mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-12-03 00:34:21 +08:00
76a3962fe9
PR target/51500 * interpret.cc (_Jv_init_cif): Handle thiscall convention for 32-bit Windows. * java/lang/reflect/natMethod.cc (_Jv_CallAnyMethodA): Likewise. * java/lang/reflect/natVMProxy.cc (invoke_t): Add thiscall-attribute for 32-bit Windows. From-SVN: r183794
1950 lines
48 KiB
C++
1950 lines
48 KiB
C++
// interpret.cc - Code for the interpreter
|
||
|
||
/* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation
|
||
|
||
This file is part of libgcj.
|
||
|
||
This software is copyrighted work licensed under the terms of the
|
||
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
||
details. */
|
||
|
||
/* Author: Kresten Krab Thorup <krab@gnu.org> */
|
||
|
||
#include <config.h>
|
||
#include <platform.h>
|
||
|
||
#pragma implementation "java-interp.h"
|
||
|
||
#include <jvm.h>
|
||
#include <java-cpool.h>
|
||
#include <java-interp.h>
|
||
#include <java/lang/System.h>
|
||
#include <java/lang/String.h>
|
||
#include <java/lang/Integer.h>
|
||
#include <java/lang/Long.h>
|
||
#include <java/lang/StringBuffer.h>
|
||
#include <java/lang/Class.h>
|
||
#include <java/lang/reflect/Modifier.h>
|
||
#include <java/lang/InternalError.h>
|
||
#include <java/lang/NullPointerException.h>
|
||
#include <java/lang/ArithmeticException.h>
|
||
#include <java/lang/IncompatibleClassChangeError.h>
|
||
#include <java/lang/InstantiationException.h>
|
||
#include <java/lang/Thread.h>
|
||
#include <java-insns.h>
|
||
#include <java-signal.h>
|
||
#include <java/lang/ClassFormatError.h>
|
||
#include <execution.h>
|
||
#include <java/lang/reflect/Modifier.h>
|
||
|
||
#include <jvmti.h>
|
||
#include "jvmti-int.h"
|
||
|
||
#include <gnu/gcj/jvmti/Breakpoint.h>
|
||
#include <gnu/gcj/jvmti/BreakpointManager.h>
|
||
|
||
// Execution engine for interpreted code.
|
||
_Jv_InterpreterEngine _Jv_soleInterpreterEngine;
|
||
|
||
#include <stdlib.h>
|
||
|
||
using namespace gcj;
|
||
|
||
static void throw_internal_error (const char *msg)
|
||
__attribute__ ((__noreturn__));
|
||
static void throw_incompatible_class_change_error (jstring msg)
|
||
__attribute__ ((__noreturn__));
|
||
static void throw_null_pointer_exception ()
|
||
__attribute__ ((__noreturn__));
|
||
|
||
static void throw_class_format_error (jstring msg)
|
||
__attribute__ ((__noreturn__));
|
||
static void throw_class_format_error (const char *msg)
|
||
__attribute__ ((__noreturn__));
|
||
|
||
static void find_catch_location (jthrowable, jthread, jmethodID *, jlong *);
|
||
|
||
// A macro to facilitate JVMTI exception reporting
|
||
#define REPORT_EXCEPTION(Jthrowable) \
|
||
do { \
|
||
if (JVMTI_REQUESTED_EVENT (Exception)) \
|
||
_Jv_ReportJVMTIExceptionThrow (Jthrowable); \
|
||
} \
|
||
while (0)
|
||
|
||
#ifdef DIRECT_THREADED
|
||
// Lock to ensure that methods are not compiled concurrently.
|
||
// We could use a finer-grained lock here, however it is not safe to use
|
||
// the Class monitor as user code in another thread could hold it.
|
||
static _Jv_Mutex_t compile_mutex;
|
||
|
||
// See class ThreadCountAdjuster and REWRITE_INSN for how this is
|
||
// used.
|
||
_Jv_Mutex_t _Jv_InterpMethod::rewrite_insn_mutex;
|
||
|
||
void
|
||
_Jv_InitInterpreter()
|
||
{
|
||
_Jv_MutexInit (&compile_mutex);
|
||
_Jv_MutexInit (&_Jv_InterpMethod::rewrite_insn_mutex);
|
||
}
|
||
#else
|
||
void _Jv_InitInterpreter() {}
|
||
#endif
|
||
|
||
// The breakpoint instruction. For the direct threaded case,
|
||
// _Jv_InterpMethod::compile will initialize breakpoint_insn
|
||
// the first time it is called.
