();
|
||
|
||
state_copy (to, from);
|
||
return to;
|
||
}
|
||
|
||
|
||
/* Functions to work with fences. */
|
||
|
||
/* Clear the fence. */
|
||
static void
|
||
fence_clear (fence_t f)
|
||
{
|
||
state_t s = FENCE_STATE (f);
|
||
deps_t dc = FENCE_DC (f);
|
||
void *tc = FENCE_TC (f);
|
||
|
||
ilist_clear (&FENCE_BNDS (f));
|
||
|
||
gcc_assert ((s != NULL && dc != NULL && tc != NULL)
|
||
|| (s == NULL && dc == NULL && tc == NULL));
|
||
|
||
free (s);
|
||
|
||
if (dc != NULL)
|
||
delete_deps_context (dc);
|
||
|
||
if (tc != NULL)
|
||
delete_target_context (tc);
|
||
vec_free (FENCE_EXECUTING_INSNS (f));
|
||
free (FENCE_READY_TICKS (f));
|
||
FENCE_READY_TICKS (f) = NULL;
|
||
}
|
||
|
||
/* Init a list of fences with successors of OLD_FENCE. */
|
||
void
|
||
init_fences (insn_t old_fence)
|
||
{
|
||
insn_t succ;
|
||
succ_iterator si;
|
||
bool first = true;
|
||
int ready_ticks_size = get_max_uid () + 1;
|
||
|
||
FOR_EACH_SUCC_1 (succ, si, old_fence,
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
|
||
if (first)
|
||
first = false;
|
||
else
|
||
gcc_assert (flag_sel_sched_pipelining_outer_loops);
|
||
|
||
flist_add (&fences, succ,
|
||
state_create (),
|
||
create_deps_context () /* dc */,
|
||
create_target_context (true) /* tc */,
|
||
NULL /* last_scheduled_insn */,
|
||
NULL, /* executing_insns */
|
||
XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
|
||
ready_ticks_size,
|
||
NULL /* sched_next */,
|
||
1 /* cycle */, 0 /* cycle_issued_insns */,
|
||
issue_rate, /* issue_more */
|
||
1 /* starts_cycle_p */, 0 /* after_stall_p */);
|
||
}
|
||
}
|
||
|
||
/* Merges two fences (filling fields of fence F with resulting values) by
|
||
following rules: 1) state, target context and last scheduled insn are
|
||
propagated from fallthrough edge if it is available;
|
||
2) deps context and cycle is propagated from more probable edge;
|
||
3) all other fields are set to corresponding constant values.
|
||
|
||
INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
|
||
READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
|
||
and AFTER_STALL_P are the corresponding fields of the second fence. */
|
||
static void
|
||
merge_fences (fence_t f, insn_t insn,
|
||
state_t state, deps_t dc, void *tc,
|
||
rtx_insn *last_scheduled_insn,
|
||
vec<rtx_insn *, va_gc> *executing_insns,
|
||
int *ready_ticks, int ready_ticks_size,
|
||
rtx sched_next, int cycle, int issue_more, bool after_stall_p)
|
||
{
|
||
insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
|
||
|
||
gcc_assert (sel_bb_head_p (FENCE_INSN (f))
|
||
&& !sched_next && !FENCE_SCHED_NEXT (f));
|
||
|
||
/* Check if we can decide which path fences came.
|
||
If we can't (or don't want to) - reset all. */
|
||
if (last_scheduled_insn == NULL
|
||
|| last_scheduled_insn_old == NULL
|
||
/* This is a case when INSN is reachable on several paths from
|
||
one insn (this can happen when pipelining of outer loops is on and
|
||
there are two edges: one going around of inner loop and the other -
|
||
right through it; in such case just reset everything). */
|
||
|| last_scheduled_insn == last_scheduled_insn_old)
|
||
{
|
||
state_reset (FENCE_STATE (f));
|
||
state_free (state);
|
||
|
||
reset_deps_context (FENCE_DC (f));
|
||
delete_deps_context (dc);
|
||
|
||
reset_target_context (FENCE_TC (f), true);
|
||
delete_target_context (tc);
|
||
|
||
if (cycle > FENCE_CYCLE (f))
|
||
FENCE_CYCLE (f) = cycle;
|
||
|
||
FENCE_LAST_SCHEDULED_INSN (f) = NULL;
|
||
FENCE_ISSUE_MORE (f) = issue_rate;
|
||
vec_free (executing_insns);
|
||
free (ready_ticks);
|
||
if (FENCE_EXECUTING_INSNS (f))
|
||
FENCE_EXECUTING_INSNS (f)->block_remove (0,
|
||
FENCE_EXECUTING_INSNS (f)->length ());
|
||
if (FENCE_READY_TICKS (f))
|
||
memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
|
||
}
|
||
else
|
||
{
|
||
edge edge_old = NULL, edge_new = NULL;
|
||
edge candidate;
|
||
succ_iterator si;
|
||
insn_t succ;
|
||
|
||
/* Find fallthrough edge. */
|
||
gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
|
||
candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
|
||
|
||
if (!candidate
|
||
|| (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
|
||
&& candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
|
||
{
|
||
/* No fallthrough edge leading to basic block of INSN. */
|
||
state_reset (FENCE_STATE (f));
|
||
state_free (state);
|
||
|
||
reset_target_context (FENCE_TC (f), true);
|
||
delete_target_context (tc);
|
||
|
||
FENCE_LAST_SCHEDULED_INSN (f) = NULL;
|
||
FENCE_ISSUE_MORE (f) = issue_rate;
|
||
}
|
||
else
|
||
if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
|
||
{
|
||
state_free (FENCE_STATE (f));
|
||
FENCE_STATE (f) = state;
|
||
|
||
delete_target_context (FENCE_TC (f));
|
||
FENCE_TC (f) = tc;
|
||
|
||
FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
|
||
FENCE_ISSUE_MORE (f) = issue_more;
|
||
}
|
||
else
|
||
{
|
||
/* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
|
||
state_free (state);
|
||
delete_target_context (tc);
|
||
|
||
gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
|
||
!= BLOCK_FOR_INSN (last_scheduled_insn));
|
||
}
|
||
|
||
/* Find edge of first predecessor (last_scheduled_insn_old->insn). */
|
||
FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
if (succ == insn)
|
||
{
|
||
/* No same successor allowed from several edges. */
|
||
gcc_assert (!edge_old);
|
||
edge_old = si.e1;
|
||
}
|
||
}
|
||
/* Find edge of second predecessor (last_scheduled_insn->insn). */
|
||
FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
if (succ == insn)
|
||
{
|
||
/* No same successor allowed from several edges. */
|
||
gcc_assert (!edge_new);
|
||
edge_new = si.e1;
|
||
}
|
||
}
|
||
|
||
/* Check if we can choose most probable predecessor. */
|
||
if (edge_old == NULL || edge_new == NULL)
|
||
{
|
||
reset_deps_context (FENCE_DC (f));
|
||
delete_deps_context (dc);
|
||
vec_free (executing_insns);
|
||
free (ready_ticks);
|
||
|
||
FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
|
||
if (FENCE_EXECUTING_INSNS (f))
|
||
FENCE_EXECUTING_INSNS (f)->block_remove (0,
|
||
FENCE_EXECUTING_INSNS (f)->length ());
|
||
if (FENCE_READY_TICKS (f))
|
||
memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
|
||
}
|
||
else
|
||
if (edge_new->probability > edge_old->probability)
|
||
{
|
||
delete_deps_context (FENCE_DC (f));
|
||
FENCE_DC (f) = dc;
|
||
vec_free (FENCE_EXECUTING_INSNS (f));
|
||
FENCE_EXECUTING_INSNS (f) = executing_insns;
|
||
free (FENCE_READY_TICKS (f));
|
||
FENCE_READY_TICKS (f) = ready_ticks;
|
||
FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
|
||
FENCE_CYCLE (f) = cycle;
|
||
}
|
||
else
|
||
{
|
||
/* Leave DC and CYCLE untouched. */
|
||
delete_deps_context (dc);
|
||
vec_free (executing_insns);
|
||
free (ready_ticks);
|
||
}
|
||
}
|
||
|
||
/* Fill remaining invariant fields. */
|
||
if (after_stall_p)
|
||
FENCE_AFTER_STALL_P (f) = 1;
|
||
|
||
FENCE_ISSUED_INSNS (f) = 0;
|
||
FENCE_STARTS_CYCLE_P (f) = 1;
|
||
FENCE_SCHED_NEXT (f) = NULL;
|
||
}
|
||
|
||
/* Add a new fence to NEW_FENCES list, initializing it from all
|
||
other parameters. */
|
||
static void
|
||
add_to_fences (flist_tail_t new_fences, insn_t insn,
|
||
state_t state, deps_t dc, void *tc,
|
||
rtx_insn *last_scheduled_insn,
|
||
vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
|
||
int ready_ticks_size, rtx_insn *sched_next, int cycle,
|
||
int cycle_issued_insns, int issue_rate,
|
||
bool starts_cycle_p, bool after_stall_p)
|
||
{
|
||
fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
|
||
|
||
if (! f)
|
||
{
|
||
flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
|
||
last_scheduled_insn, executing_insns, ready_ticks,
|
||
ready_ticks_size, sched_next, cycle, cycle_issued_insns,
|
||
issue_rate, starts_cycle_p, after_stall_p);
|
||
|
||
FLIST_TAIL_TAILP (new_fences)
|
||
= &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
|
||
}
|
||
else
|
||
{
|
||
merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
|
||
executing_insns, ready_ticks, ready_ticks_size,
|
||
sched_next, cycle, issue_rate, after_stall_p);
|
||
}
|
||
}
|
||
|
||
/* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
|
||
void
|
||
move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
|
||
{
|
||
fence_t f, old;
|
||
flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
|
||
|
||
old = FLIST_FENCE (old_fences);
|
||
f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
|
||
FENCE_INSN (FLIST_FENCE (old_fences)));
|
||
if (f)
|
||
{
|
||
merge_fences (f, old->insn, old->state, old->dc, old->tc,
|
||
old->last_scheduled_insn, old->executing_insns,
|
||
old->ready_ticks, old->ready_ticks_size,
|
||
old->sched_next, old->cycle, old->issue_more,
|
||
old->after_stall_p);
|
||
}
|
||
else
|
||
{
|
||
_list_add (tailp);
|
||
FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
|
||
*FLIST_FENCE (*tailp) = *old;
|
||
init_fence_for_scheduling (FLIST_FENCE (*tailp));
|
||
}
|
||
FENCE_INSN (old) = NULL;
|
||
}
|
||
|
||
/* Add a new fence to NEW_FENCES list and initialize most of its data
|
||
as a clean one. */
|
||
void
|
||
add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
|
||
{
|
||
int ready_ticks_size = get_max_uid () + 1;
|
||
|
||
add_to_fences (new_fences,
|
||
succ, state_create (), create_deps_context (),
|
||
create_target_context (true),
|
||
NULL, NULL,
|
||
XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
|
||
NULL, FENCE_CYCLE (fence) + 1,
|
||
0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
|
||
}
|
||
|
||
/* Add a new fence to NEW_FENCES list and initialize all of its data
|
||
from FENCE and SUCC. */
|
||
void
|
||
add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
|
||
{
|
||
int * new_ready_ticks
|
||
= XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
|
||
|
||
memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
|
||
FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
|
||
add_to_fences (new_fences,
|
||
succ, state_create_copy (FENCE_STATE (fence)),
|
||
create_copy_of_deps_context (FENCE_DC (fence)),
|
||
create_copy_of_target_context (FENCE_TC (fence)),
|
||
FENCE_LAST_SCHEDULED_INSN (fence),
|
||
vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
|
||
new_ready_ticks,
|
||
FENCE_READY_TICKS_SIZE (fence),
|
||
FENCE_SCHED_NEXT (fence),
|
||
FENCE_CYCLE (fence),
|
||
FENCE_ISSUED_INSNS (fence),
|
||
FENCE_ISSUE_MORE (fence),
|
||
FENCE_STARTS_CYCLE_P (fence),
|
||
FENCE_AFTER_STALL_P (fence));
|
||
}
|
||
|
||
|
||
/* Functions to work with regset and nop pools. */
|
||
|
||
/* Returns the new regset from pool. It might have some of the bits set
|
||
from the previous usage. */
|
||
regset
|
||
get_regset_from_pool (void)
|
||
{
|
||
regset rs;
|
||
|
||
if (regset_pool.n != 0)
|
||
rs = regset_pool.v[--regset_pool.n];
|
||
else
|
||
/* We need to create the regset. */
|
||
{
|
||
rs = ALLOC_REG_SET (®_obstack);
|
||
|
||
if (regset_pool.nn == regset_pool.ss)
|
||
regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
|
||
(regset_pool.ss = 2 * regset_pool.ss + 1));
|
||
regset_pool.vv[regset_pool.nn++] = rs;
|
||
}
|
||
|
||
regset_pool.diff++;
|
||
|
||
return rs;
|
||
}
|
||
|
||
/* Same as above, but returns the empty regset. */
|
||
regset
|
||
get_clear_regset_from_pool (void)
|
||
{
|
||
regset rs = get_regset_from_pool ();
|
||
|
||
CLEAR_REG_SET (rs);
|
||
return rs;
|
||
}
|
||
|
||
/* Return regset RS to the pool for future use. */
|
||
void
|
||
return_regset_to_pool (regset rs)
|
||
{
|
||
gcc_assert (rs);
|
||
regset_pool.diff--;
|
||
|
||
if (regset_pool.n == regset_pool.s)
|
||
regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
|
||
(regset_pool.s = 2 * regset_pool.s + 1));
|
||
regset_pool.v[regset_pool.n++] = rs;
|
||
}
|
||
|
||
/* This is used as a qsort callback for sorting regset pool stacks.
|
||
X and XX are addresses of two regsets. They are never equal. */
|
||
static int
|
||
cmp_v_in_regset_pool (const void *x, const void *xx)
|
||
{
|
||
uintptr_t r1 = (uintptr_t) *((const regset *) x);
|
||
uintptr_t r2 = (uintptr_t) *((const regset *) xx);
|
||
if (r1 > r2)
|
||
return 1;
|
||
else if (r1 < r2)
|
||
return -1;
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Free the regset pool possibly checking for memory leaks. */
|
||
void
|
||
free_regset_pool (void)
|
||
{
|
||
if (flag_checking)
|
||
{
|
||
regset *v = regset_pool.v;
|
||
int i = 0;
|
||
int n = regset_pool.n;
|
||
|
||
regset *vv = regset_pool.vv;
|
||
int ii = 0;
|
||
int nn = regset_pool.nn;
|
||
|
||
int diff = 0;
|
||
|
||
gcc_assert (n <= nn);
|
||
|
||
/* Sort both vectors so it will be possible to compare them. */
|
||
qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
|
||
qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
|
||
|
||
while (ii < nn)
|
||
{
|
||
if (v[i] == vv[ii])
|
||
i++;
|
||
else
|
||
/* VV[II] was lost. */
|
||
diff++;
|
||
|
||
ii++;
|
||
}
|
||
|
||
gcc_assert (diff == regset_pool.diff);
|
||
}
|
||
|
||
/* If not true - we have a memory leak. */
|
||
gcc_assert (regset_pool.diff == 0);
|
||
|
||
while (regset_pool.n)
|
||
{
|
||
--regset_pool.n;
|
||
FREE_REG_SET (regset_pool.v[regset_pool.n]);
|
||
}
|
||
|
||
free (regset_pool.v);
|
||
regset_pool.v = NULL;
|
||
regset_pool.s = 0;
|
||
|
||
free (regset_pool.vv);
|
||
regset_pool.vv = NULL;
|
||
regset_pool.nn = 0;
|
||
regset_pool.ss = 0;
|
||
|
||
regset_pool.diff = 0;
|
||
}
|
||
|
||
|
||
/* Functions to work with nop pools. NOP insns are used as temporary
|
||
placeholders of the insns being scheduled to allow correct update of
|
||
the data sets. When update is finished, NOPs are deleted. */
|
||
|
||
/* A vinsn that is used to represent a nop. This vinsn is shared among all
|
||
nops sel-sched generates. */
|
||
static vinsn_t nop_vinsn = NULL;
|
||
|
||
/* Emit a nop before INSN, taking it from pool. */
|
||
insn_t
|
||
get_nop_from_pool (insn_t insn)
|
||
{
|
||
rtx nop_pat;
|
||
insn_t nop;
|
||
bool old_p = nop_pool.n != 0;
|
||
int flags;
|
||
|
||
if (old_p)
|
||
nop_pat = nop_pool.v[--nop_pool.n];
|
||
else
|
||
nop_pat = nop_pattern;
|
||
|
||
nop = emit_insn_before (nop_pat, insn);
|
||
|
||
if (old_p)
|
||
flags = INSN_INIT_TODO_SSID;
|
||
else
|
||
flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
|
||
|
||
set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
|
||
sel_init_new_insn (nop, flags);
|
||
|
||
return nop;
|
||
}
|
||
|
||
/* Remove NOP from the instruction stream and return it to the pool. */
|
||
void
|
||
return_nop_to_pool (insn_t nop, bool full_tidying)
|
||
{
|
||
gcc_assert (INSN_IN_STREAM_P (nop));
|
||
sel_remove_insn (nop, false, full_tidying);
|
||
|
||
/* We'll recycle this nop. */
|
||
nop->set_undeleted ();
|
||
|
||
if (nop_pool.n == nop_pool.s)
|
||
nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
|
||
(nop_pool.s = 2 * nop_pool.s + 1));
|
||
nop_pool.v[nop_pool.n++] = nop;
|
||
}
|
||
|
||
/* Free the nop pool. */
|
||
void
|
||
free_nop_pool (void)
|
||
{
|
||
nop_pool.n = 0;
|
||
nop_pool.s = 0;
|
||
free (nop_pool.v);
|
||
nop_pool.v = NULL;
|
||
}
|
||
|
||
|
||
/* Skip unspec to support ia64 speculation. Called from rtx_equal_p.
|
||
The callback is given two rtxes XX and YY and writes the new rtxes
|
||
to NX and NY in case some needs to be skipped. */
|
||
static bool
|
||
skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
|
||
{
|
||
const_rtx x = *xx;
|
||
const_rtx y = *yy;
|
||
|
||
if (GET_CODE (x) == UNSPEC
|
||
&& (targetm.sched.skip_rtx_p == NULL
|
||
|| targetm.sched.skip_rtx_p (x)))
|
||
{
|
||
*nx = XVECEXP (x, 0, 0);
|
||
*ny = CONST_CAST_RTX (y);
|
||
return true;
|
||
}
|
||
|
||
if (GET_CODE (y) == UNSPEC
|
||
&& (targetm.sched.skip_rtx_p == NULL
|
||
|| targetm.sched.skip_rtx_p (y)))
|
||
{
|
||
*nx = CONST_CAST_RTX (x);
|
||
*ny = XVECEXP (y, 0, 0);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Callback, called from hash_rtx. Helps to hash UNSPEC rtx X in a correct way
|
||
to support ia64 speculation. When changes are needed, new rtx X and new mode
|
||
NMODE are written, and the callback returns true. */
|
||
static bool
|
||
hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
|
||
rtx *nx, machine_mode* nmode)
|
||
{
|
||
if (GET_CODE (x) == UNSPEC
|
||
&& targetm.sched.skip_rtx_p
|
||
&& targetm.sched.skip_rtx_p (x))
|
||
{
|
||
*nx = XVECEXP (x, 0 ,0);
|
||
*nmode = VOIDmode;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns LHS and RHS are ok to be scheduled separately. */
|
||
static bool
|
||
lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
|
||
{
|
||
if (lhs == NULL || rhs == NULL)
|
||
return false;
|
||
|
||
/* Do not schedule constants as rhs: no point to use reg, if const
|
||
can be used. Moreover, scheduling const as rhs may lead to mode
|
||
mismatch cause consts don't have modes but they could be merged
|
||
from branches where the same const used in different modes. */
|
||
if (CONSTANT_P (rhs))
|
||
return false;
|
||
|
||
/* ??? Do not rename predicate registers to avoid ICEs in bundling. */
|
||
if (COMPARISON_P (rhs))
|
||
return false;
|
||
|
||
/* Do not allow single REG to be an rhs. */
|
||
if (REG_P (rhs))
|
||
return false;
|
||
|
||
/* See comment at find_used_regs_1 (*1) for explanation of this
|
||
restriction. */
|
||
/* FIXME: remove this later. */
|
||
if (MEM_P (lhs))
|
||
return false;
|
||
|
||
/* This will filter all tricky things like ZERO_EXTRACT etc.
|
||
For now we don't handle it. */
|
||
if (!REG_P (lhs) && !MEM_P (lhs))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
|
||
FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
|
||
used e.g. for insns from recovery blocks. */
|
||
static void
|
||
vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
|
||
{
|
||
hash_rtx_callback_function hrcf;
|
||
int insn_class;
|
||
|
||
VINSN_INSN_RTX (vi) = insn;
|
||
VINSN_COUNT (vi) = 0;
|
||
vi->cost = -1;
|
||
|
||
if (INSN_NOP_P (insn))
|
||
return;
|
||
|
||
if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
|
||
init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
|
||
else
|
||
deps_init_id (VINSN_ID (vi), insn, force_unique_p);
|
||
|
||
/* Hash vinsn depending on whether it is separable or not. */
|
||
hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
|
||
if (VINSN_SEPARABLE_P (vi))
|
||
{
|
||
rtx rhs = VINSN_RHS (vi);
|
||
|
||
VINSN_HASH (vi) = hash_rtx (rhs, GET_MODE (rhs),
|
||
NULL, NULL, false, hrcf);
|
||
VINSN_HASH_RTX (vi) = hash_rtx (VINSN_PATTERN (vi),
|
||
VOIDmode, NULL, NULL,
|
||
false, hrcf);
|
||
}
|
||
else
|
||
{
|
||
VINSN_HASH (vi) = hash_rtx (VINSN_PATTERN (vi), VOIDmode,
|
||
NULL, NULL, false, hrcf);
|
||
VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
|
||
}
|
||
|
||
insn_class = haifa_classify_insn (insn);
|
||
if (insn_class >= 2
|
||
&& (!targetm.sched.get_insn_spec_ds
|
||
|| ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
|
||
== 0)))
|
||
VINSN_MAY_TRAP_P (vi) = true;
|
||
else
|
||
VINSN_MAY_TRAP_P (vi) = false;
|
||
}
|
||
|
||
/* Indicate that VI has become the part of an rtx object. */
|
||
void
|
||
vinsn_attach (vinsn_t vi)
|
||
{
|
||
/* Assert that VI is not pending for deletion. */
|
||
gcc_assert (VINSN_INSN_RTX (vi));
|
||
|
||
VINSN_COUNT (vi)++;
|
||
}
|
||
|
||
/* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
|
||
VINSN_TYPE (VI). */
|
||
static vinsn_t
|
||
vinsn_create (insn_t insn, bool force_unique_p)
|
||
{
|
||
vinsn_t vi = XCNEW (struct vinsn_def);
|
||
|
||
vinsn_init (vi, insn, force_unique_p);
|
||
return vi;
|
||
}
|
||
|
||
/* Return a copy of VI. When REATTACH_P is true, detach VI and attach
|
||
the copy. */
|
||
vinsn_t
|
||
vinsn_copy (vinsn_t vi, bool reattach_p)
|
||
{
|
||
rtx_insn *copy;
|
||
bool unique = VINSN_UNIQUE_P (vi);
|
||
vinsn_t new_vi;
|
||
|
||
copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
|
||
new_vi = create_vinsn_from_insn_rtx (copy, unique);
|
||
if (reattach_p)
|
||
{
|
||
vinsn_detach (vi);
|
||
vinsn_attach (new_vi);
|
||
}
|
||
|
||
return new_vi;
|
||
}
|
||
|
||
/* Delete the VI vinsn and free its data. */
|
||
static void
|
||
vinsn_delete (vinsn_t vi)
|
||
{
|
||
gcc_assert (VINSN_COUNT (vi) == 0);
|
||
|
||
if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
|
||
{
|
||
return_regset_to_pool (VINSN_REG_SETS (vi));
|
||
return_regset_to_pool (VINSN_REG_USES (vi));
|
||
return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
|
||
}
|
||
|
||
free (vi);
|
||
}
|
||
|
||
/* Indicate that VI is no longer a part of some rtx object.