|
||
#ifdef DIRECT_THREADED
|
||
insn_slot _Jv_InterpMethod::bp_insn_slot;
|
||
pc_t _Jv_InterpMethod::breakpoint_insn = NULL;
|
||
#else
|
||
unsigned char _Jv_InterpMethod::bp_insn_opcode
|
||
= static_cast<unsigned char> (op_breakpoint);
|
||
pc_t _Jv_InterpMethod::breakpoint_insn = &_Jv_InterpMethod::bp_insn_opcode;
|
||
#endif
|
||
|
||
extern "C" double __ieee754_fmod (double,double);
|
||
|
||
static inline void dupx (_Jv_word *sp, int n, int x)
|
||
{
|
||
// first "slide" n+x elements n to the right
|
||
int top = n-1;
|
||
for (int i = 0; i < n+x; i++)
|
||
{
|
||
sp[(top-i)] = sp[(top-i)-n];
|
||
}
|
||
|
||
// next, copy the n top elements, n+x down
|
||
for (int i = 0; i < n; i++)
|
||
{
|
||
sp[top-(n+x)-i] = sp[top-i];
|
||
}
|
||
}
|
||
|
||
// Used to convert from floating types to integral types.
|
||
template<typename TO, typename FROM>
|
||
static inline TO
|
||
convert (FROM val, TO min, TO max)
|
||
{
|
||
TO ret;
|
||
if (val >= (FROM) max)
|
||
ret = max;
|
||
else if (val <= (FROM) min)
|
||
ret = min;
|
||
else if (val != val)
|
||
ret = 0;
|
||
else
|
||
ret = (TO) val;
|
||
return ret;
|
||
}
|
||
|
||
#define PUSHA(V) (sp++)->o = (V)
|
||
#define PUSHI(V) (sp++)->i = (V)
|
||
#define PUSHF(V) (sp++)->f = (V)
|
||
#if SIZEOF_VOID_P == 8
|
||
# define PUSHL(V) (sp->l = (V), sp += 2)
|
||
# define PUSHD(V) (sp->d = (V), sp += 2)
|
||
#else
|
||
# define PUSHL(V) do { _Jv_word2 w2; w2.l=(V); \
|
||
(sp++)->ia[0] = w2.ia[0]; \
|
||
(sp++)->ia[0] = w2.ia[1]; } while (0)
|
||
# define PUSHD(V) do { _Jv_word2 w2; w2.d=(V); \
|
||
(sp++)->ia[0] = w2.ia[0]; \
|
||
(sp++)->ia[0] = w2.ia[1]; } while (0)
|
||
#endif
|
||
|
||
#define POPA() ((--sp)->o)
|
||
#define POPI() ((jint) (--sp)->i) // cast since it may be promoted
|
||
#define POPF() ((jfloat) (--sp)->f)
|
||
#if SIZEOF_VOID_P == 8
|
||
# define POPL() (sp -= 2, (jlong) sp->l)
|
||
# define POPD() (sp -= 2, (jdouble) sp->d)
|
||
#else
|
||
# define POPL() ({ _Jv_word2 w2; \
|
||
w2.ia[1] = (--sp)->ia[0]; \
|
||
w2.ia[0] = (--sp)->ia[0]; w2.l; })
|
||
# define POPD() ({ _Jv_word2 w2; \
|
||
w2.ia[1] = (--sp)->ia[0]; \
|
||
w2.ia[0] = (--sp)->ia[0]; w2.d; })
|
||
#endif
|
||
|
||
#define LOADA(I) (sp++)->o = locals[I].o
|
||
#define LOADI(I) (sp++)->i = locals[I].i
|
||
#define LOADF(I) (sp++)->f = locals[I].f
|
||
#if SIZEOF_VOID_P == 8
|
||
# define LOADL(I) (sp->l = locals[I].l, sp += 2)
|
||
# define LOADD(I) (sp->d = locals[I].d, sp += 2)
|
||
#else
|
||
# define LOADL(I) do { jint __idx = (I); \
|
||
(sp++)->ia[0] = locals[__idx].ia[0]; \
|
||
(sp++)->ia[0] = locals[__idx+1].ia[0]; \
|
||
} while (0)
|
||
# define LOADD(I) LOADL(I)
|
||
#endif
|
||
|
||
#define STOREA(I) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'o'); \
|
||
locals[__idx].o = (--sp)->o; \
|
||
} \
|
||
while (0)
|
||
#define STOREI(I) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'i'); \
|
||
locals[__idx].i = (--sp)->i; \
|
||
} while (0)
|
||
#define STOREF(I) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'f'); \
|
||
locals[__idx].f = (--sp)->f; \
|
||
} \
|
||
while (0)
|
||
#if SIZEOF_VOID_P == 8
|
||
# define STOREL(I) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'l'); \
|
||
DEBUG_LOCALS_INSN (__idx + 1, 'x'); \
|
||
(sp -= 2, locals[__idx].l = sp->l); \
|
||
} \
|
||
while (0)
|
||
# define STORED(I) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'd'); \
|
||
DEBUG_LOCALS_INSN (__idx + 1, 'x'); \
|
||
(sp -= 2, locals[__idx].d = sp->d); \
|
||
} \
|
||
while (0)
|
||
|
||
#else
|
||
# define STOREL(I) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'l'); \
|
||
DEBUG_LOCALS_INSN (__idx + 1, 'x'); \
|
||
locals[__idx + 1].ia[0] = (--sp)->ia[0]; \
|
||
locals[__idx].ia[0] = (--sp)->ia[0]; \
|
||
} \
|
||
while (0)
|
||
# define STORED(I) \
|
||
do { \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'd'); \
|
||
DEBUG_LOCALS_INSN (__idx + 1, 'x'); \
|
||
locals[__idx + 1].ia[0] = (--sp)->ia[0]; \
|
||
locals[__idx].ia[0] = (--sp)->ia[0]; \
|
||
} while (0)
|
||
#endif
|
||
|
||
#define PEEKI(I) (locals+(I))->i
|
||
#define PEEKA(I) (locals+(I))->o
|
||
|
||
#define POKEI(I,V) \
|
||
do \
|
||
{ \
|
||
jint __idx = (I); \
|
||
DEBUG_LOCALS_INSN (__idx, 'i'); \
|
||
((locals + __idx)->i = (V)); \
|
||
} \
|
||
while (0)
|
||
|
||
|
||
#define BINOPI(OP) { \
|
||
jint value2 = POPI(); \
|
||
jint value1 = POPI(); \
|
||
PUSHI(value1 OP value2); \
|
||
}
|
||
|
||
#define BINOPF(OP) { \
|
||
jfloat value2 = POPF(); \
|
||
jfloat value1 = POPF(); \
|
||
PUSHF(value1 OP value2); \
|
||
}
|
||
|
||
#define BINOPL(OP) { \
|
||
jlong value2 = POPL(); \
|
||
jlong value1 = POPL(); \
|
||
PUSHL(value1 OP value2); \
|
||
}
|
||
|
||
#define BINOPD(OP) { \
|
||
jdouble value2 = POPD(); \
|
||
jdouble value1 = POPD(); \
|
||
PUSHD(value1 OP value2); \
|
||
}
|
||
|
||
static inline jint
|
||
get1s (unsigned char* loc)
|
||
{
|
||
return *(signed char*)loc;
|
||
}
|
||
|
||
static inline jint
|
||
get1u (unsigned char* loc)
|
||
{
|
||
return *loc;
|
||
}
|
||
|
||
static inline jint
|
||
get2s(unsigned char* loc)
|
||
{
|
||
return (((jint)*(signed char*)loc) << 8) | ((jint)*(loc+1));
|
||
}
|
||
|
||
static inline jint
|
||
get2u (unsigned char* loc)
|
||
{
|
||
return (((jint)(*loc)) << 8) | ((jint)*(loc+1));
|
||
}
|
||
|
||
static jint
|
||
get4 (unsigned char* loc)
|
||
{
|
||
return (((jint)(loc[0])) << 24)
|
||
| (((jint)(loc[1])) << 16)
|
||
| (((jint)(loc[2])) << 8)
|
||
| (((jint)(loc[3])) << 0);
|
||
}
|
||
|
||
#define SAVE_PC() frame_desc.pc = pc
|
||
|
||
// We used to define this conditionally, depending on HANDLE_SEGV.
|
||
// However, that runs into a problem if a chunk in low memory is
|
||
// mapped and we try to look at a field near the end of a large
|
||
// object. See PR 26858 for details. It is, most likely, relatively
|
||
// inexpensive to simply do this check always.
|
||
#define NULLCHECK(X) \
|
||
do { SAVE_PC(); if ((X)==NULL) throw_null_pointer_exception (); } while (0)
|
||
|
||
// Note that we can still conditionally define NULLARRAYCHECK, since
|
||
// we know that all uses of an array will first reference the length
|
||
// field, which is first -- and thus will trigger a SEGV.
|
||
#ifdef HANDLE_SEGV
|
||
#define NULLARRAYCHECK(X) SAVE_PC()
|
||
#else
|
||
#define NULLARRAYCHECK(X) \
|
||
do \
|
||
{ \
|
||
SAVE_PC(); \
|
||
if ((X) == NULL) { throw_null_pointer_exception (); } \
|
||
} while (0)
|
||
#endif
|
||
|
||
#define ARRAYBOUNDSCHECK(array, index) \
|
||
do \
|
||
{ \
|
||
if (((unsigned) index) >= (unsigned) (array->length)) \
|
||
_Jv_ThrowBadArrayIndex (index); \
|
||
} while (0)
|
||
|
||
void
|
||
_Jv_InterpMethod::run_normal (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
run (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_normal_debug (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
run_debug (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_synch_object (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
|
||
jobject rcv = (jobject) args[0].ptr;
|
||
JvSynchronize mutex (rcv);
|
||
|
||
run (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_synch_object_debug (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
|
||
jobject rcv = (jobject) args[0].ptr;
|
||
JvSynchronize mutex (rcv);
|
||
|
||
run_debug (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_class (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
_Jv_InitClass (_this->defining_class);
|
||
run (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_class_debug (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
_Jv_InitClass (_this->defining_class);
|
||
run_debug (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_synch_class (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
|
||
jclass sync = _this->defining_class;
|
||
_Jv_InitClass (sync);
|
||
JvSynchronize mutex (sync);
|
||
|
||
run (ret, args, _this);
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_synch_class_debug (ffi_cif *,
|
||
void *ret,
|
||
INTERP_FFI_RAW_TYPE *args,
|
||
void *__this)
|
||
{
|
||
_Jv_InterpMethod *_this = (_Jv_InterpMethod *) __this;
|
||
|
||
jclass sync = _this->defining_class;
|
||
_Jv_InitClass (sync);
|
||
JvSynchronize mutex (sync);
|
||
|
||
run_debug (ret, args, _this);
|
||
}
|
||
|
||
#ifdef DIRECT_THREADED
|
||
// "Compile" a method by turning it from bytecode to direct-threaded
|
||
// code.