|
||
Remove VI if it is no longer needed. */
|
||
void
|
||
vinsn_detach (vinsn_t vi)
|
||
{
|
||
gcc_assert (VINSN_COUNT (vi) > 0);
|
||
|
||
if (--VINSN_COUNT (vi) == 0)
|
||
vinsn_delete (vi);
|
||
}
|
||
|
||
/* Returns TRUE if VI is a branch. */
|
||
bool
|
||
vinsn_cond_branch_p (vinsn_t vi)
|
||
{
|
||
insn_t insn;
|
||
|
||
if (!VINSN_UNIQUE_P (vi))
|
||
return false;
|
||
|
||
insn = VINSN_INSN_RTX (vi);
|
||
if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
|
||
return false;
|
||
|
||
return control_flow_insn_p (insn);
|
||
}
|
||
|
||
/* Return latency of INSN. */
|
||
static int
|
||
sel_insn_rtx_cost (rtx_insn *insn)
|
||
{
|
||
int cost;
|
||
|
||
/* A USE insn, or something else we don't need to
|
||
understand. We can't pass these directly to
|
||
result_ready_cost or insn_default_latency because it will
|
||
trigger a fatal error for unrecognizable insns. */
|
||
if (recog_memoized (insn) < 0)
|
||
cost = 0;
|
||
else
|
||
{
|
||
cost = insn_default_latency (insn);
|
||
|
||
if (cost < 0)
|
||
cost = 0;
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
/* Return the cost of the VI.
|
||
!!! FIXME: Unify with haifa-sched.cc: insn_sched_cost (). */
|
||
int
|
||
sel_vinsn_cost (vinsn_t vi)
|
||
{
|
||
int cost = vi->cost;
|
||
|
||
if (cost < 0)
|
||
{
|
||
cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
|
||
vi->cost = cost;
|
||
}
|
||
|
||
return cost;
|
||
}
|
||
|
||
|
||
/* Functions for insn emitting. */
|
||
|
||
/* Emit new insn after AFTER based on PATTERN and initialize its data from
|
||
EXPR and SEQNO. */
|
||
insn_t
|
||
sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
|
||
{
|
||
insn_t new_insn;
|
||
|
||
gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
|
||
|
||
new_insn = emit_insn_after (pattern, after);
|
||
set_insn_init (expr, NULL, seqno);
|
||
sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
|
||
|
||
return new_insn;
|
||
}
|
||
|
||
/* Force newly generated vinsns to be unique. */
|
||
static bool init_insn_force_unique_p = false;
|
||
|
||
/* Emit new speculation recovery insn after AFTER based on PATTERN and
|
||
initialize its data from EXPR and SEQNO. */
|
||
insn_t
|
||
sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
|
||
insn_t after)
|
||
{
|
||
insn_t insn;
|
||
|
||
gcc_assert (!init_insn_force_unique_p);
|
||
|
||
init_insn_force_unique_p = true;
|
||
insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
|
||
CANT_MOVE (insn) = 1;
|
||
init_insn_force_unique_p = false;
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
|
||
take it as a new vinsn instead of EXPR's vinsn.
|
||
We simplify insns later, after scheduling region in
|
||
simplify_changed_insns. */
|
||
insn_t
|
||
sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
|
||
insn_t after)
|
||
{
|
||
expr_t emit_expr;
|
||
insn_t insn;
|
||
int flags;
|
||
|
||
emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
|
||
seqno);
|
||
insn = EXPR_INSN_RTX (emit_expr);
|
||
|
||
/* The insn may come from the transformation cache, which may hold already
|
||
deleted insns, so mark it as not deleted. */
|
||
insn->set_undeleted ();
|
||
|
||
add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
|
||
|
||
flags = INSN_INIT_TODO_SSID;
|
||
if (INSN_LUID (insn) == 0)
|
||
flags |= INSN_INIT_TODO_LUID;
|
||
sel_init_new_insn (insn, flags);
|
||
|
||
return insn;
|
||
}
|
||
|
||
/* Move insn from EXPR after AFTER. */
|
||
insn_t
|
||
sel_move_insn (expr_t expr, int seqno, insn_t after)
|
||
{
|
||
insn_t insn = EXPR_INSN_RTX (expr);
|
||
basic_block bb = BLOCK_FOR_INSN (after);
|
||
insn_t next = NEXT_INSN (after);
|
||
|
||
/* Assert that in move_op we disconnected this insn properly. */
|
||
gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
|
||
SET_PREV_INSN (insn) = after;
|
||
SET_NEXT_INSN (insn) = next;
|
||
|
||
SET_NEXT_INSN (after) = insn;
|
||
SET_PREV_INSN (next) = insn;
|
||
|
||
/* Update links from insn to bb and vice versa. */
|
||
df_insn_change_bb (insn, bb);
|
||
if (BB_END (bb) == after)
|
||
BB_END (bb) = insn;
|
||
|
||
prepare_insn_expr (insn, seqno);
|
||
return insn;
|
||
}
|
||
|
||
|
||
/* Functions to work with right-hand sides. */
|
||
|
||
/* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
|
||
VECT and return true when found. Use NEW_VINSN for comparison only when
|
||
COMPARE_VINSNS is true. Write to INDP the index on which
|
||
the search has stopped, such that inserting the new element at INDP will
|
||
retain VECT's sort order. */
|
||
static bool
|
||
find_in_history_vect_1 (vec<expr_history_def> vect,
|
||
unsigned uid, vinsn_t new_vinsn,
|
||
bool compare_vinsns, int *indp)
|
||
{
|
||
expr_history_def *arr;
|
||
int i, j, len = vect.length ();
|
||
|
||
if (len == 0)
|
||
{
|
||
*indp = 0;
|
||
return false;
|
||
}
|
||
|
||
arr = vect.address ();
|
||
i = 0, j = len - 1;
|
||
|
||
while (i <= j)
|
||
{
|
||
unsigned auid = arr[i].uid;
|
||
vinsn_t avinsn = arr[i].new_expr_vinsn;
|
||
|
||
if (auid == uid
|
||
/* When undoing transformation on a bookkeeping copy, the new vinsn
|
||
may not be exactly equal to the one that is saved in the vector.
|
||
This is because the insn whose copy we're checking was possibly
|
||
substituted itself. */
|
||
&& (! compare_vinsns
|
||
|| vinsn_equal_p (avinsn, new_vinsn)))
|
||
{
|
||
*indp = i;
|
||
return true;
|
||
}
|
||
else if (auid > uid)
|
||
break;
|
||
i++;
|
||
}
|
||
|
||
*indp = i;
|
||
return false;
|
||
}
|
||
|
||
/* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
|
||
the position found or -1, if no such value is in vector.
|
||
Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
|
||
int
|
||
find_in_history_vect (vec<expr_history_def> vect, rtx insn,
|
||
vinsn_t new_vinsn, bool originators_p)
|
||
{
|
||
int ind;
|
||
|
||
if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
|
||
false, &ind))
|
||
return ind;
|
||
|
||
if (INSN_ORIGINATORS (insn) && originators_p)
|
||
{
|
||
unsigned uid;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
|
||
if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
|
||
return ind;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Insert new element in a sorted history vector pointed to by PVECT,
|
||
if it is not there already. The element is searched using
|
||
UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
|
||
the history of a transformation. */
|
||
void
|
||
insert_in_history_vect (vec<expr_history_def> *pvect,
|
||
unsigned uid, enum local_trans_type type,
|
||
vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
|
||
ds_t spec_ds)
|
||
{
|
||
vec<expr_history_def> vect = *pvect;
|
||
expr_history_def temp;
|
||
bool res;
|
||
int ind;
|
||
|
||
res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
|
||
|
||
if (res)
|
||
{
|
||
expr_history_def *phist = &vect[ind];
|
||
|
||
/* It is possible that speculation types of expressions that were
|
||
propagated through different paths will be different here. In this
|
||
case, merge the status to get the correct check later. */
|
||
if (phist->spec_ds != spec_ds)
|
||
phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
|
||
return;
|
||
}
|
||
|
||
temp.uid = uid;
|
||
temp.old_expr_vinsn = old_expr_vinsn;
|
||
temp.new_expr_vinsn = new_expr_vinsn;
|
||
temp.spec_ds = spec_ds;
|
||
temp.type = type;
|
||
|
||
vinsn_attach (old_expr_vinsn);
|
||
vinsn_attach (new_expr_vinsn);
|
||
vect.safe_insert (ind, temp);
|
||
*pvect = vect;
|
||
}
|
||
|
||
/* Free history vector PVECT. */
|
||
static void
|
||
free_history_vect (vec<expr_history_def> &pvect)
|
||
{
|
||
unsigned i;
|
||
expr_history_def *phist;
|
||
|
||
if (! pvect.exists ())
|
||
return;
|
||
|
||
for (i = 0; pvect.iterate (i, &phist); i++)
|
||
{
|
||
vinsn_detach (phist->old_expr_vinsn);
|
||
vinsn_detach (phist->new_expr_vinsn);
|
||
}
|
||
|
||
pvect.release ();
|
||
}
|
||
|
||
/* Merge vector FROM to PVECT. */
|
||
static void
|
||
merge_history_vect (vec<expr_history_def> *pvect,
|
||
vec<expr_history_def> from)
|
||
{
|
||
expr_history_def *phist;
|
||
int i;
|
||
|
||
/* We keep this vector sorted. */
|
||
for (i = 0; from.iterate (i, &phist); i++)
|
||
insert_in_history_vect (pvect, phist->uid, phist->type,
|
||
phist->old_expr_vinsn, phist->new_expr_vinsn,
|
||
phist->spec_ds);
|
||
}
|
||
|
||
/* Compare two vinsns as rhses if possible and as vinsns otherwise. */
|
||
bool
|
||
vinsn_equal_p (vinsn_t x, vinsn_t y)
|
||
{
|
||
rtx_equal_p_callback_function repcf;
|
||
|
||
if (x == y)
|
||
return true;
|
||
|
||
if (VINSN_TYPE (x) != VINSN_TYPE (y))
|
||
return false;
|
||
|
||
if (VINSN_HASH (x) != VINSN_HASH (y))
|
||
return false;
|
||
|
||
repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
|
||
if (VINSN_SEPARABLE_P (x))
|
||
{
|
||
/* Compare RHSes of VINSNs. */
|
||
gcc_assert (VINSN_RHS (x));
|
||
gcc_assert (VINSN_RHS (y));
|
||
|
||
return rtx_equal_p (VINSN_RHS (x), VINSN_RHS (y), repcf);
|
||
}
|
||
|
||
return rtx_equal_p (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
|
||
}
|
||
|
||
|
||
/* Functions for working with expressions. */
|
||
|
||
/* Initialize EXPR. */
|
||
static void
|
||
init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
|
||
int sched_times, int orig_bb_index, ds_t spec_done_ds,
|
||
ds_t spec_to_check_ds, int orig_sched_cycle,
|
||
vec<expr_history_def> history,
|
||
signed char target_available,
|
||
bool was_substituted, bool was_renamed, bool needs_spec_check_p,
|
||
bool cant_move)
|
||
{
|
||
vinsn_attach (vi);
|
||
|
||
EXPR_VINSN (expr) = vi;
|
||
EXPR_SPEC (expr) = spec;
|
||
EXPR_USEFULNESS (expr) = use;
|
||
EXPR_PRIORITY (expr) = priority;
|
||
EXPR_PRIORITY_ADJ (expr) = 0;
|
||
EXPR_SCHED_TIMES (expr) = sched_times;
|
||
EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
|
||
EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
|
||
EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
|
||
EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
|
||
|
||
if (history.exists ())
|
||
EXPR_HISTORY_OF_CHANGES (expr) = history;
|
||
else
|
||
EXPR_HISTORY_OF_CHANGES (expr).create (0);
|
||
|
||
EXPR_TARGET_AVAILABLE (expr) = target_available;
|
||
EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
|
||
EXPR_WAS_RENAMED (expr) = was_renamed;
|
||
EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
|
||
EXPR_CANT_MOVE (expr) = cant_move;
|
||
}
|
||
|
||
/* Make a copy of the expr FROM into the expr TO. */
|
||
void
|
||
copy_expr (expr_t to, expr_t from)
|
||
{
|
||
vec<expr_history_def> temp = vNULL;
|
||
|
||
if (EXPR_HISTORY_OF_CHANGES (from).exists ())
|
||
{
|
||
unsigned i;
|
||
expr_history_def *phist;
|
||
|
||
temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
|
||
for (i = 0;
|
||
temp.iterate (i, &phist);
|
||
i++)
|
||
{
|
||
vinsn_attach (phist->old_expr_vinsn);
|
||
vinsn_attach (phist->new_expr_vinsn);
|
||
}
|
||
}
|
||
|
||
init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
|
||
EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
|
||
EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
|
||
EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
|
||
EXPR_ORIG_SCHED_CYCLE (from), temp,
|
||
EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
|
||
EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
|
||
EXPR_CANT_MOVE (from));
|
||
}
|
||
|
||
/* Same, but the final expr will not ever be in av sets, so don't copy
|
||
"uninteresting" data such as bitmap cache. */
|
||
void
|
||
copy_expr_onside (expr_t to, expr_t from)
|
||
{
|
||
init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
|
||
EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
|
||
EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
|
||
vNULL,
|
||
EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
|
||
EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
|
||
EXPR_CANT_MOVE (from));
|
||
}
|
||
|
||
/* Prepare the expr of INSN for scheduling. Used when moving insn and when
|
||
initializing new insns. */
|
||
static void
|
||
prepare_insn_expr (insn_t insn, int seqno)
|
||
{
|
||
expr_t expr = INSN_EXPR (insn);
|
||
ds_t ds;
|
||
|
||
INSN_SEQNO (insn) = seqno;
|
||
EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
|
||
EXPR_SPEC (expr) = 0;
|
||
EXPR_ORIG_SCHED_CYCLE (expr) = 0;
|
||
EXPR_WAS_SUBSTITUTED (expr) = 0;
|
||
EXPR_WAS_RENAMED (expr) = 0;
|
||
EXPR_TARGET_AVAILABLE (expr) = 1;
|
||
INSN_LIVE_VALID_P (insn) = false;
|
||
|
||
/* ??? If this expression is speculative, make its dependence
|
||
as weak as possible. We can filter this expression later
|
||
in process_spec_exprs, because we do not distinguish
|
||
between the status we got during compute_av_set and the
|
||
existing status. To be fixed. */
|
||
ds = EXPR_SPEC_DONE_DS (expr);
|
||
if (ds)
|
||
EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
|
||
|
||
free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
|
||
}
|
||
|
||
/* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
|
||
is non-null when expressions are merged from different successors at
|
||
a split point. */
|
||
static void
|
||
update_target_availability (expr_t to, expr_t from, insn_t split_point)
|
||
{
|
||
if (EXPR_TARGET_AVAILABLE (to) < 0
|
||
|| EXPR_TARGET_AVAILABLE (from) < 0)
|
||
EXPR_TARGET_AVAILABLE (to) = -1;
|
||
else
|
||
{
|
||
/* We try to detect the case when one of the expressions
|
||
can only be reached through another one. In this case,
|
||
we can do better. */
|
||
if (split_point == NULL)
|
||
{
|
||
int toind, fromind;
|
||
|
||
toind = EXPR_ORIG_BB_INDEX (to);
|
||
fromind = EXPR_ORIG_BB_INDEX (from);
|
||
|
||
if (toind && toind == fromind)
|
||
/* Do nothing -- everything is done in
|
||
merge_with_other_exprs. */
|
||
;
|
||
else
|
||
EXPR_TARGET_AVAILABLE (to) = -1;
|
||
}
|
||
else if (EXPR_TARGET_AVAILABLE (from) == 0
|
||
&& EXPR_LHS (from)
|
||
&& REG_P (EXPR_LHS (from))
|
||
&& REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
|
||
EXPR_TARGET_AVAILABLE (to) = -1;
|
||
else
|
||
EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
|
||
}
|
||
}
|
||
|
||
/* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
|
||
is non-null when expressions are merged from different successors at
|
||
a split point. */
|
||
static void
|
||
update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
|
||
{
|
||
ds_t old_to_ds, old_from_ds;
|
||
|
||
old_to_ds = EXPR_SPEC_DONE_DS (to);
|
||
old_from_ds = EXPR_SPEC_DONE_DS (from);
|
||
|
||
EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
|
||
EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
|
||
EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
|
||
|
||
/* When merging e.g. control & data speculative exprs, or a control
|
||
speculative with a control&data speculative one, we really have
|
||
to change vinsn too. Also, when speculative status is changed,
|
||
we also need to record this as a transformation in expr's history. */
|
||
if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
|
||
{
|
||
old_to_ds = ds_get_speculation_types (old_to_ds);
|
||
old_from_ds = ds_get_speculation_types (old_from_ds);
|
||
|
||
if (old_to_ds != old_from_ds)
|
||
{
|
||
ds_t record_ds;
|
||
|
||
/* When both expressions are speculative, we need to change
|
||
the vinsn first. */
|
||
if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
|
||
{
|
||
int res;
|
||
|
||
res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
|
||
gcc_assert (res >= 0);
|
||
}
|
||
|
||
if (split_point != NULL)
|
||
{
|
||
/* Record the change with proper status. */
|
||
record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
|
||
record_ds &= ~(old_to_ds & SPECULATIVE);
|
||
record_ds &= ~(old_from_ds & SPECULATIVE);
|
||
|
||
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
|
||
INSN_UID (split_point), TRANS_SPECULATION,
|
||
EXPR_VINSN (from), EXPR_VINSN (to),
|
||
record_ds);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
|
||
this is done along different paths. */
|
||
void
|
||
merge_expr_data (expr_t to, expr_t from, insn_t split_point)
|
||
{
|
||
/* Choose the maximum of the specs of merged exprs. This is required
|
||
for correctness of bookkeeping. */
|
||
if (EXPR_SPEC (to) < EXPR_SPEC (from))
|
||
EXPR_SPEC (to) = EXPR_SPEC (from);
|
||
|
||
if (split_point)
|
||
EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
|
||
else
|
||
EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
|
||
EXPR_USEFULNESS (from));
|
||
|
||
if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
|
||
EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
|
||
|
||
/* We merge sched-times half-way to the larger value to avoid the endless
|
||
pipelining of unneeded insns. The average seems to be good compromise
|
||
between pipelining opportunities and avoiding extra work. */
|
||
if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
|
||
EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
|
||
+ 1) / 2);
|
||
|
||
if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
|
||
EXPR_ORIG_BB_INDEX (to) = 0;
|
||
|
||
EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
|
||
EXPR_ORIG_SCHED_CYCLE (from));
|
||
|
||
EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
|
||
EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
|
||
EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
|
||
|
||
merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
|
||
EXPR_HISTORY_OF_CHANGES (from));
|
||
update_target_availability (to, from, split_point);
|
||
update_speculative_bits (to, from, split_point);
|
||
}
|
||
|
||
/* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
|
||
in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
|
||
are merged from different successors at a split point. */
|
||
void
|
||
merge_expr (expr_t to, expr_t from, insn_t split_point)
|
||
{
|
||
vinsn_t to_vi = EXPR_VINSN (to);
|
||
vinsn_t from_vi = EXPR_VINSN (from);
|
||
|
||
gcc_assert (vinsn_equal_p (to_vi, from_vi));
|
||
|
||
/* Make sure that speculative pattern is propagated into exprs that
|
||
have non-speculative one. This will provide us with consistent
|
||
speculative bits and speculative patterns inside expr. */
|
||
if (EXPR_SPEC_DONE_DS (to) == 0
|
||
&& (EXPR_SPEC_DONE_DS (from) != 0
|
||
/* Do likewise for volatile insns, so that we always retain
|
||
the may_trap_p bit on the resulting expression. However,
|
||
avoid propagating the trapping bit into the instructions
|
||
already speculated. This would result in replacing the
|
||
speculative pattern with the non-speculative one and breaking
|
||
the speculation support. */
|
||
|| (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
|
||
&& VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
|
||
change_vinsn_in_expr (to, EXPR_VINSN (from));
|
||
|
||
merge_expr_data (to, from, split_point);
|
||
gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
|
||
}
|
||
|
||
/* Clear the information of this EXPR. */
|
||
void
|
||
clear_expr (expr_t expr)
|
||
{
|
||
|
||
vinsn_detach (EXPR_VINSN (expr));
|
||
EXPR_VINSN (expr) = NULL;
|
||
|
||
free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
|
||
}
|
||
|
||
/* For a given LV_SET, mark EXPR having unavailable target register. */
|
||
static void
|
||
set_unavailable_target_for_expr (expr_t expr, regset lv_set)
|
||
{
|
||
if (EXPR_SEPARABLE_P (expr))
|
||
{
|
||
if (REG_P (EXPR_LHS (expr))
|
||
&& register_unavailable_p (lv_set, EXPR_LHS (expr)))
|
||
{
|
||
/* If it's an insn like r1 = use (r1, ...), and it exists in
|
||
different forms in each of the av_sets being merged, we can't say
|
||
whether original destination register is available or not.
|
||
However, this still works if destination register is not used
|
||
in the original expression: if the branch at which LV_SET we're
|
||
looking here is not actually 'other branch' in sense that same
|
||
expression is available through it (but it can't be determined
|
||
at computation stage because of transformations on one of the
|
||
branches), it still won't affect the availability.
|
||
Liveness of a register somewhere on a code motion path means
|
||
it's either read somewhere on a codemotion path, live on
|
||
'other' branch, live at the point immediately following
|
||
the original operation, or is read by the original operation.
|
||
The latter case is filtered out in the condition below.
|
||
It still doesn't cover the case when register is defined and used
|
||
somewhere within the code motion path, and in this case we could
|
||
miss a unifying code motion along both branches using a renamed
|
||
register, but it won't affect a code correctness since upon
|
||
an actual code motion a bookkeeping code would be generated. */
|
||
if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
|
||
EXPR_LHS (expr)))
|
||
EXPR_TARGET_AVAILABLE (expr) = -1;
|
||
else
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
unsigned regno;
|
||
reg_set_iterator rsi;
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
|
||
0, regno, rsi)
|
||
if (bitmap_bit_p (lv_set, regno))
|
||
{
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
break;
|
||
}
|
||
|
||
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
|
||
0, regno, rsi)
|
||
if (bitmap_bit_p (lv_set, regno))
|
||
{
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try to make EXPR speculative. Return 1 when EXPR's pattern
|
||
or dependence status have changed, 2 when also the target register
|
||
became unavailable, 0 if nothing had to be changed. */
|
||
int
|
||
speculate_expr (expr_t expr, ds_t ds)
|
||
{
|
||
int res;
|
||
rtx_insn *orig_insn_rtx;
|
||
rtx spec_pat;
|
||
ds_t target_ds, current_ds;
|
||
|
||
/* Obtain the status we need to put on EXPR. */
|
||
target_ds = (ds & SPECULATIVE);
|
||
current_ds = EXPR_SPEC_DONE_DS (expr);
|
||
ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
|
||
|
||
orig_insn_rtx = EXPR_INSN_RTX (expr);
|
||
|
||
res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
|
||
|
||
switch (res)
|
||
{
|
||
case 0:
|
||
EXPR_SPEC_DONE_DS (expr) = ds;
|
||
return current_ds != ds ? 1 : 0;
|
||
|
||
case 1:
|
||
{
|
||
rtx_insn *spec_insn_rtx =
|
||
create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
|
||
vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
|
||
|
||
change_vinsn_in_expr (expr, spec_vinsn);
|
||
EXPR_SPEC_DONE_DS (expr) = ds;
|
||
EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
|
||
|
||
/* Do not allow clobbering the address register of speculative
|
||
insns. */
|
||
if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
|
||
expr_dest_reg (expr)))
|
||
{
|
||
EXPR_TARGET_AVAILABLE (expr) = false;
|
||
return 2;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
case -1:
|
||
return -1;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
/* Return a destination register, if any, of EXPR. */
|
||
rtx
|
||
expr_dest_reg (expr_t expr)
|
||
{
|
||
rtx dest = VINSN_LHS (EXPR_VINSN (expr));
|
||
|
||
if (dest != NULL_RTX && REG_P (dest))
|
||
return dest;
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Returns the REGNO of the R's destination. */
|
||
unsigned
|
||
expr_dest_regno (expr_t expr)
|
||
{
|
||
rtx dest = expr_dest_reg (expr);
|
||
|
||
gcc_assert (dest != NULL_RTX);
|
||
return REGNO (dest);
|
||
}
|
||
|
||
/* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
|
||
AV_SET having unavailable target register. */
|
||
void
|
||
mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator avi;
|
||
|
||
FOR_EACH_EXPR (expr, avi, join_set)
|
||
if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
|
||
set_unavailable_target_for_expr (expr, lv_set);
|
||
}
|
||
|
||
|
||
/* Returns true if REG (at least partially) is present in REGS. */
|
||
bool
|
||
register_unavailable_p (regset regs, rtx reg)
|
||
{
|
||
unsigned regno, end_regno;
|
||
|
||
regno = REGNO (reg);
|
||
if (bitmap_bit_p (regs, regno))
|
||
return true;
|
||
|
||
end_regno = END_REGNO (reg);
|
||
|
||
while (++regno < end_regno)
|
||
if (bitmap_bit_p (regs, regno))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Av set functions. */
|
||
|
||
/* Add a new element to av set SETP.
|
||
Return the element added. */
|
||
static av_set_t
|
||
av_set_add_element (av_set_t *setp)
|
||
{
|
||
/* Insert at the beginning of the list. */
|
||
_list_add (setp);
|
||
return *setp;
|
||
}
|
||
|
||
/* Add EXPR to SETP. */
|
||
void
|
||
av_set_add (av_set_t *setp, expr_t expr)
|
||
{
|
||
av_set_t elem;
|
||
|
||
gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
|
||
elem = av_set_add_element (setp);
|
||
copy_expr (_AV_SET_EXPR (elem), expr);
|
||
}
|
||
|
||
/* Same, but do not copy EXPR. */
|
||
static void
|
||
av_set_add_nocopy (av_set_t *setp, expr_t expr)
|
||
{
|
||
av_set_t elem;
|
||
|
||
elem = av_set_add_element (setp);
|
||
*_AV_SET_EXPR (elem) = *expr;
|
||
}
|
||
|
||
/* Remove expr pointed to by IP from the av_set. */
|
||
void
|
||
av_set_iter_remove (av_set_iterator *ip)
|
||
{
|
||
clear_expr (_AV_SET_EXPR (*ip->lp));
|
||
_list_iter_remove (ip);
|
||
}
|
||
|
||
/* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
|
||
sense of vinsn_equal_p function. Return NULL if no such expr is
|
||
in SET was found. */
|
||
expr_t
|
||
av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
FOR_EACH_EXPR (expr, i, set)
|
||
if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
|
||
return expr;
|
||
return NULL;
|
||
}
|
||
|
||
/* Same, but also remove the EXPR found. */
|
||
static expr_t
|
||
av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, setp)
|
||
if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
|
||
{
|
||
_list_iter_remove_nofree (&i);
|
||
return expr;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Search for an expr in SET, such that it's equivalent to EXPR in the
|
||
sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
|
||
Returns NULL if no such expr is in SET was found. */
|
||
static expr_t
|
||
av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
|
||
{
|
||
expr_t cur_expr;
|
||
av_set_iterator i;
|
||
|
||
FOR_EACH_EXPR (cur_expr, i, set)
|
||
{
|
||
if (cur_expr == expr)
|
||
continue;
|
||
if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
|
||
return cur_expr;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* If other expression is already in AVP, remove one of them. */
|
||
expr_t
|
||
merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
|
||
{
|
||
expr_t expr2;
|
||
|
||
expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
|
||
if (expr2 != NULL)
|
||
{
|
||
/* Reset target availability on merge, since taking it only from one
|
||
of the exprs would be controversial for different code. */
|
||
EXPR_TARGET_AVAILABLE (expr2) = -1;
|
||
EXPR_USEFULNESS (expr2) = 0;
|
||
|
||
merge_expr (expr2, expr, NULL);
|
||
|
||
/* Fix usefulness as it should be now REG_BR_PROB_BASE. */
|
||
EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
|
||
|
||
av_set_iter_remove (ip);
|
||
return expr2;
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Return true if there is an expr that correlates to VI in SET. */
|
||
bool
|
||
av_set_is_in_p (av_set_t set, vinsn_t vi)
|
||
{
|
||
return av_set_lookup (set, vi) != NULL;
|
||
}
|
||
|
||
/* Return a copy of SET. */
|
||
av_set_t
|
||
av_set_copy (av_set_t set)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
av_set_t res = NULL;
|
||
|
||
FOR_EACH_EXPR (expr, i, set)
|
||
av_set_add (&res, expr);
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Join two av sets that do not have common elements by attaching second set
|
||
(pointed to by FROMP) to the end of first set (TO_TAILP must point to
|
||
_AV_SET_NEXT of first set's last element). */
|
||
static void
|
||
join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
|
||
{
|
||
gcc_assert (*to_tailp == NULL);
|
||
*to_tailp = *fromp;
|
||
*fromp = NULL;
|
||
}
|
||
|
||
/* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
|
||
pointed to by FROMP afterwards. */
|
||
void
|
||
av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
|
||
{
|
||
expr_t expr1;
|
||
av_set_iterator i;
|
||
|
||
/* Delete from TOP all exprs, that present in FROMP. */
|
||
FOR_EACH_EXPR_1 (expr1, i, top)
|
||
{
|
||
expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
|
||
|
||
if (expr2)
|
||
{
|
||
merge_expr (expr2, expr1, insn);
|
||
av_set_iter_remove (&i);
|
||
}
|
||
}
|
||
|
||
join_distinct_sets (i.lp, fromp);
|
||
}
|
||
|
||
/* Same as above, but also update availability of target register in
|
||
TOP judging by TO_LV_SET and FROM_LV_SET. */
|
||
void
|
||
av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
|
||
regset from_lv_set, insn_t insn)
|
||
{
|
||
expr_t expr1;
|
||
av_set_iterator i;
|
||
av_set_t *to_tailp, in_both_set = NULL;
|
||
|
||
/* Delete from TOP all expres, that present in FROMP. */
|
||
FOR_EACH_EXPR_1 (expr1, i, top)
|
||
{
|
||
expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
|
||
|
||
if (expr2)
|
||
{
|
||
/* It may be that the expressions have different destination
|
||
registers, in which case we need to check liveness here. */
|
||
if (EXPR_SEPARABLE_P (expr1))
|
||
{
|
||
int regno1 = (REG_P (EXPR_LHS (expr1))
|
||
? (int) expr_dest_regno (expr1) : -1);
|
||
int regno2 = (REG_P (EXPR_LHS (expr2))
|
||
? (int) expr_dest_regno (expr2) : -1);
|
||
|
||
/* ??? We don't have a way to check restrictions for
|
||
*other* register on the current path, we did it only
|
||
for the current target register. Give up. */
|
||
if (regno1 != regno2)
|
||
EXPR_TARGET_AVAILABLE (expr2) = -1;
|
||
}
|
||
else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
|
||
EXPR_TARGET_AVAILABLE (expr2) = -1;
|
||
|
||
merge_expr (expr2, expr1, insn);
|
||
av_set_add_nocopy (&in_both_set, expr2);
|
||
av_set_iter_remove (&i);
|
||
}
|
||
else
|
||
/* EXPR1 is present in TOP, but not in FROMP. Check it on
|
||
FROM_LV_SET. */
|
||
set_unavailable_target_for_expr (expr1, from_lv_set);
|
||
}
|
||
to_tailp = i.lp;
|
||
|
||
/* These expressions are not present in TOP. Check liveness
|
||
restrictions on TO_LV_SET. */
|
||
FOR_EACH_EXPR (expr1, i, *fromp)
|
||
set_unavailable_target_for_expr (expr1, to_lv_set);
|
||
|
||
join_distinct_sets (i.lp, &in_both_set);
|
||
join_distinct_sets (to_tailp, fromp);
|
||
}
|
||
|
||
/* Clear av_set pointed to by SETP. */
|
||
void
|
||
av_set_clear (av_set_t *setp)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, setp)
|
||
av_set_iter_remove (&i);
|
||
|
||
gcc_assert (*setp == NULL);
|
||
}
|
||
|
||
/* Leave only one non-speculative element in the SETP. */
|
||
void
|
||
av_set_leave_one_nonspec (av_set_t *setp)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
bool has_one_nonspec = false;
|
||
|
||
/* Keep all speculative exprs, and leave one non-speculative
|
||
(the first one). */
|
||
FOR_EACH_EXPR_1 (expr, i, setp)
|
||
{
|
||
if (!EXPR_SPEC_DONE_DS (expr))
|
||
{
|
||
if (has_one_nonspec)
|
||
av_set_iter_remove (&i);
|
||
else
|
||
has_one_nonspec = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return the N'th element of the SET. */
|
||
expr_t
|
||
av_set_element (av_set_t set, int n)
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
FOR_EACH_EXPR (expr, i, set)
|
||
if (n-- == 0)
|
||
return expr;
|
||
|
||
gcc_unreachable ();
|
||
return NULL;
|
||
}
|
||
|
||
/* Deletes all expressions from AVP that are conditional branches (IFs). */
|
||
void
|
||
av_set_substract_cond_branches (av_set_t *avp)
|
||
{
|
||
av_set_iterator i;
|
||
expr_t expr;
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, avp)
|
||
if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
|
||
av_set_iter_remove (&i);
|
||
}
|
||
|
||
/* Multiplies usefulness attribute of each member of av-set *AVP by
|
||
value PROB / ALL_PROB. */
|
||
void
|
||
av_set_split_usefulness (av_set_t av, int prob, int all_prob)
|
||
{
|
||
av_set_iterator i;
|
||
expr_t expr;
|
||
|
||
FOR_EACH_EXPR (expr, i, av)
|
||
EXPR_USEFULNESS (expr) = (all_prob
|
||
? (EXPR_USEFULNESS (expr) * prob) / all_prob
|
||
: 0);
|
||
}
|
||
|
||
/* Leave in AVP only those expressions, which are present in AV,
|
||
and return it, merging history expressions. */
|
||
void
|
||
av_set_code_motion_filter (av_set_t *avp, av_set_t av)
|
||
{
|
||
av_set_iterator i;
|
||
expr_t expr, expr2;
|
||
|
||
FOR_EACH_EXPR_1 (expr, i, avp)
|
||
if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
|
||
av_set_iter_remove (&i);
|
||
else
|
||
/* When updating av sets in bookkeeping blocks, we can add more insns
|
||
there which will be transformed but the upper av sets will not
|
||
reflect those transformations. We then fail to undo those
|
||
when searching for such insns. So merge the history saved
|
||
in the av set of the block we are processing. */
|
||
merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
|
||
EXPR_HISTORY_OF_CHANGES (expr2));
|
||
}
|
||
|
||
|
||
|
||
/* Dependence hooks to initialize insn data. */
|
||
|
||
/* This is used in hooks callable from dependence analysis when initializing
|
||
instruction's data. */
|
||
static struct
|
||
{
|
||
/* Where the dependence was found (lhs/rhs). */
|
||
deps_where_t where;
|
||
|
||
/* The actual data object to initialize. */
|
||
idata_t id;
|
||
|
||
/* True when the insn should not be made clonable. */
|
||
bool force_unique_p;
|
||
|
||
/* True when insn should be treated as of type USE, i.e. never renamed. */
|
||
bool force_use_p;
|
||
} deps_init_id_data;
|
||
|
||
|
||
/* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
|
||
clonable. */
|
||
static void
|
||
setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
|
||
{
|
||
int type;
|
||
|
||
/* Determine whether INSN could be cloned and return appropriate vinsn type.
|
||
That clonable insns which can be separated into lhs and rhs have type SET.
|
||
Other clonable insns have type USE. */
|
||
type = GET_CODE (insn);
|
||
|
||
/* Only regular insns could be cloned. */
|
||
if (type == INSN && !force_unique_p)
|
||
type = SET;
|
||
else if (type == JUMP_INSN && simplejump_p (insn))
|
||
type = PC;
|
||
else if (type == DEBUG_INSN)
|
||
type = !force_unique_p ? USE : INSN;
|
||
|
||
IDATA_TYPE (id) = type;
|
||
IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
|
||
IDATA_REG_USES (id) = get_clear_regset_from_pool ();
|
||
IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
|
||
}
|
||
|
||
/* Start initializing insn data. */
|
||
static void
|
||
deps_init_id_start_insn (insn_t insn)
|
||
{
|
||
gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
|
||
|
||
setup_id_for_insn (deps_init_id_data.id, insn,
|
||
deps_init_id_data.force_unique_p);
|
||
deps_init_id_data.where = DEPS_IN_INSN;
|
||
}
|
||
|
||
/* Start initializing lhs data. */
|
||
static void
|
||
deps_init_id_start_lhs (rtx lhs)
|
||
{
|
||
gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
|
||
gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
|
||
|
||
if (IDATA_TYPE (deps_init_id_data.id) == SET)
|
||
{
|
||
IDATA_LHS (deps_init_id_data.id) = lhs;
|
||
deps_init_id_data.where = DEPS_IN_LHS;
|
||
}
|
||
}
|
||
|
||
/* Finish initializing lhs data. */
|
||
static void
|
||
deps_init_id_finish_lhs (void)
|
||
{
|
||
deps_init_id_data.where = DEPS_IN_INSN;
|
||
}
|
||
|
||
/* Note a set of REGNO. */
|
||
static void
|
||
deps_init_id_note_reg_set (int regno)
|
||
{
|
||
haifa_note_reg_set (regno);
|
||
|
||
if (deps_init_id_data.where == DEPS_IN_RHS)
|
||
deps_init_id_data.force_use_p = true;
|
||
|
||
if (IDATA_TYPE (deps_init_id_data.id) != PC)
|
||
SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
|
||
|
||
#ifdef STACK_REGS
|
||
/* Make instructions that set stack registers to be ineligible for
|
||
renaming to avoid issues with find_used_regs. */
|
||
if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
|
||
deps_init_id_data.force_use_p = true;
|
||
#endif
|
||
}
|
||
|
||
/* Note a clobber of REGNO. */
|
||
static void
|
||
deps_init_id_note_reg_clobber (int regno)
|
||
{
|
||
haifa_note_reg_clobber (regno);
|
||
|
||
if (deps_init_id_data.where == DEPS_IN_RHS)
|
||
deps_init_id_data.force_use_p = true;
|
||
|
||
if (IDATA_TYPE (deps_init_id_data.id) != PC)
|
||
SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
|
||
}
|
||
|
||
/* Note a use of REGNO. */
|
||
static void
|
||
deps_init_id_note_reg_use (int regno)
|
||
{
|
||
haifa_note_reg_use (regno);
|
||
|
||
if (IDATA_TYPE (deps_init_id_data.id) != PC)
|
||
SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
|
||
}
|
||
|
||
/* Start initializing rhs data. */
|
||
static void
|
||
deps_init_id_start_rhs (rtx rhs)
|
||
{
|
||
gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
|
||
|
||
/* And there was no sel_deps_reset_to_insn (). */
|
||
if (IDATA_LHS (deps_init_id_data.id) != NULL)
|
||
{
|
||
IDATA_RHS (deps_init_id_data.id) = rhs;
|
||
deps_init_id_data.where = DEPS_IN_RHS;
|
||
}
|
||
}
|
||
|
||
/* Finish initializing rhs data. */
|
||
static void
|
||
deps_init_id_finish_rhs (void)
|
||
{
|
||
gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
|
||
|| deps_init_id_data.where == DEPS_IN_INSN);
|
||
deps_init_id_data.where = DEPS_IN_INSN;
|
||
}
|
||
|
||
/* Finish initializing insn data. */
|
||
static void
|
||
deps_init_id_finish_insn (void)
|
||
{
|
||
gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
|
||
|
||
if (IDATA_TYPE (deps_init_id_data.id) == SET)
|
||
{
|
||
rtx lhs = IDATA_LHS (deps_init_id_data.id);
|
||
rtx rhs = IDATA_RHS (deps_init_id_data.id);
|
||
|
||
if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
|
||
|| deps_init_id_data.force_use_p)
|
||
{
|
||
/* This should be a USE, as we don't want to schedule its RHS
|
||
separately. However, we still want to have them recorded
|
||
for the purposes of substitution. That's why we don't
|
||
simply call downgrade_to_use () here. */
|
||
gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
|
||
gcc_assert (!lhs == !rhs);
|
||
|
||
IDATA_TYPE (deps_init_id_data.id) = USE;
|
||
}
|
||
}
|
||
|
||
deps_init_id_data.where = DEPS_IN_NOWHERE;
|
||
}
|
||
|
||
/* This is dependence info used for initializing insn's data. */
|
||
static struct sched_deps_info_def deps_init_id_sched_deps_info;
|
||
|
||
/* This initializes most of the static part of the above structure. */
|
||
static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
|
||
{
|
||
NULL,
|
||
|
||
deps_init_id_start_insn,
|
||
deps_init_id_finish_insn,
|
||
deps_init_id_start_lhs,
|
||
deps_init_id_finish_lhs,
|
||
deps_init_id_start_rhs,
|
||
deps_init_id_finish_rhs,
|
||
deps_init_id_note_reg_set,
|
||
deps_init_id_note_reg_clobber,
|
||
deps_init_id_note_reg_use,
|
||
NULL, /* note_mem_dep */
|
||
NULL, /* note_dep */
|
||
|
||
0, /* use_cselib */
|
||
0, /* use_deps_list */
|
||
0 /* generate_spec_deps */
|
||
};
|
||
|
||
/* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
|
||
we don't actually need information about lhs and rhs. */
|
||
static void
|
||
setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
if (NONJUMP_INSN_P (insn)
|
||
&& GET_CODE (pat) == SET
|
||
&& !force_unique_p)
|
||
{
|
||
IDATA_RHS (id) = SET_SRC (pat);
|
||
IDATA_LHS (id) = SET_DEST (pat);
|
||
}
|
||
else
|
||
IDATA_LHS (id) = IDATA_RHS (id) = NULL;
|
||
}
|
||
|
||
/* Possibly downgrade INSN to USE. */
|
||
static void
|
||
maybe_downgrade_id_to_use (idata_t id, insn_t insn)
|
||
{
|
||
bool must_be_use = false;
|
||
df_ref def;
|
||
rtx lhs = IDATA_LHS (id);
|
||
rtx rhs = IDATA_RHS (id);
|
||
|
||
/* We downgrade only SETs. */
|
||
if (IDATA_TYPE (id) != SET)
|
||
return;
|
||
|
||
if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
|
||
{
|
||
IDATA_TYPE (id) = USE;
|
||
return;
|
||
}
|
||
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
{
|
||
if (DF_REF_INSN (def)
|
||
&& DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
|
||
&& loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
|
||
{
|
||
must_be_use = true;
|
||
break;
|
||
}
|
||
|
||
#ifdef STACK_REGS
|
||
/* Make instructions that set stack registers to be ineligible for
|
||
renaming to avoid issues with find_used_regs. */
|
||
if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
|
||
{
|
||
must_be_use = true;
|
||
break;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
if (must_be_use)
|
||
IDATA_TYPE (id) = USE;
|
||
}
|
||
|
||
/* Setup implicit register clobbers calculated by sched-deps for INSN
|
||
before reload and save them in ID. */
|
||
static void
|
||
setup_id_implicit_regs (idata_t id, insn_t insn)
|
||
{
|
||
if (reload_completed)
|
||
return;
|
||
|
||
HARD_REG_SET temp;
|
||
|
||
get_implicit_reg_pending_clobbers (&temp, insn);
|
||
IOR_REG_SET_HRS (IDATA_REG_SETS (id), temp);
|
||
}
|
||
|
||
/* Setup register sets describing INSN in ID. */
|
||
static void
|
||
setup_id_reg_sets (idata_t id, insn_t insn)
|
||
{
|
||
struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
|
||
df_ref def, use;
|
||
regset tmp = get_clear_regset_from_pool ();
|
||
|
||
FOR_EACH_INSN_INFO_DEF (def, insn_info)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (def);
|
||
|
||
/* Post modifies are treated like clobbers by sched-deps.cc. */
|
||
if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
|
||
| DF_REF_PRE_POST_MODIFY)))
|
||
SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
|
||
else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
|
||
{
|
||
SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
|
||
|
||
#ifdef STACK_REGS
|
||
/* For stack registers, treat writes to them as writes
|
||
to the first one to be consistent with sched-deps.cc. */
|
||
if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
|
||
SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
|
||
#endif
|
||
}
|
||
/* Mark special refs that generate read/write def pair. */
|
||
if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
|
||
|| regno == STACK_POINTER_REGNUM)
|
||
bitmap_set_bit (tmp, regno);
|
||
}
|
||
|
||
FOR_EACH_INSN_INFO_USE (use, insn_info)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (use);
|
||
|
||
/* When these refs are met for the first time, skip them, as
|
||
these uses are just counterparts of some defs. */
|
||
if (bitmap_bit_p (tmp, regno))
|
||
bitmap_clear_bit (tmp, regno);
|
||
else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
|
||
{
|
||
SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
|
||
|
||
#ifdef STACK_REGS
|
||
/* For stack registers, treat reads from them as reads from
|
||
the first one to be consistent with sched-deps.cc. */
|
||
if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
|
||
SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
/* Also get implicit reg clobbers from sched-deps. */
|
||
setup_id_implicit_regs (id, insn);
|
||
|
||
return_regset_to_pool (tmp);
|
||
}
|
||
|
||
/* Initialize instruction data for INSN in ID using DF's data. */
|
||
static void
|
||
init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
|
||
{
|
||
gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
|
||
|
||
setup_id_for_insn (id, insn, force_unique_p);
|
||
setup_id_lhs_rhs (id, insn, force_unique_p);
|
||
|
||
if (INSN_NOP_P (insn))
|
||
return;
|
||
|
||
maybe_downgrade_id_to_use (id, insn);
|
||
setup_id_reg_sets (id, insn);
|
||
}
|
||
|
||
/* Initialize instruction data for INSN in ID. */
|
||
static void
|
||
deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
|
||
{
|
||
class deps_desc _dc, *dc = &_dc;
|
||
|
||
deps_init_id_data.where = DEPS_IN_NOWHERE;
|
||
deps_init_id_data.id = id;
|
||
deps_init_id_data.force_unique_p = force_unique_p;
|
||
deps_init_id_data.force_use_p = false;
|
||
|
||
init_deps (dc, false);
|
||
memcpy (&deps_init_id_sched_deps_info,
|
||
&const_deps_init_id_sched_deps_info,
|
||
sizeof (deps_init_id_sched_deps_info));
|
||
if (spec_info != NULL)
|
||
deps_init_id_sched_deps_info.generate_spec_deps = 1;
|
||
sched_deps_info = &deps_init_id_sched_deps_info;
|
||
|
||
deps_analyze_insn (dc, insn);
|
||
/* Implicit reg clobbers received from sched-deps separately. */
|
||
setup_id_implicit_regs (id, insn);
|
||
|
||
free_deps (dc);
|
||
deps_init_id_data.id = NULL;
|
||
}
|
||
|
||
|
||
struct sched_scan_info_def
|
||
{
|
||
/* This hook notifies scheduler frontend to extend its internal per basic
|
||
block data structures. This hook should be called once before a series of
|
||
calls to bb_init (). */
|
||
void (*extend_bb) (void);
|
||
|
||
/* This hook makes scheduler frontend to initialize its internal data
|
||
structures for the passed basic block. */
|
||
void (*init_bb) (basic_block);
|
||
|
||
/* This hook notifies scheduler frontend to extend its internal per insn data
|
||
structures. This hook should be called once before a series of calls to
|
||
insn_init (). */
|
||
void (*extend_insn) (void);
|
||
|
||
/* This hook makes scheduler frontend to initialize its internal data
|
||
structures for the passed insn. */
|
||
void (*init_insn) (insn_t);
|
||
};
|
||
|
||
/* A driver function to add a set of basic blocks (BBS) to the
|
||
scheduling region. */
|
||
static void
|
||
sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
|
||
{
|
||
unsigned i;
|
||
basic_block bb;
|
||
|
||
if (ssi->extend_bb)
|
||
ssi->extend_bb ();
|
||
|
||
if (ssi->init_bb)
|
||
FOR_EACH_VEC_ELT (bbs, i, bb)
|
||
ssi->init_bb (bb);
|
||
|
||
if (ssi->extend_insn)
|
||
ssi->extend_insn ();
|
||
|
||
if (ssi->init_insn)
|
||
FOR_EACH_VEC_ELT (bbs, i, bb)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
ssi->init_insn (insn);
|
||
}
|
||
}
|
||
|
||
/* Implement hooks for collecting fundamental insn properties like if insn is
|
||
an ASM or is within a SCHED_GROUP. */
|
||
|
||
/* True when a "one-time init" data for INSN was already inited. */
|
||
static bool
|
||
first_time_insn_init (insn_t insn)
|
||
{
|
||
return INSN_LIVE (insn) == NULL;
|
||
}
|
||
|
||
/* Hash an entry in a transformed_insns hashtable. */
|
||
static hashval_t
|
||
hash_transformed_insns (const void *p)
|
||
{
|
||
return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
|
||
}
|
||
|
||
/* Compare the entries in a transformed_insns hashtable. */
|
||
static int
|
||
eq_transformed_insns (const void *p, const void *q)
|
||
{
|
||
rtx_insn *i1 =
|
||
VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
|
||
rtx_insn *i2 =
|
||
VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
|
||
|
||
if (INSN_UID (i1) == INSN_UID (i2))
|
||
return 1;
|
||
return rtx_equal_p (PATTERN (i1), PATTERN (i2));
|
||
}
|
||
|
||
/* Free an entry in a transformed_insns hashtable. */
|
||
static void
|
||
free_transformed_insns (void *p)
|
||
{
|
||
struct transformed_insns *pti = (struct transformed_insns *) p;
|
||
|
||
vinsn_detach (pti->vinsn_old);
|
||
vinsn_detach (pti->vinsn_new);
|
||
free (pti);
|
||
}
|
||
|
||
/* Init the s_i_d data for INSN which should be inited just once, when
|
||
we first see the insn. */
|
||
static void
|
||
init_first_time_insn_data (insn_t insn)
|
||
{
|
||
/* This should not be set if this is the first time we init data for
|
||
insn. */
|
||
gcc_assert (first_time_insn_init (insn));
|
||
|
||
/* These are needed for nops too. */
|
||
INSN_LIVE (insn) = get_regset_from_pool ();
|
||
INSN_LIVE_VALID_P (insn) = false;
|
||
|
||
if (!INSN_NOP_P (insn))
|
||
{
|
||
INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
|
||
INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
|
||
INSN_TRANSFORMED_INSNS (insn)
|
||
= htab_create (16, hash_transformed_insns,
|
||
eq_transformed_insns, free_transformed_insns);
|
||
init_deps (&INSN_DEPS_CONTEXT (insn), true);
|
||
}
|
||
}
|
||
|
||
/* Free almost all above data for INSN that is scheduled already.