|
||
void
|
||
_Jv_InterpMethod::compile (const void * const *insn_targets)
|
||
{
|
||
insn_slot *insns = NULL;
|
||
int next = 0;
|
||
unsigned char *codestart = bytecode ();
|
||
unsigned char *end = codestart + code_length;
|
||
_Jv_word *pool_data = defining_class->constants.data;
|
||
|
||
#define SET_ONE(Field, Value) \
|
||
do \
|
||
{ \
|
||
if (first_pass) \
|
||
++next; \
|
||
else \
|
||
insns[next++].Field = Value; \
|
||
} \
|
||
while (0)
|
||
|
||
#define SET_INSN(Value) SET_ONE (insn, (void *) Value)
|
||
#define SET_INT(Value) SET_ONE (int_val, Value)
|
||
#define SET_DATUM(Value) SET_ONE (datum, Value)
|
||
|
||
// Map from bytecode PC to slot in INSNS.
|
||
int *pc_mapping = (int *) __builtin_alloca (sizeof (int) * code_length);
|
||
for (int i = 0; i < code_length; ++i)
|
||
pc_mapping[i] = -1;
|
||
|
||
for (int i = 0; i < 2; ++i)
|
||
{
|
||
jboolean first_pass = i == 0;
|
||
|
||
if (! first_pass)
|
||
{
|
||
insns = (insn_slot *) _Jv_AllocBytes (sizeof (insn_slot) * next);
|
||
number_insn_slots = next;
|
||
next = 0;
|
||
}
|
||
|
||
unsigned char *pc = codestart;
|
||
while (pc < end)
|
||
{
|
||
int base_pc_val = pc - codestart;
|
||
if (first_pass)
|
||
pc_mapping[base_pc_val] = next;
|
||
|
||
java_opcode opcode = (java_opcode) *pc++;
|
||
// Just elide NOPs.
|
||
if (opcode == op_nop)
|
||
continue;
|
||
SET_INSN (insn_targets[opcode]);
|
||
|
||
switch (opcode)
|
||
{
|
||
case op_nop:
|
||
case op_aconst_null:
|
||
case op_iconst_m1:
|
||
case op_iconst_0:
|
||
case op_iconst_1:
|
||
case op_iconst_2:
|
||
case op_iconst_3:
|
||
case op_iconst_4:
|
||
case op_iconst_5:
|
||
case op_lconst_0:
|
||
case op_lconst_1:
|
||
case op_fconst_0:
|
||
case op_fconst_1:
|
||
case op_fconst_2:
|
||
case op_dconst_0:
|
||
case op_dconst_1:
|
||
case op_iload_0:
|
||
case op_iload_1:
|
||
case op_iload_2:
|
||
case op_iload_3:
|
||
case op_lload_0:
|
||
case op_lload_1:
|
||
case op_lload_2:
|
||
case op_lload_3:
|
||
case op_fload_0:
|
||
case op_fload_1:
|
||
case op_fload_2:
|
||
case op_fload_3:
|
||
case op_dload_0:
|
||
case op_dload_1:
|
||
case op_dload_2:
|
||
case op_dload_3:
|
||
case op_aload_0:
|
||
case op_aload_1:
|
||
case op_aload_2:
|
||
case op_aload_3:
|
||
case op_iaload:
|
||
case op_laload:
|
||
case op_faload:
|
||
case op_daload:
|
||
case op_aaload:
|
||
case op_baload:
|
||
case op_caload:
|
||
case op_saload:
|
||
case op_istore_0:
|
||
case op_istore_1:
|
||
case op_istore_2:
|
||
case op_istore_3:
|
||
case op_lstore_0:
|
||
case op_lstore_1:
|
||
case op_lstore_2:
|
||
case op_lstore_3:
|
||
case op_fstore_0:
|
||
case op_fstore_1:
|
||
case op_fstore_2:
|
||
case op_fstore_3:
|
||
case op_dstore_0:
|
||
case op_dstore_1:
|
||
case op_dstore_2:
|
||
case op_dstore_3:
|
||
case op_astore_0:
|
||
case op_astore_1:
|
||
case op_astore_2:
|
||
case op_astore_3:
|
||
case op_iastore:
|
||
case op_lastore:
|
||
case op_fastore:
|
||
case op_dastore:
|
||
case op_aastore:
|
||
case op_bastore:
|
||
case op_castore:
|
||
case op_sastore:
|
||
case op_pop:
|
||
case op_pop2:
|
||
case op_dup:
|
||
case op_dup_x1:
|
||
case op_dup_x2:
|
||
case op_dup2:
|
||
case op_dup2_x1:
|
||
case op_dup2_x2:
|
||
case op_swap:
|
||
case op_iadd:
|
||
case op_isub:
|
||
case op_imul:
|
||
case op_idiv:
|
||
case op_irem:
|
||
case op_ishl:
|
||
case op_ishr:
|
||
case op_iushr:
|
||
case op_iand:
|
||
case op_ior:
|
||
case op_ixor:
|
||
case op_ladd:
|
||
case op_lsub:
|
||
case op_lmul:
|
||
case op_ldiv:
|
||
case op_lrem:
|
||
case op_lshl:
|
||
case op_lshr:
|
||
case op_lushr:
|
||