|
||
Used for extra-large basic blocks. */
|
||
void
|
||
free_data_for_scheduled_insn (insn_t insn)
|
||
{
|
||
gcc_assert (! first_time_insn_init (insn));
|
||
|
||
if (! INSN_ANALYZED_DEPS (insn))
|
||
return;
|
||
|
||
BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
|
||
BITMAP_FREE (INSN_FOUND_DEPS (insn));
|
||
htab_delete (INSN_TRANSFORMED_INSNS (insn));
|
||
|
||
/* This is allocated only for bookkeeping insns. */
|
||
if (INSN_ORIGINATORS (insn))
|
||
BITMAP_FREE (INSN_ORIGINATORS (insn));
|
||
free_deps (&INSN_DEPS_CONTEXT (insn));
|
||
|
||
INSN_ANALYZED_DEPS (insn) = NULL;
|
||
|
||
/* Clear the readonly flag so we would ICE when trying to recalculate
|
||
the deps context (as we believe that it should not happen). */
|
||
(&INSN_DEPS_CONTEXT (insn))->readonly = 0;
|
||
}
|
||
|
||
/* Free the same data as above for INSN. */
|
||
static void
|
||
free_first_time_insn_data (insn_t insn)
|
||
{
|
||
gcc_assert (! first_time_insn_init (insn));
|
||
|
||
free_data_for_scheduled_insn (insn);
|
||
return_regset_to_pool (INSN_LIVE (insn));
|
||
INSN_LIVE (insn) = NULL;
|
||
INSN_LIVE_VALID_P (insn) = false;
|
||
}
|
||
|
||
/* Initialize region-scope data structures for basic blocks. */
|
||
static void
|
||
init_global_and_expr_for_bb (basic_block bb)
|
||
{
|
||
if (sel_bb_empty_p (bb))
|
||
return;
|
||
|
||
invalidate_av_set (bb);
|
||
}
|
||
|
||
/* Data for global dependency analysis (to initialize CANT_MOVE and
|
||
SCHED_GROUP_P). */
|
||
static struct
|
||
{
|
||
/* Previous insn. */
|
||
insn_t prev_insn;
|
||
} init_global_data;
|
||
|
||
/* Determine if INSN is in the sched_group, is an asm or should not be
|
||
cloned. After that initialize its expr. */
|
||
static void
|
||
init_global_and_expr_for_insn (insn_t insn)
|
||
{
|
||
if (LABEL_P (insn))
|
||
return;
|
||
|
||
if (NOTE_INSN_BASIC_BLOCK_P (insn))
|
||
{
|
||
init_global_data.prev_insn = NULL;
|
||
return;
|
||
}
|
||
|
||
gcc_assert (INSN_P (insn));
|
||
|
||
if (SCHED_GROUP_P (insn))
|
||
/* Setup a sched_group. */
|
||
{
|
||
insn_t prev_insn = init_global_data.prev_insn;
|
||
|
||
if (prev_insn)
|
||
INSN_SCHED_NEXT (prev_insn) = insn;
|
||
|
||
init_global_data.prev_insn = insn;
|
||
}
|
||
else
|
||
init_global_data.prev_insn = NULL;
|
||
|
||
if (GET_CODE (PATTERN (insn)) == ASM_INPUT
|
||
|| asm_noperands (PATTERN (insn)) >= 0)
|
||
/* Mark INSN as an asm. */
|
||
INSN_ASM_P (insn) = true;
|
||
|
||
{
|
||
bool force_unique_p;
|
||
ds_t spec_done_ds;
|
||
|
||
/* Certain instructions cannot be cloned, and frame related insns and
|
||
the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
|
||
their block. */
|
||
if (prologue_epilogue_contains (insn))
|
||
{
|
||
if (RTX_FRAME_RELATED_P (insn))
|
||
CANT_MOVE (insn) = 1;
|
||
else
|
||
{
|
||
rtx note;
|
||
for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
|
||
if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
|
||
&& ((enum insn_note) INTVAL (XEXP (note, 0))
|
||
== NOTE_INSN_EPILOGUE_BEG))
|
||
{
|
||
CANT_MOVE (insn) = 1;
|
||
break;
|
||
}
|
||
}
|
||
force_unique_p = true;
|
||
}
|
||
else
|
||
if (CANT_MOVE (insn)
|
||
|| INSN_ASM_P (insn)
|
||
|| SCHED_GROUP_P (insn)
|
||
|| CALL_P (insn)
|
||
/* Exception handling insns are always unique. */
|
||
|| (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
|
||
/* TRAP_IF though have an INSN code is control_flow_insn_p (). */
|
||
|| control_flow_insn_p (insn)
|
||
|| volatile_insn_p (PATTERN (insn))
|
||
|| (targetm.cannot_copy_insn_p
|
||
&& targetm.cannot_copy_insn_p (insn)))
|
||
force_unique_p = true;
|
||
else
|
||
force_unique_p = false;
|
||
|
||
if (targetm.sched.get_insn_spec_ds)
|
||
{
|
||
spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
|
||
spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
|
||
}
|
||
else
|
||
spec_done_ds = 0;
|
||
|
||
/* Initialize INSN's expr. */
|
||
init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
|
||
REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
|
||
spec_done_ds, 0, 0, vNULL, true,
|
||
false, false, false, CANT_MOVE (insn));
|
||
}
|
||
|
||
init_first_time_insn_data (insn);
|
||
}
|
||
|
||
/* Scan the region and initialize instruction data for basic blocks BBS. */
|
||
void
|
||
sel_init_global_and_expr (bb_vec_t bbs)
|
||
{
|
||
/* ??? It would be nice to implement push / pop scheme for sched_infos. */
|
||
const struct sched_scan_info_def ssi =
|
||
{
|
||
NULL, /* extend_bb */
|
||
init_global_and_expr_for_bb, /* init_bb */
|
||
extend_insn_data, /* extend_insn */
|
||
init_global_and_expr_for_insn /* init_insn */
|
||
};
|
||
|
||
sched_scan (&ssi, bbs);
|
||
}
|
||
|
||
/* Finalize region-scope data structures for basic blocks. */
|
||
static void
|
||
finish_global_and_expr_for_bb (basic_block bb)
|
||
{
|
||
av_set_clear (&BB_AV_SET (bb));
|
||
BB_AV_LEVEL (bb) = 0;
|
||
}
|
||
|
||
/* Finalize INSN's data. */
|
||
static void
|
||
finish_global_and_expr_insn (insn_t insn)
|
||
{
|
||
if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
|
||
return;
|
||
|
||
gcc_assert (INSN_P (insn));
|
||
|
||
if (INSN_LUID (insn) > 0)
|
||
{
|
||
free_first_time_insn_data (insn);
|
||
INSN_WS_LEVEL (insn) = 0;
|
||
CANT_MOVE (insn) = 0;
|
||
|
||
/* We can no longer assert this, as vinsns of this insn could be
|
||
easily live in other insn's caches. This should be changed to
|
||
a counter-like approach among all vinsns. */
|
||
gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
|
||
clear_expr (INSN_EXPR (insn));
|
||
}
|
||
}
|
||
|
||
/* Finalize per instruction data for the whole region. */
|
||
void
|
||
sel_finish_global_and_expr (void)
|
||
{
|
||
{
|
||
bb_vec_t bbs;
|
||
int i;
|
||
|
||
bbs.create (current_nr_blocks);
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
|
||
|
||
/* Clear AV_SETs and INSN_EXPRs. */
|
||
{
|
||
const struct sched_scan_info_def ssi =
|
||
{
|
||
NULL, /* extend_bb */
|
||
finish_global_and_expr_for_bb, /* init_bb */
|
||
NULL, /* extend_insn */
|
||
finish_global_and_expr_insn /* init_insn */
|
||
};
|
||
|
||
sched_scan (&ssi, bbs);
|
||
}
|
||
|
||
bbs.release ();
|
||
}
|
||
|
||
finish_insns ();
|
||
}
|
||
|
||
|
||
/* In the below hooks, we merely calculate whether or not a dependence
|
||
exists, and in what part of insn. However, we will need more data
|
||
when we'll start caching dependence requests. */
|
||
|
||
/* Container to hold information for dependency analysis. */
|
||
static struct
|
||
{
|
||
deps_t dc;
|
||
|
||
/* A variable to track which part of rtx we are scanning in
|
||
sched-deps.cc: sched_analyze_insn (). */
|
||
deps_where_t where;
|
||
|
||
/* Current producer. */
|
||
insn_t pro;
|
||
|
||
/* Current consumer. */
|
||
vinsn_t con;
|
||
|
||
/* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
|
||
X is from { INSN, LHS, RHS }. */
|
||
ds_t has_dep_p[DEPS_IN_NOWHERE];
|
||
} has_dependence_data;
|
||
|
||
/* Start analyzing dependencies of INSN. */
|
||
static void
|
||
has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
|
||
{
|
||
gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
|
||
|
||
has_dependence_data.where = DEPS_IN_INSN;
|
||
}
|
||
|
||
/* Finish analyzing dependencies of an insn. */
|
||
static void
|
||
has_dependence_finish_insn (void)
|
||
{
|
||
gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
|
||
|
||
has_dependence_data.where = DEPS_IN_NOWHERE;
|
||
}
|
||
|
||
/* Start analyzing dependencies of LHS. */
|
||
static void
|
||
has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
|
||
{
|
||
gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
|
||
|
||
if (VINSN_LHS (has_dependence_data.con) != NULL)
|
||
has_dependence_data.where = DEPS_IN_LHS;
|
||
}
|
||
|
||
/* Finish analyzing dependencies of an lhs. */
|
||
static void
|
||
has_dependence_finish_lhs (void)
|
||
{
|
||
has_dependence_data.where = DEPS_IN_INSN;
|
||
}
|
||
|
||
/* Start analyzing dependencies of RHS. */
|
||
static void
|
||
has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
|
||
{
|
||
gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
|
||
|
||
if (VINSN_RHS (has_dependence_data.con) != NULL)
|
||
has_dependence_data.where = DEPS_IN_RHS;
|
||
}
|
||
|
||
/* Start analyzing dependencies of an rhs. */
|
||
static void
|
||
has_dependence_finish_rhs (void)
|
||
{
|
||
gcc_assert (has_dependence_data.where == DEPS_IN_RHS
|
||
|| has_dependence_data.where == DEPS_IN_INSN);
|
||
|
||
has_dependence_data.where = DEPS_IN_INSN;
|
||
}
|
||
|
||
/* Note a set of REGNO. */
|
||
static void
|
||
has_dependence_note_reg_set (int regno)
|
||
{
|
||
struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
|
||
|
||
if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
|
||
VINSN_INSN_RTX
|
||
(has_dependence_data.con)))
|
||
{
|
||
ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
|
||
|
||
if (reg_last->sets != NULL
|
||
|| reg_last->clobbers != NULL)
|
||
*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
|
||
|
||
if (reg_last->uses || reg_last->implicit_sets)
|
||
*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
|
||
}
|
||
}
|
||
|
||
/* Note a clobber of REGNO. */
|
||
static void
|
||
has_dependence_note_reg_clobber (int regno)
|
||
{
|
||
struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
|
||
|
||
if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
|
||
VINSN_INSN_RTX
|
||
(has_dependence_data.con)))
|
||
{
|
||
ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
|
||
|
||
if (reg_last->sets)
|
||
*dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
|
||
|
||
if (reg_last->uses || reg_last->implicit_sets)
|
||
*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
|
||
}
|
||
}
|
||
|
||
/* Note a use of REGNO. */
|
||
static void
|
||
has_dependence_note_reg_use (int regno)
|
||
{
|
||
struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
|
||
|
||
if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
|
||
VINSN_INSN_RTX
|
||
(has_dependence_data.con)))
|
||
{
|
||
ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
|
||
|
||
if (reg_last->sets)
|
||
*dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
|
||
|
||
if (reg_last->clobbers || reg_last->implicit_sets)
|
||
*dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
|
||
|
||
/* Merge BE_IN_SPEC bits into *DSP when the dependency producer
|
||
is actually a check insn. We need to do this for any register
|
||
read-read dependency with the check unless we track properly
|
||
all registers written by BE_IN_SPEC-speculated insns, as
|
||
we don't have explicit dependence lists. See PR 53975. */
|
||
if (reg_last->uses)
|
||
{
|
||
ds_t pro_spec_checked_ds;
|
||
|
||
pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
|
||
pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
|
||
|
||
if (pro_spec_checked_ds != 0)
|
||
*dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
|
||
NULL_RTX, NULL_RTX);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Note a memory dependence. */
|
||
static void
|
||
has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
|
||
rtx pending_mem ATTRIBUTE_UNUSED,
|
||
insn_t pending_insn ATTRIBUTE_UNUSED,
|
||
ds_t ds ATTRIBUTE_UNUSED)
|
||
{
|
||
if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
|
||
VINSN_INSN_RTX (has_dependence_data.con)))
|
||
{
|
||
ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
|
||
|
||
*dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
|
||
}
|
||
}
|
||
|
||
/* Note a dependence. */
|
||
static void
|
||
has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
|
||
{
|
||
insn_t real_pro = has_dependence_data.pro;
|
||
insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
|
||
|
||
/* We do not allow for debug insns to move through others unless they
|
||
are at the start of bb. This movement may create bookkeeping copies
|
||
that later would not be able to move up, violating the invariant
|
||
that a bookkeeping copy should be movable as the original insn.
|
||
Detect that here and allow that movement if we allowed it before
|
||
in the first place. */
|
||
if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
|
||
&& INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
|
||
return;
|
||
|
||
if (!sched_insns_conditions_mutex_p (real_pro, real_con))
|
||
{
|
||
ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
|
||
|
||
*dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
|
||
}
|
||
}
|
||
|
||
/* Mark the insn as having a hard dependence that prevents speculation. */
|
||
void
|
||
sel_mark_hard_insn (rtx insn)
|
||
{
|
||
int i;
|
||
|
||
/* Only work when we're in has_dependence_p mode.
|
||
??? This is a hack, this should actually be a hook. */
|
||
if (!has_dependence_data.dc || !has_dependence_data.pro)
|
||
return;
|
||
|
||
gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
|
||
gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
|
||
|
||
for (i = 0; i < DEPS_IN_NOWHERE; i++)
|
||
has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
|
||
}
|
||
|
||
/* This structure holds the hooks for the dependency analysis used when
|
||
actually processing dependencies in the scheduler. */
|
||
static struct sched_deps_info_def has_dependence_sched_deps_info;
|
||
|
||
/* This initializes most of the fields of the above structure. */
|
||
static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
|
||
{
|
||
NULL,
|
||
|
||
has_dependence_start_insn,
|
||
has_dependence_finish_insn,
|
||
has_dependence_start_lhs,
|
||
has_dependence_finish_lhs,
|
||
has_dependence_start_rhs,
|
||
has_dependence_finish_rhs,
|
||
has_dependence_note_reg_set,
|
||
has_dependence_note_reg_clobber,
|
||
has_dependence_note_reg_use,
|
||
has_dependence_note_mem_dep,
|
||
has_dependence_note_dep,
|
||
|
||
0, /* use_cselib */
|
||
0, /* use_deps_list */
|
||
0 /* generate_spec_deps */
|
||
};
|
||
|
||
/* Initialize has_dependence_sched_deps_info with extra spec field. */
|
||
static void
|
||
setup_has_dependence_sched_deps_info (void)
|
||
{
|
||
memcpy (&has_dependence_sched_deps_info,
|
||
&const_has_dependence_sched_deps_info,
|
||
sizeof (has_dependence_sched_deps_info));
|
||
|
||
if (spec_info != NULL)
|
||
has_dependence_sched_deps_info.generate_spec_deps = 1;
|
||
|
||
sched_deps_info = &has_dependence_sched_deps_info;
|
||
}
|
||
|
||
/* Remove all dependences found and recorded in has_dependence_data array. */
|
||
void
|
||
sel_clear_has_dependence (void)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < DEPS_IN_NOWHERE; i++)
|
||
has_dependence_data.has_dep_p[i] = 0;
|
||
}
|
||
|
||
/* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
|
||
to the dependence information array in HAS_DEP_PP. */
|
||
ds_t
|
||
has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
|
||
{
|
||
int i;
|
||
ds_t ds;
|
||
class deps_desc *dc;
|
||
|
||
if (INSN_SIMPLEJUMP_P (pred))
|
||
/* Unconditional jump is just a transfer of control flow.
|
||
Ignore it. */
|
||
return false;
|
||
|
||
dc = &INSN_DEPS_CONTEXT (pred);
|
||
|
||
/* We init this field lazily. */
|
||
if (dc->reg_last == NULL)
|
||
init_deps_reg_last (dc);
|
||
|
||
if (!dc->readonly)
|
||
{
|
||
has_dependence_data.pro = NULL;
|
||
/* Initialize empty dep context with information about PRED. */
|
||
advance_deps_context (dc, pred);
|
||
dc->readonly = 1;
|
||
}
|
||
|
||
has_dependence_data.where = DEPS_IN_NOWHERE;
|
||
has_dependence_data.pro = pred;
|
||
has_dependence_data.con = EXPR_VINSN (expr);
|
||
has_dependence_data.dc = dc;
|
||
|
||
sel_clear_has_dependence ();
|
||
|
||
/* Now catch all dependencies that would be generated between PRED and
|
||
INSN. */
|
||
setup_has_dependence_sched_deps_info ();
|
||
deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
|
||
has_dependence_data.dc = NULL;
|
||
|
||
/* When a barrier was found, set DEPS_IN_INSN bits. */
|
||
if (dc->last_reg_pending_barrier == TRUE_BARRIER)
|
||
has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
|
||
else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
|
||
has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
|
||
|
||
/* Do not allow stores to memory to move through checks. Currently
|
||
we don't move this to sched-deps.cc as the check doesn't have
|
||
obvious places to which this dependence can be attached.