case op_land:
|
||
case op_lor:
|
||
case op_lxor:
|
||
case op_fadd:
|
||
case op_fsub:
|
||
case op_fmul:
|
||
case op_fdiv:
|
||
case op_frem:
|
||
case op_dadd:
|
||
case op_dsub:
|
||
case op_dmul:
|
||
case op_ddiv:
|
||
case op_drem:
|
||
case op_ineg:
|
||
case op_i2b:
|
||
case op_i2c:
|
||
case op_i2s:
|
||
case op_lneg:
|
||
case op_fneg:
|
||
case op_dneg:
|
||
case op_i2l:
|
||
case op_i2f:
|
||
case op_i2d:
|
||
case op_l2i:
|
||
case op_l2f:
|
||
case op_l2d:
|
||
case op_f2i:
|
||
case op_f2l:
|
||
case op_f2d:
|
||
case op_d2i:
|
||
case op_d2l:
|
||
case op_d2f:
|
||
case op_lcmp:
|
||
case op_fcmpl:
|
||
case op_fcmpg:
|
||
case op_dcmpl:
|
||
case op_dcmpg:
|
||
case op_monitorenter:
|
||
case op_monitorexit:
|
||
case op_ireturn:
|
||
case op_lreturn:
|
||
case op_freturn:
|
||
case op_dreturn:
|
||
case op_areturn:
|
||
case op_return:
|
||
case op_athrow:
|
||
case op_arraylength:
|
||
// No argument, nothing else to do.
|
||
break;
|
||
|
||
case op_bipush:
|
||
SET_INT (get1s (pc));
|
||
++pc;
|
||
break;
|
||
|
||
case op_ldc:
|
||
{
|
||
int index = get1u (pc);
|
||
++pc;
|
||
// For an unresolved class we want to delay resolution
|
||
// until execution.
|
||
if (defining_class->constants.tags[index] == JV_CONSTANT_Class)
|
||
{
|
||
--next;
|
||
SET_INSN (insn_targets[int (op_jsr_w) + 1]);
|
||
SET_INT (index);
|
||
}
|
||
else
|
||
SET_DATUM (pool_data[index].o);
|
||
}
|
||
break;
|
||
|
||
case op_ret:
|
||
case op_iload:
|
||
case op_lload:
|
||
case op_fload:
|
||
case op_dload:
|
||
case op_aload:
|
||
case op_istore:
|
||
case op_lstore:
|
||
case op_fstore:
|
||
case op_dstore:
|
||
case op_astore:
|
||
case op_newarray:
|
||
SET_INT (get1u (pc));
|
||
++pc;
|
||
break;
|
||
|
||
case op_iinc:
|
||
SET_INT (get1u (pc));
|
||
SET_INT (get1s (pc + 1));
|
||
pc += 2;
|
||
break;
|
||
|
||
case op_ldc_w:
|
||
{
|
||
int index = get2u (pc);
|
||
pc += 2;
|
||
// For an unresolved class we want to delay resolution
|
||
// until execution.
|
||
if (defining_class->constants.tags[index] == JV_CONSTANT_Class)
|
||
{
|
||
--next;
|
||
SET_INSN (insn_targets[int (op_jsr_w) + 1]);
|
||
SET_INT (index);
|
||
}
|
||
else
|
||
SET_DATUM (pool_data[index].o);
|
||
}
|
||
break;
|
||
|
||
case op_ldc2_w:
|
||
{
|
||
int index = get2u (pc);
|
||
pc += 2;
|
||
SET_DATUM (&pool_data[index]);
|
||
}
|
||
break;
|
||
|
||
case op_sipush:
|
||
SET_INT (get2s (pc));
|
||
pc += 2;
|
||
break;
|
||
|
||
case op_new:
|
||
case op_getstatic:
|
||
case op_getfield:
|
||
case op_putfield:
|
||
case op_putstatic:
|
||
case op_anewarray:
|
||
case op_instanceof:
|
||
case op_checkcast:
|
||
case op_invokespecial:
|
||
case op_invokestatic:
|
||
case op_invokevirtual:
|
||
SET_INT (get2u (pc));
|
||
pc += 2;
|
||
break;
|
||
|
||
case op_multianewarray:
|
||
SET_INT (get2u (pc));
|
||
SET_INT (get1u (pc + 2));
|
||
pc += 3;
|
||
break;
|
||
|
||
case op_jsr:
|
||
case op_ifeq:
|
||
case op_ifne:
|
||
case op_iflt:
|
||
case op_ifge:
|
||
case op_ifgt:
|
||
case op_ifle:
|
||
case op_if_icmpeq:
|
||
case op_if_icmpne:
|
||
case op_if_icmplt:
|
||
case op_if_icmpge:
|
||
case op_if_icmpgt:
|
||
case op_if_icmple:
|
||
case op_if_acmpeq:
|
||
case op_if_acmpne:
|
||
case op_ifnull:
|
||
case op_ifnonnull:
|
||
case op_goto:
|
||
{
|
||
int offset = get2s (pc);
|
||
pc += 2;
|
||
|
||
int new_pc = base_pc_val + offset;
|
||
|
||
bool orig_was_goto = opcode == op_goto;
|
||
|
||
// Thread jumps. We limit the loop count; this lets
|
||
// us avoid infinite loops if the bytecode contains
|
||
// such. `10' is arbitrary.