|
||
FIMXE: this should go to a hook. */
|
||
if (EXPR_LHS (expr)
|
||
&& MEM_P (EXPR_LHS (expr))
|
||
&& sel_insn_is_speculation_check (pred))
|
||
has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
|
||
|
||
*has_dep_pp = has_dependence_data.has_dep_p;
|
||
ds = 0;
|
||
for (i = 0; i < DEPS_IN_NOWHERE; i++)
|
||
ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
|
||
NULL_RTX, NULL_RTX);
|
||
|
||
return ds;
|
||
}
|
||
|
||
|
||
/* Dependence hooks implementation that checks dependence latency constraints
|
||
on the insns being scheduled. The entry point for these routines is
|
||
tick_check_p predicate. */
|
||
|
||
static struct
|
||
{
|
||
/* An expr we are currently checking. */
|
||
expr_t expr;
|
||
|
||
/* A minimal cycle for its scheduling. */
|
||
int cycle;
|
||
|
||
/* Whether we have seen a true dependence while checking. */
|
||
bool seen_true_dep_p;
|
||
} tick_check_data;
|
||
|
||
/* Update minimal scheduling cycle for tick_check_insn given that it depends
|
||
on PRO with status DS and weight DW. */
|
||
static void
|
||
tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
|
||
{
|
||
expr_t con_expr = tick_check_data.expr;
|
||
insn_t con_insn = EXPR_INSN_RTX (con_expr);
|
||
|
||
if (con_insn != pro_insn)
|
||
{
|
||
enum reg_note dt;
|
||
int tick;
|
||
|
||
if (/* PROducer was removed from above due to pipelining. */
|
||
!INSN_IN_STREAM_P (pro_insn)
|
||
/* Or PROducer was originally on the next iteration regarding the
|
||
CONsumer. */
|
||
|| (INSN_SCHED_TIMES (pro_insn)
|
||
- EXPR_SCHED_TIMES (con_expr)) > 1)
|
||
/* Don't count this dependence. */
|
||
return;
|
||
|
||
dt = ds_to_dt (ds);
|
||
if (dt == REG_DEP_TRUE)
|
||
tick_check_data.seen_true_dep_p = true;
|
||
|
||
gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
|
||
|
||
{
|
||
dep_def _dep, *dep = &_dep;
|
||
|
||
init_dep (dep, pro_insn, con_insn, dt);
|
||
|
||
tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
|
||
}
|
||
|
||
/* When there are several kinds of dependencies between pro and con,
|
||
only REG_DEP_TRUE should be taken into account. */
|
||
if (tick > tick_check_data.cycle
|
||
&& (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
|
||
tick_check_data.cycle = tick;
|
||
}
|
||
}
|
||
|
||
/* An implementation of note_dep hook. */
|
||
static void
|
||
tick_check_note_dep (insn_t pro, ds_t ds)
|
||
{
|
||
tick_check_dep_with_dw (pro, ds, 0);
|
||
}
|
||
|
||
/* An implementation of note_mem_dep hook. */
|
||
static void
|
||
tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
|
||
{
|
||
dw_t dw;
|
||
|
||
dw = (ds_to_dt (ds) == REG_DEP_TRUE
|
||
? estimate_dep_weak (mem1, mem2)
|
||
: 0);
|
||
|
||
tick_check_dep_with_dw (pro, ds, dw);
|
||
}
|
||
|
||
/* This structure contains hooks for dependence analysis used when determining
|
||
whether an insn is ready for scheduling. */
|
||
static struct sched_deps_info_def tick_check_sched_deps_info =
|
||
{
|
||
NULL,
|
||
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
haifa_note_reg_set,
|
||
haifa_note_reg_clobber,
|
||
haifa_note_reg_use,
|
||
tick_check_note_mem_dep,
|
||
tick_check_note_dep,
|
||
|
||
0, 0, 0
|
||
};
|
||
|
||
/* Estimate number of cycles from the current cycle of FENCE until EXPR can be
|
||
scheduled. Return 0 if all data from producers in DC is ready. */
|
||
int
|
||
tick_check_p (expr_t expr, deps_t dc, fence_t fence)
|
||
{
|
||
int cycles_left;
|
||
/* Initialize variables. */
|
||
tick_check_data.expr = expr;
|
||
tick_check_data.cycle = 0;
|
||
tick_check_data.seen_true_dep_p = false;
|
||
sched_deps_info = &tick_check_sched_deps_info;
|
||
|
||
gcc_assert (!dc->readonly);
|
||
dc->readonly = 1;
|
||
deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
|
||
dc->readonly = 0;
|
||
|
||
cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
|
||
|
||
return cycles_left >= 0 ? cycles_left : 0;
|
||
}
|
||
|
||
|
||
/* Functions to work with insns. */
|
||
|
||
/* Returns true if LHS of INSN is the same as DEST of an insn
|
||
being moved. */
|
||
bool
|
||
lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
|
||
{
|
||
rtx lhs = INSN_LHS (insn);
|
||
|
||
if (lhs == NULL || dest == NULL)
|
||
return false;
|
||
|
||
return rtx_equal_p (lhs, dest);
|
||
}
|
||
|
||
/* Return s_i_d entry of INSN. Callable from debugger. */
|
||
sel_insn_data_def
|
||
insn_sid (insn_t insn)
|
||
{
|
||
return *SID (insn);
|
||
}
|
||
|
||
/* True when INSN is a speculative check. We can tell this by looking
|
||
at the data structures of the selective scheduler, not by examining
|
||
the pattern. */
|
||
bool
|
||
sel_insn_is_speculation_check (rtx insn)
|
||
{
|
||
return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
|
||
}
|
||
|
||
/* Extracts machine mode MODE and destination location DST_LOC
|
||
for given INSN. */
|
||
void
|
||
get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
gcc_assert (dst_loc);
|
||
gcc_assert (GET_CODE (pat) == SET);
|
||
|
||
*dst_loc = SET_DEST (pat);
|
||
|
||
gcc_assert (*dst_loc);
|
||
gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
|
||
|
||
if (mode)
|
||
*mode = GET_MODE (*dst_loc);
|
||
}
|
||
|
||
/* Returns true when moving through JUMP will result in bookkeeping
|
||
creation. */
|
||
bool
|
||
bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
|
||
{
|
||
insn_t succ;
|
||
succ_iterator si;
|
||
|
||
FOR_EACH_SUCC (succ, si, jump)
|
||
if (sel_num_cfg_preds_gt_1 (succ))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return 'true' if INSN is the only one in its basic block. */
|
||
static bool
|
||
insn_is_the_only_one_in_bb_p (insn_t insn)
|
||
{
|
||
return sel_bb_head_p (insn) && sel_bb_end_p (insn);
|
||
}
|
||
|
||
/* Check that the region we're scheduling still has at most one
|
||
backedge. */
|
||
static void
|
||
verify_backedges (void)
|
||
{
|
||
if (pipelining_p)
|
||
{
|
||
int i, n = 0;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
for (i = 0; i < current_nr_blocks; i++)
|
||
FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
|
||
if (in_current_region_p (e->dest)
|
||
&& BLOCK_TO_BB (e->dest->index) < i)
|
||
n++;
|
||
|
||
gcc_assert (n <= 1);
|
||
}
|
||
}
|
||
|
||
|
||
/* Functions to work with control flow. */
|
||
|
||
/* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
|
||
are sorted in topological order (it might have been invalidated by
|
||
redirecting an edge). */
|
||
static void
|
||
sel_recompute_toporder (void)
|
||
{
|
||
int i, n, rgn;
|
||
int *postorder, n_blocks;
|
||
|
||
postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
|
||
n_blocks = post_order_compute (postorder, false, false);
|
||
|
||
rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
|
||
for (n = 0, i = n_blocks - 1; i >= 0; i--)
|
||
if (CONTAINING_RGN (postorder[i]) == rgn)
|
||
{
|
||
BLOCK_TO_BB (postorder[i]) = n;
|
||
BB_TO_BLOCK (n) = postorder[i];
|
||
n++;
|
||
}
|
||
|
||
/* Assert that we updated info for all blocks. We may miss some blocks if
|
||
this function is called when redirecting an edge made a block
|
||
unreachable, but that block is not deleted yet. */
|
||
gcc_assert (n == RGN_NR_BLOCKS (rgn));
|
||
}
|
||
|
||
/* Tidy the possibly empty block BB. */
|
||
static bool
|
||
maybe_tidy_empty_bb (basic_block bb)
|
||
{
|
||
basic_block succ_bb, pred_bb, note_bb;
|
||
vec<basic_block> dom_bbs;
|
||
edge e;
|
||
edge_iterator ei;
|
||
bool rescan_p;
|
||
|
||
/* Keep empty bb only if this block immediately precedes EXIT and
|
||
has incoming non-fallthrough edge, or it has no predecessors or
|
||
successors. Otherwise remove it. */
|
||
if (!sel_bb_empty_p (bb)
|
||
|| (single_succ_p (bb)
|
||
&& single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
&& (!single_pred_p (bb)
|
||
|| !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
|
||
|| EDGE_COUNT (bb->preds) == 0
|
||
|| EDGE_COUNT (bb->succs) == 0)
|
||
return false;
|
||
|
||
/* Do not attempt to redirect complex edges. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (e->flags & EDGE_COMPLEX)
|
||
return false;
|
||
else if (e->flags & EDGE_FALLTHRU)
|
||
{
|
||
rtx note;
|
||
/* If prev bb ends with asm goto, see if any of the
|
||
ASM_OPERANDS_LABELs don't point to the fallthru
|
||
label. Do not attempt to redirect it in that case. */
|
||
if (JUMP_P (BB_END (e->src))
|
||
&& (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
|
||
{
|
||
int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
|
||
|
||
for (i = 0; i < n; ++i)
|
||
if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
|
||
return false;
|
||
}
|
||
}
|
||
|
||
free_data_sets (bb);
|
||
|
||
/* Do not delete BB if it has more than one successor.
|
||
That can occur when we moving a jump. */
|
||
if (!single_succ_p (bb))
|
||
{
|
||
gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
|
||
sel_merge_blocks (bb->prev_bb, bb);
|
||
return true;
|
||
}
|
||
|
||
succ_bb = single_succ (bb);
|
||
rescan_p = true;
|
||
pred_bb = NULL;
|
||
dom_bbs.create (0);
|
||
|
||
/* Save a pred/succ from the current region to attach the notes to. */
|
||
note_bb = NULL;
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (in_current_region_p (e->src))
|
||
{
|
||
note_bb = e->src;
|
||
break;
|
||
}
|
||
if (note_bb == NULL)
|
||
note_bb = succ_bb;
|
||
|
||
/* Redirect all non-fallthru edges to the next bb. */
|
||
while (rescan_p)
|
||
{
|
||
rescan_p = false;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
pred_bb = e->src;
|
||
|
||
if (!(e->flags & EDGE_FALLTHRU))
|
||
{
|
||
/* We cannot invalidate computed topological order by moving
|
||
the edge destination block (E->SUCC) along a fallthru edge.
|
||
|
||
We will update dominators here only when we'll get
|
||
an unreachable block when redirecting, otherwise
|
||
sel_redirect_edge_and_branch will take care of it. */
|
||
if (e->dest != bb
|
||
&& single_pred_p (e->dest))
|
||
dom_bbs.safe_push (e->dest);
|
||
sel_redirect_edge_and_branch (e, succ_bb);
|
||
rescan_p = true;
|
||
break;
|
||
}
|
||
/* If the edge is fallthru, but PRED_BB ends in a conditional jump
|
||
to BB (so there is no non-fallthru edge from PRED_BB to BB), we
|
||
still have to adjust it. */
|
||
else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
|
||
{
|
||
/* If possible, try to remove the unneeded conditional jump. */
|
||
if (onlyjump_p (BB_END (pred_bb))
|
||
&& INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
|
||
&& !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
|
||
{
|
||
if (!sel_remove_insn (BB_END (pred_bb), false, false))
|
||
tidy_fallthru_edge (e);
|
||
}
|
||
else
|
||
sel_redirect_edge_and_branch (e, succ_bb);
|
||
rescan_p = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (can_merge_blocks_p (bb->prev_bb, bb))
|
||
sel_merge_blocks (bb->prev_bb, bb);
|
||
else
|
||
{
|
||
/* This is a block without fallthru predecessor. Just delete it. */
|
||
gcc_assert (note_bb);
|
||
move_bb_info (note_bb, bb);
|
||
remove_empty_bb (bb, true);
|
||
}
|
||
|
||
if (!dom_bbs.is_empty ())
|
||
{
|
||
dom_bbs.safe_push (succ_bb);
|
||
iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
|
||
dom_bbs.release ();
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Tidy the control flow after we have removed original insn from
|
||
XBB. Return true if we have removed some blocks. When FULL_TIDYING
|
||
is true, also try to optimize control flow on non-empty blocks. */
|
||
bool
|
||
tidy_control_flow (basic_block xbb, bool full_tidying)
|
||
{
|
||
bool changed = true;
|
||
insn_t first, last;
|
||
|
||
/* First check whether XBB is empty. */
|
||
changed = maybe_tidy_empty_bb (xbb);
|
||
if (changed || !full_tidying)
|
||
return changed;
|
||
|
||
/* Check if there is a unnecessary jump after insn left. */
|
||
if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
|
||
&& INSN_SCHED_TIMES (BB_END (xbb)) == 0
|
||
&& !IN_CURRENT_FENCE_P (BB_END (xbb)))
|
||
{
|
||
/* We used to call sel_remove_insn here that can trigger tidy_control_flow
|
||
before we fix up the fallthru edge. Correct that ordering by
|
||
explicitly doing the latter before the former. */
|
||
clear_expr (INSN_EXPR (BB_END (xbb)));
|
||
tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
|
||
if (tidy_control_flow (xbb, false))
|
||
return true;
|
||
}
|
||
|
||
first = sel_bb_head (xbb);
|
||
last = sel_bb_end (xbb);
|
||
if (MAY_HAVE_DEBUG_INSNS)
|
||
{
|
||
if (first != last && DEBUG_INSN_P (first))
|
||
do
|
||
first = NEXT_INSN (first);
|
||
while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
|
||
|
||
if (first != last && DEBUG_INSN_P (last))
|
||
do
|
||
last = PREV_INSN (last);
|
||
while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
|
||
}
|
||
/* Check if there is an unnecessary jump in previous basic block leading
|
||
to next basic block left after removing INSN from stream.
|
||
If it is so, remove that jump and redirect edge to current
|
||
basic block (where there was INSN before deletion). This way
|
||
when NOP will be deleted several instructions later with its
|
||
basic block we will not get a jump to next instruction, which
|
||
can be harmful. */
|
||
if (first == last
|
||
&& !sel_bb_empty_p (xbb)
|
||
&& INSN_NOP_P (last)
|
||
/* Flow goes fallthru from current block to the next. */
|
||
&& EDGE_COUNT (xbb->succs) == 1
|
||
&& (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
|
||
/* When successor is an EXIT block, it may not be the next block. */
|
||
&& single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
/* And unconditional jump in previous basic block leads to
|
||
next basic block of XBB and this jump can be safely removed. */
|
||
&& in_current_region_p (xbb->prev_bb)
|
||
&& bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
|
||
&& INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
|
||
/* Also this jump is not at the scheduling boundary. */
|
||
&& !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
|
||
{
|
||
bool recompute_toporder_p;
|
||
/* Clear data structures of jump - jump itself will be removed
|
||
by sel_redirect_edge_and_branch. */
|
||
clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
|
||
recompute_toporder_p
|
||
= sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
|
||
|
||
gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
|
||
|
||
/* We could have skipped some debug insns which did not get removed with the block,
|
||
and the seqnos could become incorrect. Fix them up here. */
|
||
if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
|
||
{
|
||
if (!sel_bb_empty_p (xbb->prev_bb))
|
||
{
|
||
int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
|
||
if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
|
||
for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
|
||
INSN_SEQNO (insn) = prev_seqno + 1;
|
||
}
|
||
}
|
||
|
||
/* It can turn out that after removing unused jump, basic block
|
||
that contained that jump, becomes empty too. In such case
|
||
remove it too. */
|
||
if (sel_bb_empty_p (xbb->prev_bb))
|
||
changed = maybe_tidy_empty_bb (xbb->prev_bb);
|
||
if (recompute_toporder_p)
|
||
sel_recompute_toporder ();
|
||
}
|
||
|
||
/* TODO: use separate flag for CFG checking. */
|
||
if (flag_checking)
|
||
{
|
||
verify_backedges ();
|
||
verify_dominators (CDI_DOMINATORS);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Purge meaningless empty blocks in the middle of a region. */
|
||
void
|
||
purge_empty_blocks (void)
|
||
{
|
||
int i;
|
||
|
||
/* Do not attempt to delete the first basic block in the region. */
|
||
for (i = 1; i < current_nr_blocks; )
|
||
{
|
||
basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
|
||
|
||
if (maybe_tidy_empty_bb (b))
|
||
continue;
|
||
|
||
i++;
|
||
}
|
||
}
|
||
|
||
/* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
|
||
do not delete insn's data, because it will be later re-emitted.
|
||
Return true if we have removed some blocks afterwards. */
|
||
bool
|
||
sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
gcc_assert (INSN_IN_STREAM_P (insn));
|
||
|
||
if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
|
||
{
|
||
expr_t expr;
|
||
av_set_iterator i;
|
||
|
||
/* When we remove a debug insn that is head of a BB, it remains
|
||
in the AV_SET of the block, but it shouldn't. */
|
||
FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
|
||
if (EXPR_INSN_RTX (expr) == insn)
|
||
{
|
||
av_set_iter_remove (&i);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (only_disconnect)
|
||
remove_insn (insn);
|
||
else
|
||
{
|
||
delete_insn (insn);
|
||
clear_expr (INSN_EXPR (insn));
|
||
}
|
||
|
||
/* It is necessary to NULL these fields in case we are going to re-insert
|
||
INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
|
||
case, but also for NOPs that we will return to the nop pool. */
|
||
SET_PREV_INSN (insn) = NULL_RTX;
|
||
SET_NEXT_INSN (insn) = NULL_RTX;
|
||
set_block_for_insn (insn, NULL);
|
||
|
||
return tidy_control_flow (bb, full_tidying);
|
||
}
|
||
|
||
/* Estimate number of the insns in BB. */
|
||
static int
|
||
sel_estimate_number_of_insns (basic_block bb)
|
||
{
|
||
int res = 0;
|
||
insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
|
||
|
||
for (; insn != next_tail; insn = NEXT_INSN (insn))
|
||
if (NONDEBUG_INSN_P (insn))
|
||
res++;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* We don't need separate luids for notes or labels. */
|
||
static int
|
||
sel_luid_for_non_insn (rtx x)
|
||
{
|
||
gcc_assert (NOTE_P (x) || LABEL_P (x));
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Find the proper seqno for inserting at INSN by successors.
|
||
Return -1 if no successors with positive seqno exist. */
|
||
static int
|
||
get_seqno_by_succs (rtx_insn *insn)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
rtx_insn *tmp = insn, *end = BB_END (bb);
|
||
int seqno;
|
||
insn_t succ = NULL;
|
||
succ_iterator si;
|
||
|
||
while (tmp != end)
|
||
{
|
||
tmp = NEXT_INSN (tmp);
|
||
if (INSN_P (tmp))
|
||
return INSN_SEQNO (tmp);
|
||
}
|
||
|
||
seqno = INT_MAX;
|
||
|
||
FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
|
||
if (INSN_SEQNO (succ) > 0)
|
||
seqno = MIN (seqno, INSN_SEQNO (succ));
|
||
|
||
if (seqno == INT_MAX)
|
||
return -1;
|
||
|
||
return seqno;
|
||
}
|
||
|
||
/* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
|
||
seqno in corner cases. */
|
||
static int
|
||
get_seqno_for_a_jump (insn_t insn, int old_seqno)
|
||
{
|
||
int seqno;
|
||
|
||
gcc_assert (INSN_SIMPLEJUMP_P (insn));
|
||
|
||
if (!sel_bb_head_p (insn))
|
||
seqno = INSN_SEQNO (PREV_INSN (insn));
|
||
else
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
if (single_pred_p (bb)
|
||
&& !in_current_region_p (single_pred (bb)))
|
||
{
|
||
/* We can have preds outside a region when splitting edges
|
||
for pipelining of an outer loop. Use succ instead.
|
||
There should be only one of them. */
|
||
insn_t succ = NULL;
|
||
succ_iterator si;
|
||
bool first = true;
|
||
|
||
gcc_assert (flag_sel_sched_pipelining_outer_loops
|
||
&& current_loop_nest);
|
||
FOR_EACH_SUCC_1 (succ, si, insn,
|
||
SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
|
||
{
|
||
gcc_assert (first);
|
||
first = false;
|
||
}
|
||
|
||
gcc_assert (succ != NULL);
|
||
seqno = INSN_SEQNO (succ);
|
||
}
|
||
else
|
||
{
|
||
insn_t *preds;
|
||
int n;
|
||
|
||
cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
|
||
|
||
gcc_assert (n > 0);
|
||
/* For one predecessor, use simple method. */
|
||
if (n == 1)
|
||
seqno = INSN_SEQNO (preds[0]);
|
||
else
|
||
seqno = get_seqno_by_preds (insn);
|
||
|
||
free (preds);
|
||
}
|
||
}
|
||
|
||
/* We were unable to find a good seqno among preds. */
|
||
if (seqno < 0)
|
||
seqno = get_seqno_by_succs (insn);
|
||
|
||
if (seqno < 0)
|
||
{
|
||
/* The only case where this could be here legally is that the only
|
||
unscheduled insn was a conditional jump that got removed and turned
|
||
into this unconditional one. Initialize from the old seqno
|
||
of that jump passed down to here. */
|
||
seqno = old_seqno;
|
||
}
|
||
|
||
gcc_assert (seqno >= 0);
|
||
return seqno;
|
||
}
|
||
|
||
/* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
|
||
with positive seqno exist. */
|
||
int
|
||
get_seqno_by_preds (rtx_insn *insn)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
rtx_insn *tmp = insn, *head = BB_HEAD (bb);
|
||
insn_t *preds;
|
||
int n, i, seqno;
|
||
|
||
/* Loop backwards from INSN to HEAD including both. */
|
||
while (1)
|
||
{
|
||
if (INSN_P (tmp))
|
||
return INSN_SEQNO (tmp);
|
||
if (tmp == head)
|
||
break;
|
||
tmp = PREV_INSN (tmp);
|
||
}
|
||
|
||
cfg_preds (bb, &preds, &n);
|
||
for (i = 0, seqno = -1; i < n; i++)
|
||
seqno = MAX (seqno, INSN_SEQNO (preds[i]));
|
||
|
||
return seqno;
|
||
}
|
||
|
||
|
||
|
||
/* Extend pass-scope data structures for basic blocks. */
|
||
void
|
||
sel_extend_global_bb_info (void)
|
||
{
|
||
sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
|
||
}
|
||
|
||
/* Extend region-scope data structures for basic blocks. */
|
||
static void
|
||
extend_region_bb_info (void)
|
||
{
|
||
sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
|
||
}
|
||
|
||
/* Extend all data structures to fit for all basic blocks. */
|
||
static void
|
||
extend_bb_info (void)
|
||
{
|
||
sel_extend_global_bb_info ();
|
||
extend_region_bb_info ();
|
||
}
|
||
|
||
/* Finalize pass-scope data structures for basic blocks. */
|
||
void
|
||
sel_finish_global_bb_info (void)
|
||
{
|
||
sel_global_bb_info.release ();
|
||
}
|
||
|
||
/* Finalize region-scope data structures for basic blocks. */
|
||
static void
|
||
finish_region_bb_info (void)
|
||
{
|
||
sel_region_bb_info.release ();
|
||
}
|
||
|
||
|
||
/* Data for each insn in current region. */
|
||
vec<sel_insn_data_def> s_i_d;
|
||
|
||
/* Extend data structures for insns from current region. */
|
||
static void
|
||
extend_insn_data (void)
|
||
{
|
||
int reserve;
|
||
|
||
sched_extend_target ();
|
||
sched_deps_init (false);
|
||
|
||
/* Extend data structures for insns from current region. */
|
||
reserve = (sched_max_luid + 1 - s_i_d.length ());
|
||
if (reserve > 0 && ! s_i_d.space (reserve))
|
||
{
|
||
int size;
|
||
|
||
if (sched_max_luid / 2 > 1024)
|
||
size = sched_max_luid + 1024;
|
||
else
|
||
size = 3 * sched_max_luid / 2;
|
||
|
||
|
||
s_i_d.safe_grow_cleared (size, true);
|
||
}
|
||
}
|
||
|
||
/* Finalize data structures for insns from current region. */
|
||
static void
|
||
finish_insns (void)
|
||
{
|
||
unsigned i;
|
||
|
||
/* Clear here all dependence contexts that may have left from insns that were
|
||
removed during the scheduling. */
|
||
for (i = 0; i < s_i_d.length (); i++)
|
||
{
|
||
sel_insn_data_def *sid_entry = &s_i_d[i];
|
||
|
||
if (sid_entry->live)
|
||
return_regset_to_pool (sid_entry->live);
|
||
if (sid_entry->analyzed_deps)
|
||
{
|
||
BITMAP_FREE (sid_entry->analyzed_deps);
|
||
BITMAP_FREE (sid_entry->found_deps);
|
||
htab_delete (sid_entry->transformed_insns);
|
||
free_deps (&sid_entry->deps_context);
|
||
}
|
||
if (EXPR_VINSN (&sid_entry->expr))
|
||
{
|
||
clear_expr (&sid_entry->expr);
|
||
|
||
/* Also, clear CANT_MOVE bit here, because we really don't want it
|
||
to be passed to the next region. */
|
||
CANT_MOVE_BY_LUID (i) = 0;
|
||
}
|
||
}
|
||
|
||
s_i_d.release ();
|
||
}
|
||
|
||
/* A proxy to pass initialization data to init_insn (). */
|
||
static sel_insn_data_def _insn_init_ssid;
|
||
static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
|
||
|
||
/* If true create a new vinsn. Otherwise use the one from EXPR. */
|
||
static bool insn_init_create_new_vinsn_p;
|
||
|
||
/* Set all necessary data for initialization of the new insn[s]. */
|
||
static expr_t
|
||
set_insn_init (expr_t expr, vinsn_t vi, int seqno)
|
||
{
|
||
expr_t x = &insn_init_ssid->expr;
|
||
|
||
copy_expr_onside (x, expr);
|
||
if (vi != NULL)
|
||
{
|
||
insn_init_create_new_vinsn_p = false;
|
||
change_vinsn_in_expr (x, vi);
|
||
}
|
||
else
|
||
insn_init_create_new_vinsn_p = true;
|
||
|
||
insn_init_ssid->seqno = seqno;
|
||
return x;
|
||
}
|
||
|
||
/* Init data for INSN. */
|
||
static void
|
||
init_insn_data (insn_t insn)
|
||
{
|
||
expr_t expr;
|
||
sel_insn_data_t ssid = insn_init_ssid;
|
||
|
||
/* The fields mentioned below are special and hence are not being
|
||
propagated to the new insns. */
|
||
gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
|
||
&& !ssid->after_stall_p && ssid->sched_cycle == 0);
|
||
gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
|
||
|
||
expr = INSN_EXPR (insn);
|
||
copy_expr (expr, &ssid->expr);
|
||
prepare_insn_expr (insn, ssid->seqno);
|
||
|
||
if (insn_init_create_new_vinsn_p)
|
||
change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
|
||
|
||
if (first_time_insn_init (insn))
|
||
init_first_time_insn_data (insn);
|
||
}
|
||
|
||
/* This is used to initialize spurious jumps generated by
|
||
sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
|
||
in corner cases within get_seqno_for_a_jump. */
|
||
static void
|
||
init_simplejump_data (insn_t insn, int old_seqno)
|
||
{
|
||
init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
|
||
REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
|
||
vNULL, true, false, false,
|
||
false, true);
|
||
INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
|
||
init_first_time_insn_data (insn);
|
||
}
|
||
|
||
/* Perform deferred initialization of insns. This is used to process
|
||
a new jump that may be created by redirect_edge. OLD_SEQNO is used
|
||
for initializing simplejumps in init_simplejump_data. */
|
||
static void
|
||
sel_init_new_insn (insn_t insn, int flags, int old_seqno)
|
||
{
|
||
/* We create data structures for bb when the first insn is emitted in it. */
|
||
if (INSN_P (insn)
|
||
&& INSN_IN_STREAM_P (insn)
|
||
&& insn_is_the_only_one_in_bb_p (insn))
|
||
{
|
||
extend_bb_info ();
|
||
create_initial_data_sets (BLOCK_FOR_INSN (insn));
|
||
}
|
||
|
||
if (flags & INSN_INIT_TODO_LUID)
|
||
{
|
||
sched_extend_luids ();
|
||
sched_init_insn_luid (insn);
|
||
}
|
||
|
||
if (flags & INSN_INIT_TODO_SSID)
|
||
{
|
||
extend_insn_data ();
|
||
init_insn_data (insn);
|
||
clear_expr (&insn_init_ssid->expr);
|
||
}
|
||
|
||
if (flags & INSN_INIT_TODO_SIMPLEJUMP)
|
||
{
|
||
extend_insn_data ();
|
||
init_simplejump_data (insn, old_seqno);
|
||
}
|
||
|
||
gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
|
||
== CONTAINING_RGN (BB_TO_BLOCK (0)));
|
||
}
|
||
|
||
|
||
/* Functions to init/finish work with lv sets. */
|
||
|
||
/* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
|
||
static void
|
||
init_lv_set (basic_block bb)
|
||
{
|
||
gcc_assert (!BB_LV_SET_VALID_P (bb));
|
||
|
||
BB_LV_SET (bb) = get_regset_from_pool ();
|
||
COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
|
||
BB_LV_SET_VALID_P (bb) = true;
|
||
}
|
||
|
||
/* Copy liveness information to BB from FROM_BB. */
|
||
static void
|
||
copy_lv_set_from (basic_block bb, basic_block from_bb)
|
||
{
|
||
gcc_assert (!BB_LV_SET_VALID_P (bb));
|
||
|
||
COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
|
||
BB_LV_SET_VALID_P (bb) = true;
|
||
}
|
||
|
||
/* Initialize lv set of all bb headers. */
|
||
void
|
||
init_lv_sets (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
/* Initialize of LV sets. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
init_lv_set (bb);
|
||
|
||
/* Don't forget EXIT_BLOCK. */
|
||
init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
}
|
||
|
||
/* Release lv set of HEAD. */
|
||
static void
|
||
free_lv_set (basic_block bb)
|
||
{
|
||
gcc_assert (BB_LV_SET (bb) != NULL);
|
||
|
||
return_regset_to_pool (BB_LV_SET (bb));
|
||
BB_LV_SET (bb) = NULL;
|
||
BB_LV_SET_VALID_P (bb) = false;
|
||
}
|
||
|
||
/* Finalize lv sets of all bb headers. */
|
||
void
|
||
free_lv_sets (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
/* Don't forget EXIT_BLOCK. */
|
||
free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* Free LV sets. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (BB_LV_SET (bb))
|
||
free_lv_set (bb);
|
||
}
|
||
|
||
/* Mark AV_SET for BB as invalid, so this set will be updated the next time
|
||
compute_av() processes BB. This function is called when creating new basic
|
||
blocks, as well as for blocks (either new or existing) where new jumps are
|
||
created when the control flow is being updated. */
|
||
static void
|
||
invalidate_av_set (basic_block bb)
|
||
{
|
||
BB_AV_LEVEL (bb) = -1;
|
||
}
|
||
|
||
/* Create initial data sets for BB (they will be invalid). */
|
||
static void
|
||
create_initial_data_sets (basic_block bb)
|
||
{
|
||
if (BB_LV_SET (bb))
|
||
BB_LV_SET_VALID_P (bb) = false;
|
||
else
|
||
BB_LV_SET (bb) = get_regset_from_pool ();
|
||
invalidate_av_set (bb);
|
||
}
|
||
|
||
/* Free av set of BB. */
|
||
static void
|
||
free_av_set (basic_block bb)
|
||
{
|
||
av_set_clear (&BB_AV_SET (bb));
|
||
BB_AV_LEVEL (bb) = 0;
|
||
}
|
||
|
||
/* Free data sets of BB. */
|
||
void
|
||
free_data_sets (basic_block bb)
|
||
{
|
||
free_lv_set (bb);
|
||
free_av_set (bb);
|
||
}
|
||
|
||
/* Exchange data sets of TO and FROM. */
|
||
void
|
||
exchange_data_sets (basic_block to, basic_block from)
|
||
{
|
||
/* Exchange lv sets of TO and FROM. */
|
||
std::swap (BB_LV_SET (from), BB_LV_SET (to));
|
||
std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
|
||
|
||
/* Exchange av sets of TO and FROM. */
|
||
std::swap (BB_AV_SET (from), BB_AV_SET (to));
|
||
std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
|
||
}
|
||
|
||
/* Copy data sets of FROM to TO. */
|
||
void
|
||
copy_data_sets (basic_block to, basic_block from)
|
||
{
|
||
gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
|
||
gcc_assert (BB_AV_SET (to) == NULL);
|
||
|
||
BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
|
||
BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
|
||
|
||
if (BB_AV_SET_VALID_P (from))
|
||
{
|
||
BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
|
||
}
|
||
if (BB_LV_SET_VALID_P (from))
|
||
{
|
||
gcc_assert (BB_LV_SET (to) != NULL);
|
||
COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
|
||
}
|
||
}
|
||
|
||
/* Return an av set for INSN, if any. */
|
||
av_set_t
|
||
get_av_set (insn_t insn)
|
||
{
|
||
av_set_t av_set;
|
||
|
||
gcc_assert (AV_SET_VALID_P (insn));
|
||
|
||
if (sel_bb_head_p (insn))
|
||
av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
|
||
else
|
||
av_set = NULL;
|
||
|
||
return av_set;
|
||
}
|
||
|
||
/* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
|
||
int
|
||
get_av_level (insn_t insn)
|
||
{
|
||
int av_level;
|
||
|
||
gcc_assert (INSN_P (insn));
|
||
|
||
if (sel_bb_head_p (insn))
|
||
av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
|
||
else
|
||
av_level = INSN_WS_LEVEL (insn);
|
||
|
||
return av_level;
|
||
}
|
||
|
||
|
||
|
||
/* Variables to work with control-flow graph. */
|
||
|
||
/* The basic block that already has been processed by the sched_data_update (),
|
||
but hasn't been in sel_add_bb () yet. */
|
||
static vec<basic_block> last_added_blocks;
|
||
|
||
/* A pool for allocating successor infos. */
|
||
static struct
|
||
{
|
||
/* A stack for saving succs_info structures. */
|
||
struct succs_info *stack;
|
||
|
||
/* Its size. */
|
||
int size;
|
||
|
||
/* Top of the stack. */
|
||
int top;
|
||
|
||
/* Maximal value of the top. */
|
||
int max_top;
|
||
} succs_info_pool;
|
||
|
||
/* Functions to work with control-flow graph. */
|
||
|
||
/* Return basic block note of BB. */
|
||
rtx_insn *
|
||
sel_bb_head (basic_block bb)
|
||
{
|
||
rtx_insn *head;
|
||
|
||
if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
gcc_assert (exit_insn != NULL_RTX);
|
||
head = exit_insn;
|
||
}
|
||
else
|
||
{
|
||
rtx_note *note = bb_note (bb);
|
||
head = next_nonnote_insn (note);
|
||
|
||
if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
|
||
head = NULL;
|
||
}
|
||
|
||
return head;
|
||
}
|
||
|
||
/* Return true if INSN is a basic block header. */
|
||
bool
|
||
sel_bb_head_p (insn_t insn)
|
||
{
|
||
return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
|
||
}
|
||
|
||
/* Return last insn of BB. */
|
||
rtx_insn *
|
||
sel_bb_end (basic_block bb)
|
||
{
|
||
if (sel_bb_empty_p (bb))
|
||
return NULL;
|
||
|
||
gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
return BB_END (bb);
|
||
}
|
||
|
||
/* Return true if INSN is the last insn in its basic block. */
|
||
bool
|
||
sel_bb_end_p (insn_t insn)
|
||
{
|
||
return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
|
||
}
|
||
|
||
/* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
|
||
bool
|
||
sel_bb_empty_p (basic_block bb)
|
||
{
|
||
return sel_bb_head (bb) == NULL;
|
||
}
|
||
|
||
/* True when BB belongs to the current scheduling region. */
|
||
bool
|
||
in_current_region_p (basic_block bb)
|
||
{
|
||
if (bb->index < NUM_FIXED_BLOCKS)
|
||
return false;
|
||
|
||
return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
|
||
}
|
||
|
||
/* Return the block which is a fallthru bb of a conditional jump JUMP. */
|
||
basic_block
|
||
fallthru_bb_of_jump (const rtx_insn *jump)
|
||
{
|
||
if (!JUMP_P (jump))
|
||
return NULL;
|
||
|
||
if (!any_condjump_p (jump))
|
||
return NULL;
|
||
|
||
/* A basic block that ends with a conditional jump may still have one successor
|
||
(and be followed by a barrier), we are not interested. */
|
||
if (single_succ_p (BLOCK_FOR_INSN (jump)))
|
||
return NULL;
|
||
|
||
return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
|
||
}
|
||
|
||
/* Remove all notes from BB. */
|
||
static void
|
||
init_bb (basic_block bb)
|
||
{
|
||
remove_notes (bb_note (bb), BB_END (bb));
|
||
BB_NOTE_LIST (bb) = note_list;
|
||
}
|
||
|
||
void
|
||
sel_init_bbs (bb_vec_t bbs)
|
||
{
|
||
const struct sched_scan_info_def ssi =
|
||
{
|
||
extend_bb_info, /* extend_bb */
|
||
init_bb, /* init_bb */
|
||
NULL, /* extend_insn */
|
||
NULL /* init_insn */
|
||
};
|
||
|
||
sched_scan (&ssi, bbs);
|
||
}
|
||
|
||
/* Restore notes for the whole region. */
|
||
static void
|
||
sel_restore_notes (void)
|
||
{
|
||
int bb;
|
||
insn_t insn;
|
||
|
||
for (bb = 0; bb < current_nr_blocks; bb++)
|
||
{
|
||
basic_block first, last;
|
||
|
||
first = EBB_FIRST_BB (bb);
|
||
last = EBB_LAST_BB (bb)->next_bb;
|
||
|
||
do
|
||
{
|
||
note_list = BB_NOTE_LIST (first);
|
||
restore_other_notes (NULL, first);
|
||
BB_NOTE_LIST (first) = NULL;
|
||
|
||
FOR_BB_INSNS (first, insn)
|
||
if (NONDEBUG_INSN_P (insn))
|
||
reemit_notes (insn);
|
||
|
||
first = first->next_bb;
|
||
}
|
||
while (first != last);
|
||
}
|
||
}
|
||
|
||
/* Free per-bb data structures. */
|
||
void
|
||
sel_finish_bbs (void)
|
||
{
|
||
sel_restore_notes ();
|
||
|
||
/* Remove current loop preheader from this loop. */
|
||
if (current_loop_nest)
|
||
sel_remove_loop_preheader ();
|
||
|
||
finish_region_bb_info ();
|
||
}
|
||
|
||
/* Return true if INSN has a single successor of type FLAGS. */
|
||
bool
|
||
sel_insn_has_single_succ_p (insn_t insn, int flags)
|
||
{
|
||
insn_t succ;
|
||
succ_iterator si;
|
||
bool first_p = true;
|
||
|
||
FOR_EACH_SUCC_1 (succ, si, insn, flags)
|
||
{
|
||
if (first_p)
|
||
first_p = false;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Allocate successor's info. */
|
||
static struct succs_info *
|
||
alloc_succs_info (void)
|
||
{
|
||
if (succs_info_pool.top == succs_info_pool.max_top)
|
||
{
|
||
int i;
|
||
|
||
if (++succs_info_pool.max_top >= succs_info_pool.size)
|
||
gcc_unreachable ();
|
||
|
||
i = ++succs_info_pool.top;
|
||
succs_info_pool.stack[i].succs_ok.create (10);
|
||
succs_info_pool.stack[i].succs_other.create (10);
|
||
succs_info_pool.stack[i].probs_ok.create (10);
|
||
}
|
||
else
|
||
succs_info_pool.top++;
|
||
|
||
return &succs_info_pool.stack[succs_info_pool.top];
|
||
}
|
||
|
||
/* Free successor's info. */
|
||
void
|
||
free_succs_info (struct succs_info * sinfo)
|
||
{
|
||
gcc_assert (succs_info_pool.top >= 0
|
||
&& &succs_info_pool.stack[succs_info_pool.top] == sinfo);
|
||
succs_info_pool.top--;
|
||
|
||
/* Clear stale info. */
|
||
sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
|
||
sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
|
||
sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
|
||
sinfo->all_prob = 0;
|
||
sinfo->succs_ok_n = 0;
|
||
sinfo->all_succs_n = 0;
|
||
}
|
||
|
||
/* Compute successor info for INSN. FLAGS are the flags passed
|
||
to the FOR_EACH_SUCC_1 iterator. */
|
||
struct succs_info *
|
||
compute_succs_info (insn_t insn, short flags)
|
||
{
|
||
succ_iterator si;
|
||
insn_t succ;
|
||
struct succs_info *sinfo = alloc_succs_info ();
|
||
|
||
/* Traverse *all* successors and decide what to do with each. */
|
||
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
|
||
{
|
||
/* FIXME: this doesn't work for skipping to loop exits, as we don't
|
||
perform code motion through inner loops. */
|
||
short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
|
||
|
||
if (current_flags & flags)
|
||
{
|
||
sinfo->succs_ok.safe_push (succ);
|
||
sinfo->probs_ok.safe_push (
|
||
/* FIXME: Improve calculation when skipping
|
||
inner loop to exits. */
|
||
si.bb_end
|
||
? (si.e1->probability.initialized_p ()
|
||
? si.e1->probability.to_reg_br_prob_base ()
|
||
: 0)
|
||
: REG_BR_PROB_BASE);
|
||
sinfo->succs_ok_n++;
|
||
}
|
||
else
|
||
sinfo->succs_other.safe_push (succ);
|
||
|
||
/* Compute all_prob. */
|
||
if (!si.bb_end)
|
||
sinfo->all_prob = REG_BR_PROB_BASE;
|
||
else if (si.e1->probability.initialized_p ())
|
||
sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
|
||
|
||
sinfo->all_succs_n++;
|
||
}
|
||
|
||
return sinfo;
|
||
}
|
||
|
||
/* Return the predecessors of BB in PREDS and their number in N.
|
||
Empty blocks are skipped. SIZE is used to allocate PREDS. */
|
||
static void
|
||
cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
gcc_assert (BLOCK_TO_BB (bb->index) != 0);
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
basic_block pred_bb = e->src;
|
||
insn_t bb_end = BB_END (pred_bb);
|
||
|
||
if (!in_current_region_p (pred_bb))
|
||
{
|
||
gcc_assert (flag_sel_sched_pipelining_outer_loops
|
||
&& current_loop_nest);
|
||
continue;
|
||
}
|
||
|
||
if (sel_bb_empty_p (pred_bb))
|
||
cfg_preds_1 (pred_bb, preds, n, size);
|
||
else
|
||
{
|
||
if (*n == *size)
|
||
*preds = XRESIZEVEC (insn_t, *preds,
|
||
(*size = 2 * *size + 1));
|
||
(*preds)[(*n)++] = bb_end;
|
||
}
|
||
}
|
||
|
||
gcc_assert (*n != 0
|
||
|| (flag_sel_sched_pipelining_outer_loops
|
||
&& current_loop_nest));
|
||
}
|
||
|
||
/* Find all predecessors of BB and record them in PREDS and their number
|
||
in N. Empty blocks are skipped, and only normal (forward in-region)
|
||
edges are processed. */
|
||
static void
|
||
cfg_preds (basic_block bb, insn_t **preds, int *n)
|
||
{
|
||
int size = 0;
|
||
|
||
*preds = NULL;
|
||
*n = 0;
|
||
cfg_preds_1 (bb, preds, n, &size);
|
||
}
|
||
|
||
/* Returns true if we are moving INSN through join point. */
|
||
bool
|
||
sel_num_cfg_preds_gt_1 (insn_t insn)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
|
||
return false;
|
||
|
||
bb = BLOCK_FOR_INSN (insn);
|
||
|
||
while (1)
|
||
{
|
||
if (EDGE_COUNT (bb->preds) > 1)
|
||
return true;
|
||
|
||
gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
|
||
bb = EDGE_PRED (bb, 0)->src;
|
||
|
||
if (!sel_bb_empty_p (bb))
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns true when BB should be the end of an ebb. Adapted from the
|
||
code in sched-ebb.cc. */
|
||
bool
|
||
bb_ends_ebb_p (basic_block bb)
|
||
{
|
||
basic_block next_bb = bb_next_bb (bb);
|
||
edge e;
|
||
|
||
if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| bitmap_bit_p (forced_ebb_heads, next_bb->index)
|
||
|| (LABEL_P (BB_HEAD (next_bb))
|
||
/* NB: LABEL_NUSES () is not maintained outside of jump.cc.
|
||
Work around that. */
|
||
&& !single_pred_p (next_bb)))
|
||
return true;
|
||
|
||
if (!in_current_region_p (next_bb))
|
||
return true;
|
||
|
||
e = find_fallthru_edge (bb->succs);
|
||
if (e)
|
||
{
|
||
gcc_assert (e->dest == next_bb);
|
||
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
|
||
successor of INSN. */
|
||
bool
|
||
in_same_ebb_p (insn_t insn, insn_t succ)
|
||
{
|
||
basic_block ptr = BLOCK_FOR_INSN (insn);
|
||
|
||
for (;;)
|
||
{
|
||
if (ptr == BLOCK_FOR_INSN (succ))
|
||
return true;
|
||
|
||
if (bb_ends_ebb_p (ptr))
|
||
return false;
|
||
|
||
ptr = bb_next_bb (ptr);
|
||
}
|
||
}
|
||
|
||
/* Recomputes the reverse topological order for the function and
|
||
saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
|
||
modified appropriately. */
|
||
static void
|
||
recompute_rev_top_order (void)
|
||
{
|
||
int *postorder;
|
||
int n_blocks, i;
|
||
|
||
if (!rev_top_order_index
|
||
|| rev_top_order_index_len < last_basic_block_for_fn (cfun))
|
||
{
|
||
rev_top_order_index_len = last_basic_block_for_fn (cfun);
|
||
rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
|
||
rev_top_order_index_len);
|
||
}
|
||
|
||
postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
||
|
||
n_blocks = post_order_compute (postorder, true, false);
|
||
gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
|
||
|
||
/* Build reverse function: for each basic block with BB->INDEX == K
|
||
rev_top_order_index[K] is it's reverse topological sort number. */
|
||
for (i = 0; i < n_blocks; i++)
|
||
{
|
||
gcc_assert (postorder[i] < rev_top_order_index_len);
|
||
rev_top_order_index[postorder[i]] = i;
|
||
}
|
||
|
||
free (postorder);
|
||
}
|
||
|
||
/* Clear all flags from insns in BB that could spoil its rescheduling. */
|
||
void
|
||
clear_outdated_rtx_info (basic_block bb)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
if (INSN_P (insn))
|
||
{
|
||
SCHED_GROUP_P (insn) = 0;
|
||
INSN_AFTER_STALL_P (insn) = 0;
|
||
INSN_SCHED_TIMES (insn) = 0;
|
||
EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
|
||
|
||
/* We cannot use the changed caches, as previously we could ignore
|
||
the LHS dependence due to enabled renaming and transform
|
||
the expression, and currently we'll be unable to do this. */
|
||
htab_empty (INSN_TRANSFORMED_INSNS (insn));
|
||
}
|
||
}
|
||
|
||
/* Add BB_NOTE to the pool of available basic block notes. */
|
||
static void
|
||
return_bb_to_pool (basic_block bb)
|
||
{
|
||
rtx_note *note = bb_note (bb);
|
||
|
||
gcc_assert (NOTE_BASIC_BLOCK (note) == bb
|
||
&& bb->aux == NULL);
|
||
|
||
/* It turns out that current cfg infrastructure does not support
|
||
reuse of basic blocks. Don't bother for now. */
|
||
/*bb_note_pool.safe_push (note);*/
|
||
}
|
||
|
||
/* Get a bb_note from pool or return NULL_RTX if pool is empty. */
|
||
static rtx_note *
|
||
get_bb_note_from_pool (void)
|
||
{
|
||
if (bb_note_pool.is_empty ())
|
||
return NULL;
|
||
else
|
||
{
|
||
rtx_note *note = bb_note_pool.pop ();
|
||
|
||
SET_PREV_INSN (note) = NULL_RTX;
|
||
SET_NEXT_INSN (note) = NULL_RTX;
|
||
|
||
return note;
|
||
}
|
||
}
|
||
|
||
/* Free bb_note_pool. */
|
||
void
|
||
free_bb_note_pool (void)
|
||
{
|
||
bb_note_pool.release ();
|
||
}
|
||
|
||
/* Setup scheduler pool and successor structure. */
|
||
void
|
||
alloc_sched_pools (void)
|
||
{
|
||
int succs_size;
|
||
|
||
succs_size = MAX_WS + 1;
|
||
succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
|
||
succs_info_pool.size = succs_size;
|
||
succs_info_pool.top = -1;
|
||
succs_info_pool.max_top = -1;
|
||
}
|
||
|
||
/* Free the pools. */
|
||
void
|
||
free_sched_pools (void)
|
||
{
|
||
int i;
|
||
|
||
sched_lists_pool.release ();
|
||
gcc_assert (succs_info_pool.top == -1);
|
||
for (i = 0; i <= succs_info_pool.max_top; i++)
|
||
{
|
||
succs_info_pool.stack[i].succs_ok.release ();
|
||
succs_info_pool.stack[i].succs_other.release ();
|
||
succs_info_pool.stack[i].probs_ok.release ();
|
||
}
|
||
free (succs_info_pool.stack);
|
||
}
|
||
|
||
|
||
/* Returns a position in RGN where BB can be inserted retaining
|
||
topological order. */
|
||
static int
|
||
find_place_to_insert_bb (basic_block bb, int rgn)
|
||
{
|
||
bool has_preds_outside_rgn = false;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* Find whether we have preds outside the region. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!in_current_region_p (e->src))
|
||
{
|
||
has_preds_outside_rgn = true;
|
||
break;
|
||
}
|
||
|
||
/* Recompute the top order -- needed when we have > 1 pred
|
||
and in case we don't have preds outside. */
|
||
if (flag_sel_sched_pipelining_outer_loops
|
||
&& (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
|
||
{
|
||
int i, bbi = bb->index, cur_bbi;
|
||
|
||
recompute_rev_top_order ();
|
||
for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
|
||
{
|
||
cur_bbi = BB_TO_BLOCK (i);
|
||
if (rev_top_order_index[bbi]
|
||
< rev_top_order_index[cur_bbi])
|
||
break;
|
||
}
|
||
|
||
/* We skipped the right block, so we increase i. We accommodate
|
||
it for increasing by step later, so we decrease i. */
|
||
return (i + 1) - 1;
|
||
}
|
||
else if (has_preds_outside_rgn)
|
||
{
|
||
/* This is the case when we generate an extra empty block
|
||
to serve as region head during pipelining. */
|
||
e = EDGE_SUCC (bb, 0);
|
||
gcc_assert (EDGE_COUNT (bb->succs) == 1
|
||
&& in_current_region_p (EDGE_SUCC (bb, 0)->dest)
|
||
&& (BLOCK_TO_BB (e->dest->index) == 0));
|
||
return -1;
|
||
}
|
||
|
||
/* We don't have preds outside the region. We should have
|
||
the only pred, because the multiple preds case comes from
|
||
the pipelining of outer loops, and that is handled above.