|
||
int count = 10;
|
||
while (codestart[new_pc] == op_goto && count-- > 0)
|
||
new_pc += get2s (&codestart[new_pc + 1]);
|
||
|
||
// If the jump takes us to a `return' instruction and
|
||
// the original branch was an unconditional goto, then
|
||
// we hoist the return.
|
||
opcode = (java_opcode) codestart[new_pc];
|
||
if (orig_was_goto
|
||
&& (opcode == op_ireturn || opcode == op_lreturn
|
||
|| opcode == op_freturn || opcode == op_dreturn
|
||
|| opcode == op_areturn || opcode == op_return))
|
||
{
|
||
--next;
|
||
SET_INSN (insn_targets[opcode]);
|
||
}
|
||
else
|
||
SET_DATUM (&insns[pc_mapping[new_pc]]);
|
||
}
|
||
break;
|
||
|
||
case op_tableswitch:
|
||
{
|
||
while ((pc - codestart) % 4 != 0)
|
||
++pc;
|
||
|
||
jint def = get4 (pc);
|
||
SET_DATUM (&insns[pc_mapping[base_pc_val + def]]);
|
||
pc += 4;
|
||
|
||
int low = get4 (pc);
|
||
SET_INT (low);
|
||
pc += 4;
|
||
int high = get4 (pc);
|
||
SET_INT (high);
|
||
pc += 4;
|
||
|
||
for (int i = low; i <= high; ++i)
|
||
{
|
||
SET_DATUM (&insns[pc_mapping[base_pc_val + get4 (pc)]]);
|
||
pc += 4;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case op_lookupswitch:
|
||
{
|
||
while ((pc - codestart) % 4 != 0)
|
||
++pc;
|
||
|
||
jint def = get4 (pc);
|
||
SET_DATUM (&insns[pc_mapping[base_pc_val + def]]);
|
||
pc += 4;
|
||
|
||
jint npairs = get4 (pc);
|
||
pc += 4;
|
||
SET_INT (npairs);
|
||
|
||
while (npairs-- > 0)
|
||
{
|
||
jint match = get4 (pc);
|
||
jint offset = get4 (pc + 4);
|
||
SET_INT (match);
|
||
SET_DATUM (&insns[pc_mapping[base_pc_val + offset]]);
|
||
pc += 8;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case op_invokeinterface:
|
||
{
|
||
jint index = get2u (pc);
|
||
pc += 2;
|
||
// We ignore the next two bytes.
|
||
pc += 2;
|
||
SET_INT (index);
|
||
}
|
||
break;
|
||
|
||
case op_wide:
|
||
{
|
||
opcode = (java_opcode) get1u (pc);
|
||
pc += 1;
|
||
jint val = get2u (pc);
|
||
pc += 2;
|
||
|
||
// We implement narrow and wide instructions using the
|
||
// same code in the interpreter. So we rewrite the
|
||
// instruction slot here.
|
||
if (! first_pass)
|
||
insns[next - 1].insn = (void *) insn_targets[opcode];
|
||
SET_INT (val);
|
||
|
||
if (opcode == op_iinc)
|
||
{
|
||
SET_INT (get2s (pc));
|
||
pc += 2;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case op_jsr_w:
|
||
case op_goto_w:
|
||
{
|
||
jint offset = get4 (pc);
|
||
pc += 4;
|
||
SET_DATUM (&insns[pc_mapping[base_pc_val + offset]]);
|
||
}
|
||
break;
|
||
|
||
// Some "can't happen" cases that we include for
|
||
// error-checking purposes.
|
||
case op_putfield_1:
|
||
case op_putfield_2:
|
||
case op_putfield_4:
|
||
case op_putfield_8:
|
||
case op_putfield_a:
|
||
case op_putstatic_1:
|
||
case op_putstatic_2:
|
||
case op_putstatic_4:
|
||
case op_putstatic_8:
|
||
case op_putstatic_a:
|
||
case op_getfield_1:
|
||
case op_getfield_2s:
|
||
case op_getfield_2u:
|
||
case op_getfield_4:
|
||
case op_getfield_8:
|
||
case op_getfield_a:
|
||
case op_getstatic_1:
|
||
case op_getstatic_2s:
|
||
case op_getstatic_2u:
|
||
case op_getstatic_4:
|
||
case op_getstatic_8:
|
||
case op_getstatic_a:
|
||
case op_breakpoint:
|
||
default:
|
||
// Fail somehow.
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Now update exceptions.
|
||
_Jv_InterpException *exc = exceptions ();
|
||
for (int i = 0; i < exc_count; ++i)
|
||
{
|
||
exc[i].start_pc.p = &insns[pc_mapping[exc[i].start_pc.i]];
|
||
exc[i].end_pc.p = &insns[pc_mapping[exc[i].end_pc.i]];
|
||
exc[i].handler_pc.p = &insns[pc_mapping[exc[i].handler_pc.i]];
|
||
// FIXME: resolve_pool_entry can throw - we shouldn't be doing this
|
||
// during compilation.
|
||
jclass handler
|
||
= (_Jv_Linker::resolve_pool_entry (defining_class,
|
||
exc[i].handler_type.i)).clazz;
|
||
exc[i].handler_type.p = handler;
|
||
}
|
||
|
||
// Translate entries in the LineNumberTable from bytecode PC's to direct
|
||
// threaded interpreter instruction values.
|
||
for (int i = 0; i < line_table_len; i++)
|
||
{
|
||
int byte_pc = line_table[i].bytecode_pc;
|
||
// It isn't worth throwing an exception if this table is
|
||
// corrupted, but at the same time we don't want a crash.
|
||
if (byte_pc < 0 || byte_pc >= code_length)
|
||
byte_pc = 0;
|
||
line_table[i].pc = &insns[pc_mapping[byte_pc]];
|
||
}
|
||
|
||
prepared = insns;
|
||
|
||
// Now remap the variable table for this method.
|
||
for (int i = 0; i < local_var_table_len; ++i)
|
||
{
|
||
int start_byte = local_var_table[i].bytecode_pc;
|
||
if (start_byte < 0 || start_byte >= code_length)
|
||
start_byte = 0;
|
||
jlocation start = pc_mapping[start_byte];
|
||
|
||
int end_byte = start_byte + local_var_table[i].length;
|
||
if (end_byte < 0)
|
||
end_byte = 0;
|
||
jlocation end = ((end_byte >= code_length)
|
||
? number_insn_slots
|
||
: pc_mapping[end_byte]);
|
||
|
||
local_var_table[i].pc = &insns[start];
|
||
local_var_table[i].length = end - start + 1;
|
||
}
|
||
|
||
if (breakpoint_insn == NULL)
|
||
{
|
||
bp_insn_slot.insn = const_cast<void *> (insn_targets[op_breakpoint]);
|
||
breakpoint_insn = &bp_insn_slot;
|
||
}
|
||
}
|
||
#endif /* DIRECT_THREADED */
|
||
|
||
/* Run the given method.
|
||
When args is NULL, don't run anything -- just compile it. */
|
||
void
|
||
_Jv_InterpMethod::run (void *retp, INTERP_FFI_RAW_TYPE *args,
|
||
_Jv_InterpMethod *meth)
|
||
{
|
||
#undef __GCJ_DEBUG
|
||
#undef DEBUG_LOCALS_INSN
|
||
#define DEBUG_LOCALS_INSN(s, t) do {} while (0)
|
||
|
||
#include "interpret-run.cc"
|
||
}
|
||
|
||
void
|
||
_Jv_InterpMethod::run_debug (void *retp, INTERP_FFI_RAW_TYPE *args,
|
||
_Jv_InterpMethod *meth)
|
||
{
|
||
#define __GCJ_DEBUG
|
||
#undef DEBUG_LOCALS_INSN
|
||
#define DEBUG_LOCALS_INSN(s, t) \
|
||
do \
|
||
{ \
|
||
frame_desc.locals_type[s] = t; \
|
||
} \
|
||
while (0)
|
||
|
||
#include "interpret-run.cc"
|
||
}
|
||
|
||
static void
|
||
throw_internal_error (const char *msg)
|
||
{
|
||
jthrowable t = new java::lang::InternalError (JvNewStringLatin1 (msg));
|
||
REPORT_EXCEPTION (t);
|
||
throw t;
|
||
}
|
||
|
||
static void
|
||
throw_incompatible_class_change_error (jstring msg)
|
||
{
|
||
jthrowable t = new java::lang::IncompatibleClassChangeError (msg);
|
||
REPORT_EXCEPTION (t);
|
||
throw t;
|
||
}
|
||
|
||
static void
|
||
throw_null_pointer_exception ()
|
||
{
|
||
jthrowable t = new java::lang::NullPointerException;
|
||
REPORT_EXCEPTION (t);
|
||
throw t;
|
||
}
|
||
|
||
/* Look up source code line number for given bytecode (or direct threaded
|
||
interpreter) PC. */
|
||
int
|
||
_Jv_InterpMethod::get_source_line(pc_t mpc)
|
||
{
|
||
int line = line_table_len > 0 ? line_table[0].line : -1;
|
||
for (int i = 1; i < line_table_len; i++)
|
||
if (line_table[i].pc > mpc)