|
||
Just take the bbi of this single pred. */
|
||
if (EDGE_COUNT (bb->succs) > 0)
|
||
{
|
||
int pred_bbi;
|
||
|
||
gcc_assert (EDGE_COUNT (bb->preds) == 1);
|
||
|
||
pred_bbi = EDGE_PRED (bb, 0)->src->index;
|
||
return BLOCK_TO_BB (pred_bbi);
|
||
}
|
||
else
|
||
/* BB has no successors. It is safe to put it in the end. */
|
||
return current_nr_blocks - 1;
|
||
}
|
||
|
||
/* Deletes an empty basic block freeing its data. */
|
||
static void
|
||
delete_and_free_basic_block (basic_block bb)
|
||
{
|
||
gcc_assert (sel_bb_empty_p (bb));
|
||
|
||
if (BB_LV_SET (bb))
|
||
free_lv_set (bb);
|
||
|
||
bitmap_clear_bit (blocks_to_reschedule, bb->index);
|
||
|
||
/* Can't assert av_set properties because we use sel_aremove_bb
|
||
when removing loop preheader from the region. At the point of
|
||
removing the preheader we already have deallocated sel_region_bb_info. */
|
||
gcc_assert (BB_LV_SET (bb) == NULL
|
||
&& !BB_LV_SET_VALID_P (bb)
|
||
&& BB_AV_LEVEL (bb) == 0
|
||
&& BB_AV_SET (bb) == NULL);
|
||
|
||
delete_basic_block (bb);
|
||
}
|
||
|
||
/* Add BB to the current region and update the region data. */
|
||
static void
|
||
add_block_to_current_region (basic_block bb)
|
||
{
|
||
int i, pos, bbi = -2, rgn;
|
||
|
||
rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
|
||
bbi = find_place_to_insert_bb (bb, rgn);
|
||
bbi += 1;
|
||
pos = RGN_BLOCKS (rgn) + bbi;
|
||
|
||
gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
|
||
&& ebb_head[bbi] == pos);
|
||
|
||
/* Make a place for the new block. */
|
||
extend_regions ();
|
||
|
||
for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
|
||
BLOCK_TO_BB (rgn_bb_table[i])++;
|
||
|
||
memmove (rgn_bb_table + pos + 1,
|
||
rgn_bb_table + pos,
|
||
(RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
|
||
|
||
/* Initialize data for BB. */
|
||
rgn_bb_table[pos] = bb->index;
|
||
BLOCK_TO_BB (bb->index) = bbi;
|
||
CONTAINING_RGN (bb->index) = rgn;
|
||
|
||
RGN_NR_BLOCKS (rgn)++;
|
||
|
||
for (i = rgn + 1; i <= nr_regions; i++)
|
||
RGN_BLOCKS (i)++;
|
||
}
|
||
|
||
/* Remove BB from the current region and update the region data. */
|
||
static void
|
||
remove_bb_from_region (basic_block bb)
|
||
{
|
||
int i, pos, bbi = -2, rgn;
|
||
|
||
rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
|
||
bbi = BLOCK_TO_BB (bb->index);
|
||
pos = RGN_BLOCKS (rgn) + bbi;
|
||
|
||
gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
|
||
&& ebb_head[bbi] == pos);
|
||
|
||
for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
|
||
BLOCK_TO_BB (rgn_bb_table[i])--;
|
||
|
||
memmove (rgn_bb_table + pos,
|
||
rgn_bb_table + pos + 1,
|
||
(RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
|
||
|
||
RGN_NR_BLOCKS (rgn)--;
|
||
for (i = rgn + 1; i <= nr_regions; i++)
|
||
RGN_BLOCKS (i)--;
|
||
}
|
||
|
||
/* Add BB to the current region and update all data. If BB is NULL, add all
|
||
blocks from last_added_blocks vector. */
|
||
static void
|
||
sel_add_bb (basic_block bb)
|
||
{
|
||
/* Extend luids so that new notes will receive zero luids. */
|
||
sched_extend_luids ();
|
||
sched_init_bbs ();
|
||
sel_init_bbs (last_added_blocks);
|
||
|
||
/* When bb is passed explicitly, the vector should contain
|
||
the only element that equals to bb; otherwise, the vector
|
||
should not be NULL. */
|
||
gcc_assert (last_added_blocks.exists ());
|
||
|
||
if (bb != NULL)
|
||
{
|
||
gcc_assert (last_added_blocks.length () == 1
|
||
&& last_added_blocks[0] == bb);
|
||
add_block_to_current_region (bb);
|
||
|
||
/* We associate creating/deleting data sets with the first insn
|
||
appearing / disappearing in the bb. */
|
||
if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
|
||
create_initial_data_sets (bb);
|
||
|
||
last_added_blocks.release ();
|
||
}
|
||
else
|
||
/* BB is NULL - process LAST_ADDED_BLOCKS instead. */
|
||
{
|
||
int i;
|
||
basic_block temp_bb = NULL;
|
||
|
||
for (i = 0;
|
||
last_added_blocks.iterate (i, &bb); i++)
|
||
{
|
||
add_block_to_current_region (bb);
|
||
temp_bb = bb;
|
||
}
|
||
|
||
/* We need to fetch at least one bb so we know the region
|
||
to update. */
|
||
gcc_assert (temp_bb != NULL);
|
||
bb = temp_bb;
|
||
|
||
last_added_blocks.release ();
|
||
}
|
||
|
||
rgn_setup_region (CONTAINING_RGN (bb->index));
|
||
}
|
||
|
||
/* Remove BB from the current region and update all data.
|
||
If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
|
||
static void
|
||
sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
|
||
{
|
||
unsigned idx = bb->index;
|
||
|
||
gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
|
||
|
||
remove_bb_from_region (bb);
|
||
return_bb_to_pool (bb);
|
||
bitmap_clear_bit (blocks_to_reschedule, idx);
|
||
|
||
if (remove_from_cfg_p)
|
||
{
|
||
basic_block succ = single_succ (bb);
|
||
delete_and_free_basic_block (bb);
|
||
set_immediate_dominator (CDI_DOMINATORS, succ,
|
||
recompute_dominator (CDI_DOMINATORS, succ));
|
||
}
|
||
|
||
rgn_setup_region (CONTAINING_RGN (idx));
|
||
}
|
||
|
||
/* Concatenate info of EMPTY_BB to info of MERGE_BB. */
|
||
static void
|
||
move_bb_info (basic_block merge_bb, basic_block empty_bb)
|
||
{
|
||
if (in_current_region_p (merge_bb))
|
||
concat_note_lists (BB_NOTE_LIST (empty_bb),
|
||
&BB_NOTE_LIST (merge_bb));
|
||
BB_NOTE_LIST (empty_bb) = NULL;
|
||
|
||
}
|
||
|
||
/* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
|
||
region, but keep it in CFG. */
|
||
static void
|
||
remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
|
||
{
|
||
/* The block should contain just a note or a label.
|
||
We try to check whether it is unused below. */
|
||
gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
|
||
|| LABEL_P (BB_HEAD (empty_bb)));
|
||
|
||
/* If basic block has predecessors or successors, redirect them. */
|
||
if (remove_from_cfg_p
|
||
&& (EDGE_COUNT (empty_bb->preds) > 0
|
||
|| EDGE_COUNT (empty_bb->succs) > 0))
|
||
{
|
||
basic_block pred;
|
||
basic_block succ;
|
||
|
||
/* We need to init PRED and SUCC before redirecting edges. */
|
||
if (EDGE_COUNT (empty_bb->preds) > 0)
|
||
{
|
||
edge e;
|
||
|
||
gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
|
||
|
||
e = EDGE_PRED (empty_bb, 0);
|
||
gcc_assert (e->src == empty_bb->prev_bb
|
||
&& (e->flags & EDGE_FALLTHRU));
|
||
|
||
pred = empty_bb->prev_bb;
|
||
}
|
||
else
|
||
pred = NULL;
|
||
|
||
if (EDGE_COUNT (empty_bb->succs) > 0)
|
||
{
|
||
/* We do not check fallthruness here as above, because
|
||
after removing a jump the edge may actually be not fallthru. */
|
||
gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
|
||
succ = EDGE_SUCC (empty_bb, 0)->dest;
|
||
}
|
||
else
|
||
succ = NULL;
|
||
|
||
if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
|
||
{
|
||
edge e = EDGE_PRED (empty_bb, 0);
|
||
|
||
if (e->flags & EDGE_FALLTHRU)
|
||
redirect_edge_succ_nodup (e, succ);
|
||
else
|
||
sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
|
||
}
|
||
|
||
if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
|
||
{
|
||
edge e = EDGE_SUCC (empty_bb, 0);
|
||
|
||
if (find_edge (pred, e->dest) == NULL)
|
||
redirect_edge_pred (e, pred);
|
||
}
|
||
}
|
||
|
||
/* Finish removing. */
|
||
sel_remove_bb (empty_bb, remove_from_cfg_p);
|
||
}
|
||
|
||
/* An implementation of create_basic_block hook, which additionally updates
|
||
per-bb data structures. */
|
||
static basic_block
|
||
sel_create_basic_block (void *headp, void *endp, basic_block after)
|
||
{
|
||
basic_block new_bb;
|
||
rtx_note *new_bb_note;
|
||
|
||
gcc_assert (flag_sel_sched_pipelining_outer_loops
|
||
|| !last_added_blocks.exists ());
|
||
|
||
new_bb_note = get_bb_note_from_pool ();
|
||
|
||
if (new_bb_note == NULL_RTX)
|
||
new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
|
||
else
|
||
{
|
||
new_bb = create_basic_block_structure ((rtx_insn *) headp,
|
||
(rtx_insn *) endp,
|
||
new_bb_note, after);
|
||
new_bb->aux = NULL;
|
||
}
|
||
|
||
last_added_blocks.safe_push (new_bb);
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
/* Implement sched_init_only_bb (). */
|
||
static void
|
||
sel_init_only_bb (basic_block bb, basic_block after)
|
||
{
|
||
gcc_assert (after == NULL);
|
||
|
||
extend_regions ();
|
||
rgn_make_new_region_out_of_new_block (bb);
|
||
}
|
||
|
||
/* Update the latch when we've splitted or merged it from FROM block to TO.
|
||
This should be checked for all outer loops, too. */
|
||
static void
|
||
change_loops_latches (basic_block from, basic_block to)
|
||
{
|
||
gcc_assert (from != to);
|
||
|
||
if (current_loop_nest)
|
||
{
|
||
class loop *loop;
|
||
|
||
for (loop = current_loop_nest; loop; loop = loop_outer (loop))
|
||
if (considered_for_pipelining_p (loop) && loop->latch == from)
|
||
{
|
||
gcc_assert (loop == current_loop_nest);
|
||
loop->latch = to;
|
||
gcc_assert (loop_latch_edge (loop));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Splits BB on two basic blocks, adding it to the region and extending
|
||
per-bb data structures. Returns the newly created bb. */
|
||
static basic_block
|
||
sel_split_block (basic_block bb, rtx after)
|
||
{
|
||
basic_block new_bb;
|
||
insn_t insn;
|
||
|
||
new_bb = sched_split_block_1 (bb, after);
|
||
sel_add_bb (new_bb);
|
||
|
||
/* This should be called after sel_add_bb, because this uses
|
||
CONTAINING_RGN for the new block, which is not yet initialized.
|
||
FIXME: this function may be a no-op now. */
|
||
change_loops_latches (bb, new_bb);
|
||
|
||
/* Update ORIG_BB_INDEX for insns moved into the new block. */
|
||
FOR_BB_INSNS (new_bb, insn)
|
||
if (INSN_P (insn))
|
||
EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
|
||
|
||
if (sel_bb_empty_p (bb))
|
||
{
|
||
gcc_assert (!sel_bb_empty_p (new_bb));
|
||
|
||
/* NEW_BB has data sets that need to be updated and BB holds
|
||
data sets that should be removed. Exchange these data sets
|
||
so that we won't lose BB's valid data sets. */
|
||
exchange_data_sets (new_bb, bb);
|
||
free_data_sets (bb);
|
||
}
|
||
|
||
if (!sel_bb_empty_p (new_bb)
|
||
&& bitmap_bit_p (blocks_to_reschedule, bb->index))
|
||
bitmap_set_bit (blocks_to_reschedule, new_bb->index);
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
/* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
|
||
Otherwise returns NULL. */
|
||
static rtx_insn *
|
||
check_for_new_jump (basic_block bb, int prev_max_uid)
|
||
{
|
||
rtx_insn *end;
|
||
|
||
end = sel_bb_end (bb);
|
||
if (end && INSN_UID (end) >= prev_max_uid)
|
||
return end;
|
||
return NULL;
|
||
}
|
||
|
||
/* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
|
||
New means having UID at least equal to PREV_MAX_UID. */
|
||
static rtx_insn *
|
||
find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
|
||
{
|
||
rtx_insn *jump;
|
||
|
||
/* Return immediately if no new insns were emitted. */
|
||
if (get_max_uid () == prev_max_uid)
|
||
return NULL;
|
||
|
||
/* Now check both blocks for new jumps. It will ever be only one. */
|
||
if ((jump = check_for_new_jump (from, prev_max_uid)))
|
||
return jump;
|
||
|
||
if (jump_bb != NULL
|
||
&& (jump = check_for_new_jump (jump_bb, prev_max_uid)))
|
||
return jump;
|
||
return NULL;
|
||
}
|
||
|
||
/* Splits E and adds the newly created basic block to the current region.
|
||
Returns this basic block. */
|
||
basic_block
|
||
sel_split_edge (edge e)
|
||
{
|
||
basic_block new_bb, src, other_bb = NULL;
|
||
int prev_max_uid;
|
||
rtx_insn *jump;
|
||
|
||
src = e->src;
|
||
prev_max_uid = get_max_uid ();
|
||
new_bb = split_edge (e);
|
||
|
||
if (flag_sel_sched_pipelining_outer_loops
|
||
&& current_loop_nest)
|
||
{
|
||
int i;
|
||
basic_block bb;
|
||
|
||
/* Some of the basic blocks might not have been added to the loop.
|
||
Add them here, until this is fixed in force_fallthru. */
|
||
for (i = 0;
|
||
last_added_blocks.iterate (i, &bb); i++)
|
||
if (!bb->loop_father)
|
||
{
|
||
add_bb_to_loop (bb, e->dest->loop_father);
|
||
|
||
gcc_assert (!other_bb && (new_bb->index != bb->index));
|
||
other_bb = bb;
|
||
}
|
||
}
|
||
|
||
/* Add all last_added_blocks to the region. */
|
||
sel_add_bb (NULL);
|
||
|
||
jump = find_new_jump (src, new_bb, prev_max_uid);
|
||
if (jump)
|
||
sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
|
||
|
||
/* Put the correct lv set on this block. */
|
||
if (other_bb && !sel_bb_empty_p (other_bb))
|
||
compute_live (sel_bb_head (other_bb));
|
||
|
||
return new_bb;
|
||
}
|
||
|
||
/* Implement sched_create_empty_bb (). */
|
||
static basic_block
|
||
sel_create_empty_bb (basic_block after)
|
||
{
|
||
basic_block new_bb;
|
||
|
||
new_bb = sched_create_empty_bb_1 (after);
|
||
|
||
/* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
|
||
later. */
|
||
gcc_assert (last_added_blocks.length () == 1
|
||
&& last_added_blocks[0] == new_bb);
|
||
|
||
last_added_blocks.release ();
|
||
return new_bb;
|
||
}
|
||
|
||
/* Implement sched_create_recovery_block. ORIG_INSN is where block
|
||
will be splitted to insert a check. */
|
||
basic_block
|
||
sel_create_recovery_block (insn_t orig_insn)
|
||
{
|
||
basic_block first_bb, second_bb, recovery_block;
|
||
basic_block before_recovery = NULL;
|
||
rtx_insn *jump;
|
||
|
||
first_bb = BLOCK_FOR_INSN (orig_insn);
|
||
if (sel_bb_end_p (orig_insn))
|
||
{
|
||
/* Avoid introducing an empty block while splitting. */
|
||
gcc_assert (single_succ_p (first_bb));
|
||
second_bb = single_succ (first_bb);
|
||
}
|
||
else
|
||
second_bb = sched_split_block (first_bb, orig_insn);
|
||
|
||
recovery_block = sched_create_recovery_block (&before_recovery);
|
||
if (before_recovery)
|
||
copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
gcc_assert (sel_bb_empty_p (recovery_block));
|
||
sched_create_recovery_edges (first_bb, recovery_block, second_bb);
|
||
if (current_loops != NULL)
|
||
add_bb_to_loop (recovery_block, first_bb->loop_father);
|
||
|
||
sel_add_bb (recovery_block);
|
||
|
||
jump = BB_END (recovery_block);
|
||
gcc_assert (sel_bb_head (recovery_block) == jump);
|
||
sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
|
||
|
||
return recovery_block;
|
||
}
|
||
|
||
/* Merge basic block B into basic block A. */
|
||
static void
|
||
sel_merge_blocks (basic_block a, basic_block b)
|
||
{
|
||
gcc_assert (sel_bb_empty_p (b)
|
||
&& EDGE_COUNT (b->preds) == 1
|
||
&& EDGE_PRED (b, 0)->src == b->prev_bb);
|
||
|
||
move_bb_info (b->prev_bb, b);
|
||
remove_empty_bb (b, false);
|
||
merge_blocks (a, b);
|
||
change_loops_latches (b, a);
|
||
}
|
||
|
||
/* A wrapper for redirect_edge_and_branch_force, which also initializes
|
||
data structures for possibly created bb and insns. */
|
||
void
|
||
sel_redirect_edge_and_branch_force (edge e, basic_block to)
|
||
{
|
||
basic_block jump_bb, src, orig_dest = e->dest;
|
||
int prev_max_uid;
|
||
rtx_insn *jump;
|
||
int old_seqno = -1;
|
||
|
||
/* This function is now used only for bookkeeping code creation, where
|
||
we'll never get the single pred of orig_dest block and thus will not
|
||
hit unreachable blocks when updating dominator info. */
|
||
gcc_assert (!sel_bb_empty_p (e->src)
|
||
&& !single_pred_p (orig_dest));
|
||
src = e->src;
|
||
prev_max_uid = get_max_uid ();
|
||
/* Compute and pass old_seqno down to sel_init_new_insn only for the case
|
||
when the conditional jump being redirected may become unconditional. */
|
||
if (any_condjump_p (BB_END (src))
|
||
&& INSN_SEQNO (BB_END (src)) >= 0)
|
||
old_seqno = INSN_SEQNO (BB_END (src));
|
||
|
||
jump_bb = redirect_edge_and_branch_force (e, to);
|
||
if (jump_bb != NULL)
|
||
sel_add_bb (jump_bb);
|
||
|
||
/* This function could not be used to spoil the loop structure by now,
|
||
thus we don't care to update anything. But check it to be sure. */
|
||
if (current_loop_nest
|
||
&& pipelining_p)
|
||
gcc_assert (loop_latch_edge (current_loop_nest));
|
||
|
||
jump = find_new_jump (src, jump_bb, prev_max_uid);
|
||
if (jump)
|
||
sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
|
||
old_seqno);
|
||
set_immediate_dominator (CDI_DOMINATORS, to,
|
||
recompute_dominator (CDI_DOMINATORS, to));
|
||
set_immediate_dominator (CDI_DOMINATORS, orig_dest,
|
||
recompute_dominator (CDI_DOMINATORS, orig_dest));
|
||
if (jump && sel_bb_head_p (jump))
|
||
compute_live (jump);
|
||
}
|
||
|
||
/* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
|
||
redirected edge are in reverse topological order. */
|
||
bool
|
||
sel_redirect_edge_and_branch (edge e, basic_block to)
|
||
{
|
||
bool latch_edge_p;
|
||
basic_block src, orig_dest = e->dest;
|
||
int prev_max_uid;
|
||
rtx_insn *jump;
|
||
edge redirected;
|
||
bool recompute_toporder_p = false;
|
||
bool maybe_unreachable = single_pred_p (orig_dest);
|
||
int old_seqno = -1;
|
||
|
||
latch_edge_p = (pipelining_p
|
||
&& current_loop_nest
|
||
&& e == loop_latch_edge (current_loop_nest));
|
||
|
||
src = e->src;
|
||
prev_max_uid = get_max_uid ();
|
||
|
||
/* Compute and pass old_seqno down to sel_init_new_insn only for the case
|
||
when the conditional jump being redirected may become unconditional. */
|
||
if (any_condjump_p (BB_END (src))
|
||
&& INSN_SEQNO (BB_END (src)) >= 0)
|
||
old_seqno = INSN_SEQNO (BB_END (src));
|
||
|
||
redirected = redirect_edge_and_branch (e, to);
|
||
|
||
gcc_assert (redirected && !last_added_blocks.exists ());
|
||
|
||
/* When we've redirected a latch edge, update the header. */
|
||
if (latch_edge_p)
|
||
{
|
||
current_loop_nest->header = to;
|
||
gcc_assert (loop_latch_edge (current_loop_nest));
|
||
}
|
||
|
||
/* In rare situations, the topological relation between the blocks connected
|
||
by the redirected edge can change (see PR42245 for an example). Update
|
||
block_to_bb/bb_to_block. */
|
||
if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
|
||
&& BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
|
||
recompute_toporder_p = true;
|
||
|
||
jump = find_new_jump (src, NULL, prev_max_uid);
|
||
if (jump)
|
||
sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
|
||
|
||
/* Only update dominator info when we don't have unreachable blocks.
|
||
Otherwise we'll update in maybe_tidy_empty_bb. */
|
||
if (!maybe_unreachable)
|
||
{
|
||
set_immediate_dominator (CDI_DOMINATORS, to,
|
||
recompute_dominator (CDI_DOMINATORS, to));
|
||
set_immediate_dominator (CDI_DOMINATORS, orig_dest,
|
||
recompute_dominator (CDI_DOMINATORS, orig_dest));
|
||
}
|
||
if (jump && sel_bb_head_p (jump))
|
||
compute_live (jump);
|
||
return recompute_toporder_p;
|
||
}
|
||
|
||
/* This variable holds the cfg hooks used by the selective scheduler. */
|
||
static struct cfg_hooks sel_cfg_hooks;
|
||
|
||
/* Register sel-sched cfg hooks. */
|
||
void
|
||
sel_register_cfg_hooks (void)
|
||
{
|
||
sched_split_block = sel_split_block;
|
||
|
||
orig_cfg_hooks = get_cfg_hooks ();
|
||
sel_cfg_hooks = orig_cfg_hooks;
|
||
|
||
sel_cfg_hooks.create_basic_block = sel_create_basic_block;
|
||
|
||
set_cfg_hooks (sel_cfg_hooks);
|
||
|
||
sched_init_only_bb = sel_init_only_bb;
|
||
sched_split_block = sel_split_block;
|
||
sched_create_empty_bb = sel_create_empty_bb;
|
||
}
|
||
|
||
/* Unregister sel-sched cfg hooks. */
|
||
void
|
||
sel_unregister_cfg_hooks (void)
|
||
{
|
||
sched_create_empty_bb = NULL;
|
||
sched_split_block = NULL;
|
||
sched_init_only_bb = NULL;
|
||
|
||
set_cfg_hooks (orig_cfg_hooks);
|
||
}
|
||
|
||
|
||
/* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
|
||
LABEL is where this jump should be directed. */
|
||
rtx_insn *
|
||
create_insn_rtx_from_pattern (rtx pattern, rtx label)
|
||
{
|
||
rtx_insn *insn_rtx;
|
||
|
||
gcc_assert (!INSN_P (pattern));
|
||
|
||
start_sequence ();
|
||
|
||
if (label == NULL_RTX)
|
||
insn_rtx = emit_insn (pattern);
|
||
else if (DEBUG_INSN_P (label))
|
||
insn_rtx = emit_debug_insn (pattern);
|
||
else
|
||
{
|
||
insn_rtx = emit_jump_insn (pattern);
|
||
JUMP_LABEL (insn_rtx) = label;
|
||
++LABEL_NUSES (label);
|
||
}
|
||
|
||
end_sequence ();
|
||
|
||
sched_extend_luids ();
|
||
sched_extend_target ();
|
||
sched_deps_init (false);
|
||
|
||
/* Initialize INSN_CODE now. */
|
||
recog_memoized (insn_rtx);
|
||
return insn_rtx;
|
||
}
|
||
|
||
/* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
|
||
must not be clonable. */
|
||
vinsn_t
|
||
create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
|
||
{
|
||
gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
|
||
|
||
/* If VINSN_TYPE is not USE, retain its uniqueness. */
|
||
return vinsn_create (insn_rtx, force_unique_p);
|
||
}
|
||
|
||
/* Create a copy of INSN_RTX. */
|
||
rtx_insn *
|
||
create_copy_of_insn_rtx (rtx insn_rtx)
|
||
{
|
||
rtx_insn *res;
|
||
rtx link;
|
||
|
||
if (DEBUG_INSN_P (insn_rtx))
|
||
return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
|
||
insn_rtx);
|
||
|
||
gcc_assert (NONJUMP_INSN_P (insn_rtx));
|
||
|
||
res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
|
||
NULL_RTX);
|
||
|
||
/* Locate the end of existing REG_NOTES in NEW_RTX. */
|
||
rtx *ptail = ®_NOTES (res);
|
||
while (*ptail != NULL_RTX)
|
||
ptail = &XEXP (*ptail, 1);
|
||
|
||
/* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
|
||
since mark_jump_label will make them. REG_LABEL_TARGETs are created
|
||
there too, but are supposed to be sticky, so we copy them. */
|
||
for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
|
||
&& REG_NOTE_KIND (link) != REG_EQUAL
|
||
&& REG_NOTE_KIND (link) != REG_EQUIV)
|
||
{
|
||
*ptail = duplicate_reg_note (link);
|
||
ptail = &XEXP (*ptail, 1);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Change vinsn field of EXPR to hold NEW_VINSN. */
|
||
void
|
||
change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
|
||
{
|
||
vinsn_detach (EXPR_VINSN (expr));
|
||
|
||
EXPR_VINSN (expr) = new_vinsn;
|
||
vinsn_attach (new_vinsn);
|
||
}
|
||
|
||
/* Helpers for global init. */
|
||
/* This structure is used to be able to call existing bundling mechanism
|
||
and calculate insn priorities. */
|
||
static struct haifa_sched_info sched_sel_haifa_sched_info =
|
||
{
|
||
NULL, /* init_ready_list */
|
||
NULL, /* can_schedule_ready_p */
|
||
NULL, /* schedule_more_p */
|
||
NULL, /* new_ready */
|
||
NULL, /* rgn_rank */
|
||
sel_print_insn, /* rgn_print_insn */
|
||
contributes_to_priority,
|
||
NULL, /* insn_finishes_block_p */
|
||
|
||
NULL, NULL,
|
||
NULL, NULL,
|
||
0, 0,
|
||
|
||
NULL, /* add_remove_insn */
|
||
NULL, /* begin_schedule_ready */
|
||
NULL, /* begin_move_insn */
|
||
NULL, /* advance_target_bb */
|
||
|
||
NULL,
|
||
NULL,
|
||
|
||
SEL_SCHED | NEW_BBS
|
||
};
|
||
|
||
/* Setup special insns used in the scheduler. */
|
||
void
|
||
setup_nop_and_exit_insns (void)
|
||
{
|
||
gcc_assert (nop_pattern == NULL_RTX
|
||
&& exit_insn == NULL_RTX);
|
||
|
||
nop_pattern = constm1_rtx;
|
||
|
||
start_sequence ();
|
||
emit_insn (nop_pattern);
|
||
exit_insn = get_insns ();
|
||
end_sequence ();
|
||
set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
}
|
||
|
||
/* Free special insns used in the scheduler. */
|
||
void
|
||
free_nop_and_exit_insns (void)
|
||
{
|
||
exit_insn = NULL;
|
||
nop_pattern = NULL_RTX;
|
||
}
|
||
|
||
/* Setup a special vinsn used in new insns initialization. */
|
||
void
|
||
setup_nop_vinsn (void)
|
||
{
|
||
nop_vinsn = vinsn_create (exit_insn, false);
|
||
vinsn_attach (nop_vinsn);
|
||
}
|
||
|
||
/* Free a special vinsn used in new insns initialization. */
|
||
void
|
||
free_nop_vinsn (void)
|
||
{
|
||
gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
|
||
vinsn_detach (nop_vinsn);
|
||
nop_vinsn = NULL;
|
||
}
|
||
|
||
/* Call a set_sched_flags hook. */
|
||
void
|
||
sel_set_sched_flags (void)
|
||
{
|
||
/* ??? This means that set_sched_flags were called, and we decided to
|
||
support speculation. However, set_sched_flags also modifies flags
|
||
on current_sched_info, doing this only at global init. And we
|
||
sometimes change c_s_i later. So put the correct flags again. */
|
||
if (spec_info && targetm.sched.set_sched_flags)
|
||
targetm.sched.set_sched_flags (spec_info);
|
||
}
|
||
|
||
/* Setup pointers to global sched info structures. */
|
||
void
|
||
sel_setup_sched_infos (void)
|
||
{
|
||
rgn_setup_common_sched_info ();
|
||
|
||
memcpy (&sel_common_sched_info, common_sched_info,
|
||
sizeof (sel_common_sched_info));
|
||
|
||
sel_common_sched_info.fix_recovery_cfg = NULL;
|
||
sel_common_sched_info.add_block = NULL;
|
||
sel_common_sched_info.estimate_number_of_insns
|
||
= sel_estimate_number_of_insns;
|
||
sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
|
||
sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
|
||
|
||
common_sched_info = &sel_common_sched_info;
|
||
|
||
current_sched_info = &sched_sel_haifa_sched_info;
|
||
current_sched_info->sched_max_insns_priority =
|
||
get_rgn_sched_max_insns_priority ();
|
||
|
||
sel_set_sched_flags ();
|
||
}
|
||
|
||
|
||
/* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
|
||
*BB_ORD_INDEX after that is increased. */
|
||
static void
|
||
sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
|
||
{
|
||
RGN_NR_BLOCKS (rgn) += 1;
|
||
RGN_DONT_CALC_DEPS (rgn) = 0;
|
||
RGN_HAS_REAL_EBB (rgn) = 0;
|
||
CONTAINING_RGN (bb->index) = rgn;
|
||
BLOCK_TO_BB (bb->index) = *bb_ord_index;
|
||
rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
|
||
(*bb_ord_index)++;
|
||
|
||
/* FIXME: it is true only when not scheduling ebbs. */
|
||
RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
|
||
}
|
||
|
||
/* Functions to support pipelining of outer loops. */
|
||
|
||
/* Creates a new empty region and returns it's number. */
|
||
static int
|
||
sel_create_new_region (void)
|
||
{
|
||
int new_rgn_number = nr_regions;
|
||
|
||
RGN_NR_BLOCKS (new_rgn_number) = 0;
|
||
|
||
/* FIXME: This will work only when EBBs are not created. */
|
||
if (new_rgn_number != 0)
|
||
RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
|
||
RGN_NR_BLOCKS (new_rgn_number - 1);
|
||
else
|
||
RGN_BLOCKS (new_rgn_number) = 0;
|
||
|
||
/* Set the blocks of the next region so the other functions may
|
||
calculate the number of blocks in the region. */
|
||
RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
|
||
RGN_NR_BLOCKS (new_rgn_number);
|
||
|
||
nr_regions++;
|
||
|
||
return new_rgn_number;
|
||
}
|
||
|
||
/* If X has a smaller topological sort number than Y, returns -1;
|
||
if greater, returns 1. */
|
||
static int
|
||
bb_top_order_comparator (const void *x, const void *y)
|
||
{
|
||
basic_block bb1 = *(const basic_block *) x;
|
||
basic_block bb2 = *(const basic_block *) y;
|
||
|
||
gcc_assert (bb1 == bb2
|
||
|| rev_top_order_index[bb1->index]
|
||
!= rev_top_order_index[bb2->index]);
|
||
|
||
/* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
|
||
bbs with greater number should go earlier. */
|
||
if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Create a region for LOOP and return its number. If we don't want
|
||
to pipeline LOOP, return -1. */
|
||
static int
|
||
make_region_from_loop (class loop *loop)
|
||
{
|
||
unsigned int i;
|
||
int new_rgn_number = -1;
|
||
class loop *inner;
|
||
|
||
/* Basic block index, to be assigned to BLOCK_TO_BB. */
|
||
int bb_ord_index = 0;
|
||
basic_block *loop_blocks;
|
||
basic_block preheader_block;
|
||
|
||
if (loop->num_nodes
|
||
> (unsigned) param_max_pipeline_region_blocks)
|
||
return -1;
|
||
|
||
/* Don't pipeline loops whose latch belongs to some of its inner loops. */
|
||
for (inner = loop->inner; inner; inner = inner->inner)
|
||
if (flow_bb_inside_loop_p (inner, loop->latch))
|
||
return -1;
|
||
|
||
loop->ninsns = num_loop_insns (loop);
|
||
if ((int) loop->ninsns > param_max_pipeline_region_insns)
|
||
return -1;
|
||
|
||
loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
|
||
{
|
||
free (loop_blocks);
|
||
return -1;
|
||
}
|
||
|
||
preheader_block = loop_preheader_edge (loop)->src;
|
||
gcc_assert (preheader_block);
|
||
gcc_assert (loop_blocks[0] == loop->header);
|
||
|
||
new_rgn_number = sel_create_new_region ();
|
||
|
||
sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
|
||
bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
|
||
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
{
|
||
/* Add only those blocks that haven't been scheduled in the inner loop.
|
||
The exception is the basic blocks with bookkeeping code - they should
|
||
be added to the region (and they actually don't belong to the loop
|
||
body, but to the region containing that loop body). */
|
||
|
||
gcc_assert (new_rgn_number >= 0);
|
||
|
||
if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
|
||
{
|
||
sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
|
||
new_rgn_number);
|
||
bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
|
||
}
|
||
}
|
||
|
||
free (loop_blocks);
|
||
MARK_LOOP_FOR_PIPELINING (loop);
|
||
|
||
return new_rgn_number;
|
||
}
|
||
|
||
/* Create a new region from preheader blocks LOOP_BLOCKS. */
|
||
void
|
||
make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
|
||
{
|
||
unsigned int i;
|
||
int new_rgn_number = -1;
|
||
basic_block bb;
|
||
|
||
/* Basic block index, to be assigned to BLOCK_TO_BB. */
|
||
int bb_ord_index = 0;
|
||
|
||
new_rgn_number = sel_create_new_region ();
|
||
|
||
FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
|
||
{
|
||
gcc_assert (new_rgn_number >= 0);
|
||
|
||
sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
|
||
}
|
||
|
||
vec_free (loop_blocks);
|
||
}
|
||
|
||
|
||
/* Create region(s) from loop nest LOOP, such that inner loops will be
|
||
pipelined before outer loops. Returns true when a region for LOOP
|
||
is created. */
|
||
static bool
|
||
make_regions_from_loop_nest (class loop *loop)
|
||
{
|
||
class loop *cur_loop;
|
||
int rgn_number;
|
||
|
||
/* Traverse all inner nodes of the loop. */
|
||
for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
|
||
if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
|
||
return false;
|
||
|
||
/* At this moment all regular inner loops should have been pipelined.
|
||
Try to create a region from this loop. */
|
||
rgn_number = make_region_from_loop (loop);
|
||
|
||
if (rgn_number < 0)
|
||
return false;
|
||
|
||
loop_nests.safe_push (loop);
|
||
return true;
|
||
}
|
||
|
||
/* Initalize data structures needed. */
|
||
void
|
||
sel_init_pipelining (void)
|
||
{
|
||
/* Collect loop information to be used in outer loops pipelining. */
|
||
loop_optimizer_init (LOOPS_HAVE_PREHEADERS
|
||
| LOOPS_HAVE_FALLTHRU_PREHEADERS
|
||
| LOOPS_HAVE_RECORDED_EXITS
|
||
| LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
|
||
current_loop_nest = NULL;
|
||
|
||
bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
|
||
bitmap_clear (bbs_in_loop_rgns);
|
||
|
||
recompute_rev_top_order ();
|
||
}
|
||
|
||
/* Returns a class loop for region RGN. */
|
||
loop_p
|
||
get_loop_nest_for_rgn (unsigned int rgn)
|
||
{
|
||
/* Regions created with extend_rgns don't have corresponding loop nests,
|
||
because they don't represent loops. */
|
||
if (rgn < loop_nests.length ())
|
||
return loop_nests[rgn];
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* True when LOOP was included into pipelining regions. */
|
||
bool
|
||
considered_for_pipelining_p (class loop *loop)
|
||
{
|
||
if (loop_depth (loop) == 0)
|
||
return false;
|
||
|
||
/* Now, the loop could be too large or irreducible. Check whether its
|
||
region is in LOOP_NESTS.
|
||
We determine the region number of LOOP as the region number of its
|
||
latch. We can't use header here, because this header could be
|
||
just removed preheader and it will give us the wrong region number.
|
||
Latch can't be used because it could be in the inner loop too. */
|
||
if (LOOP_MARKED_FOR_PIPELINING_P (loop))
|
||
{
|
||
int rgn = CONTAINING_RGN (loop->latch->index);
|
||
|
||
gcc_assert ((unsigned) rgn < loop_nests.length ());
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Makes regions from the rest of the blocks, after loops are chosen
|
||
for pipelining. */
|
||
static void
|
||
make_regions_from_the_rest (void)
|
||
{
|
||
int cur_rgn_blocks;
|
||
int *loop_hdr;
|
||
int i;
|
||
|
||
basic_block bb;
|
||
edge e;
|
||
edge_iterator ei;
|
||
int *degree;
|
||
|
||
/* Index in rgn_bb_table where to start allocating new regions. */
|
||
cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
|
||
|
||
/* Make regions from all the rest basic blocks - those that don't belong to
|
||
any loop or belong to irreducible loops. Prepare the data structures
|
||
for extend_rgns. */
|
||
|
||
/* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
|
||
LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
|
||
loop. */
|
||
loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
|
||
|
||
|
||
/* For each basic block that belongs to some loop assign the number
|
||
of innermost loop it belongs to. */
|
||
for (i = 0; i < last_basic_block_for_fn (cfun); i++)
|
||
loop_hdr[i] = -1;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
if (bb->loop_father && bb->loop_father->num != 0
|
||
&& !(bb->flags & BB_IRREDUCIBLE_LOOP))
|
||
loop_hdr[bb->index] = bb->loop_father->num;
|
||
}
|
||
|
||
/* For each basic block degree is calculated as the number of incoming
|
||
edges, that are going out of bbs that are not yet scheduled.
|
||
The basic blocks that are scheduled have degree value of zero. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
degree[bb->index] = 0;
|
||
|
||
if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
|
||
degree[bb->index]++;
|
||
}
|
||
else
|
||
degree[bb->index] = -1;
|
||
}
|
||
|
||
extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
|
||
|
||
/* Any block that did not end up in a region is placed into a region
|
||
by itself. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (degree[bb->index] >= 0)
|
||
{
|
||
rgn_bb_table[cur_rgn_blocks] = bb->index;
|
||
RGN_NR_BLOCKS (nr_regions) = 1;
|
||
RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
|
||
RGN_DONT_CALC_DEPS (nr_regions) = 0;
|
||
RGN_HAS_REAL_EBB (nr_regions) = 0;
|
||
CONTAINING_RGN (bb->index) = nr_regions++;
|
||
BLOCK_TO_BB (bb->index) = 0;
|
||
}
|
||
|
||
free (degree);
|
||
free (loop_hdr);
|
||
}
|
||
|
||
/* Free data structures used in pipelining of loops. */
|
||
void sel_finish_pipelining (void)
|
||
{
|
||
/* Release aux fields so we don't free them later by mistake. */
|
||
for (auto loop : loops_list (cfun, 0))
|
||
loop->aux = NULL;
|
||
|
||
loop_optimizer_finalize ();
|
||
|
||
loop_nests.release ();
|
||
|
||
free (rev_top_order_index);
|
||
rev_top_order_index = NULL;
|
||
}
|
||
|
||
/* This function replaces the find_rgns when
|
||
FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
|
||
void
|
||
sel_find_rgns (void)
|
||
{
|
||
sel_init_pipelining ();
|
||
extend_regions ();
|
||
|
||
if (current_loops)
|
||
{
|
||
unsigned flags = flag_sel_sched_pipelining_outer_loops
|
||
? LI_FROM_INNERMOST
|
||
: LI_ONLY_INNERMOST;
|
||
|
||
for (auto loop : loops_list (cfun, flags))
|
||
make_regions_from_loop_nest (loop);
|
||
}
|
||
|
||
/* Make regions from all the rest basic blocks and schedule them.
|
||
These blocks include blocks that don't belong to any loop or belong
|
||
to irreducible loops. */
|
||
make_regions_from_the_rest ();
|
||
|
||
/* We don't need bbs_in_loop_rgns anymore. */
|
||
sbitmap_free (bbs_in_loop_rgns);
|
||
bbs_in_loop_rgns = NULL;
|
||
}
|
||
|
||
/* Add the preheader blocks from previous loop to current region taking
|
||
it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
|
||
This function is only used with -fsel-sched-pipelining-outer-loops. */
|
||
void
|
||
sel_add_loop_preheaders (bb_vec_t *bbs)
|
||
{
|
||
int i;
|
||
basic_block bb;
|
||
vec<basic_block> *preheader_blocks
|
||
= LOOP_PREHEADER_BLOCKS (current_loop_nest);
|
||
|
||
if (!preheader_blocks)
|
||
return;
|
||
|
||
for (i = 0; preheader_blocks->iterate (i, &bb); i++)
|
||
{
|
||
bbs->safe_push (bb);
|
||
last_added_blocks.safe_push (bb);
|
||
sel_add_bb (bb);
|
||
}
|
||
|
||
vec_free (preheader_blocks);
|
||
}
|
||
|
||
/* While pipelining outer loops, returns TRUE if BB is a loop preheader.
|
||
Please note that the function should also work when pipelining_p is
|
||
false, because it is used when deciding whether we should or should
|
||
not reschedule pipelined code. */
|
||
bool
|
||
sel_is_loop_preheader_p (basic_block bb)
|
||
{
|
||
if (current_loop_nest)
|
||
{
|
||
class loop *outer;
|
||
|
||
if (preheader_removed)
|
||
return false;
|
||
|
||
/* Preheader is the first block in the region. */
|
||
if (BLOCK_TO_BB (bb->index) == 0)
|
||
return true;
|
||
|
||
/* We used to find a preheader with the topological information.
|
||
Check that the above code is equivalent to what we did before. */
|
||
|
||
if (in_current_region_p (current_loop_nest->header))
|
||
gcc_assert (!(BLOCK_TO_BB (bb->index)
|
||
< BLOCK_TO_BB (current_loop_nest->header->index)));
|
||
|
||
/* Support the situation when the latch block of outer loop
|
||
could be from here. */
|
||
for (outer = loop_outer (current_loop_nest);
|
||
outer;
|
||
outer = loop_outer (outer))
|
||
if (considered_for_pipelining_p (outer) && outer->latch == bb)
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
|
||
can be removed, making the corresponding edge fallthrough (assuming that
|
||
all basic blocks between JUMP_BB and DEST_BB are empty). */
|
||
static bool
|
||
bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
|
||
{
|
||
if (!onlyjump_p (BB_END (jump_bb))
|
||
|| tablejump_p (BB_END (jump_bb), NULL, NULL))
|
||
return false;
|
||
|
||
/* Several outgoing edges, abnormal edge or destination of jump is
|
||
not DEST_BB. */
|
||
if (EDGE_COUNT (jump_bb->succs) != 1
|
||
|| EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
|
||
|| EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
|
||
return false;
|
||
|
||
/* If not anything of the upper. */
|
||
return true;
|
||
}
|
||
|
||
/* Removes the loop preheader from the current region and saves it in
|
||
PREHEADER_BLOCKS of the father loop, so they will be added later to
|
||
region that represents an outer loop. */
|
||
static void
|
||
sel_remove_loop_preheader (void)
|
||
{
|
||
int i, old_len;
|
||
int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
|
||
basic_block bb;
|
||
bool all_empty_p = true;
|
||
vec<basic_block> *preheader_blocks
|
||
= LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
|
||
|
||
vec_check_alloc (preheader_blocks, 0);
|
||
|
||
gcc_assert (current_loop_nest);
|
||
old_len = preheader_blocks->length ();
|
||
|
||
/* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
|
||
for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
|
||
{
|
||
bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
|
||
|
||
/* If the basic block belongs to region, but doesn't belong to
|
||
corresponding loop, then it should be a preheader. */
|
||
if (sel_is_loop_preheader_p (bb))
|
||
{
|
||
preheader_blocks->safe_push (bb);
|
||
if (BB_END (bb) != bb_note (bb))
|
||
all_empty_p = false;
|
||
}
|
||
}
|
||
|
||
/* Remove these blocks only after iterating over the whole region. */
|
||
for (i = preheader_blocks->length () - 1; i >= old_len; i--)
|
||
{
|
||
bb = (*preheader_blocks)[i];
|
||
sel_remove_bb (bb, false);
|
||
}
|
||
|
||
if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
|
||
{
|
||
if (!all_empty_p)
|
||
/* Immediately create new region from preheader. */
|
||
make_region_from_loop_preheader (preheader_blocks);
|
||
else
|
||
{
|
||
/* If all preheader blocks are empty - dont create new empty region.
|
||
Instead, remove them completely. */
|
||
FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
|
||
|
||
/* Redirect all incoming edges to next basic block. */
|
||
for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
|
||
{
|
||
if (! (e->flags & EDGE_FALLTHRU))
|
||
redirect_edge_and_branch (e, bb->next_bb);
|
||
else
|
||
redirect_edge_succ (e, bb->next_bb);
|
||
}
|
||
gcc_assert (BB_NOTE_LIST (bb) == NULL);
|
||
delete_and_free_basic_block (bb);
|
||
|
||
/* Check if after deleting preheader there is a nonconditional
|
||
jump in PREV_BB that leads to the next basic block NEXT_BB.
|
||
If it is so - delete this jump and clear data sets of its
|
||
basic block if it becomes empty. */
|
||
if (next_bb->prev_bb == prev_bb
|
||
&& prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& bb_has_removable_jump_to_p (prev_bb, next_bb))
|
||
{
|
||
redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
|
||
if (BB_END (prev_bb) == bb_note (prev_bb))
|
||
free_data_sets (prev_bb);
|
||
}
|
||
|
||
set_immediate_dominator (CDI_DOMINATORS, next_bb,
|
||
recompute_dominator (CDI_DOMINATORS,
|
||
next_bb));
|
||
}
|
||
}
|
||
vec_free (preheader_blocks);
|
||
}
|
||
else
|
||
/* Store preheader within the father's loop structure. */
|
||
SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
|
||
preheader_blocks);
|
||
}
|
||
|
||
#endif
|