|
||
break;
|
||
else
|
||
line = line_table[i].line;
|
||
|
||
return line;
|
||
}
|
||
|
||
/** Do static initialization for fields with a constant initializer */
|
||
void
|
||
_Jv_InitField (jobject obj, jclass klass, int index)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
|
||
if (obj != 0 && klass == 0)
|
||
klass = obj->getClass ();
|
||
|
||
if (!_Jv_IsInterpretedClass (klass))
|
||
return;
|
||
|
||
_Jv_InterpClass *iclass = (_Jv_InterpClass*)klass->aux_info;
|
||
|
||
_Jv_Field * field = (&klass->fields[0]) + index;
|
||
|
||
if (index > klass->field_count)
|
||
throw_internal_error ("field out of range");
|
||
|
||
int init = iclass->field_initializers[index];
|
||
if (init == 0)
|
||
return;
|
||
|
||
_Jv_Constants *pool = &klass->constants;
|
||
int tag = pool->tags[init];
|
||
|
||
if (! field->isResolved ())
|
||
throw_internal_error ("initializing unresolved field");
|
||
|
||
if (obj==0 && ((field->flags & Modifier::STATIC) == 0))
|
||
throw_internal_error ("initializing non-static field with no object");
|
||
|
||
void *addr = 0;
|
||
|
||
if ((field->flags & Modifier::STATIC) != 0)
|
||
addr = (void*) field->u.addr;
|
||
else
|
||
addr = (void*) (((char*)obj) + field->u.boffset);
|
||
|
||
switch (tag)
|
||
{
|
||
case JV_CONSTANT_String:
|
||
{
|
||
jstring str;
|
||
str = _Jv_NewStringUtf8Const (pool->data[init].utf8);
|
||
pool->data[init].string = str;
|
||
pool->tags[init] = JV_CONSTANT_ResolvedString;
|
||
}
|
||
/* fall through */
|
||
|
||
case JV_CONSTANT_ResolvedString:
|
||
if (! (field->type == &java::lang::String::class$
|
||
|| field->type == &java::lang::Class::class$))
|
||
throw_class_format_error ("string initialiser to non-string field");
|
||
|
||
*(jstring*)addr = pool->data[init].string;
|
||
break;
|
||
|
||
case JV_CONSTANT_Integer:
|
||
{
|
||
int value = pool->data[init].i;
|
||
|
||
if (field->type == JvPrimClass (boolean))
|
||
*(jboolean*)addr = (jboolean)value;
|
||
|
||
else if (field->type == JvPrimClass (byte))
|
||
*(jbyte*)addr = (jbyte)value;
|
||
|
||
else if (field->type == JvPrimClass (char))
|
||
*(jchar*)addr = (jchar)value;
|
||
|
||
else if (field->type == JvPrimClass (short))
|
||
*(jshort*)addr = (jshort)value;
|
||
|
||
else if (field->type == JvPrimClass (int))
|
||
*(jint*)addr = (jint)value;
|
||
|
||
else
|
||
throw_class_format_error ("erroneous field initializer");
|
||
}
|
||
break;
|
||
|
||
case JV_CONSTANT_Long:
|
||
if (field->type != JvPrimClass (long))
|
||
throw_class_format_error ("erroneous field initializer");
|
||
|
||
*(jlong*)addr = _Jv_loadLong (&pool->data[init]);
|
||
break;
|
||
|
||
case JV_CONSTANT_Float:
|
||
if (field->type != JvPrimClass (float))
|
||
throw_class_format_error ("erroneous field initializer");
|
||
|
||
*(jfloat*)addr = pool->data[init].f;
|
||
break;
|
||
|
||
case JV_CONSTANT_Double:
|
||
if (field->type != JvPrimClass (double))
|
||
throw_class_format_error ("erroneous field initializer");
|
||
|
||
*(jdouble*)addr = _Jv_loadDouble (&pool->data[init]);
|
||
break;
|
||
|
||
default:
|
||
throw_class_format_error ("erroneous field initializer");
|
||
}
|
||
}
|
||
|
||
inline static unsigned char*
|
||
skip_one_type (unsigned char* ptr)
|
||
{
|
||
int ch = *ptr++;
|
||
|
||
while (ch == '[')
|
||
{
|
||
ch = *ptr++;
|
||
}
|
||
|
||
if (ch == 'L')
|
||
{
|
||
do { ch = *ptr++; } while (ch != ';');
|
||
}
|
||
|
||
return ptr;
|
||
}
|
||
|
||
static ffi_type*
|
||
get_ffi_type_from_signature (unsigned char* ptr)
|
||
{
|
||
switch (*ptr)
|
||
{
|
||
case 'L':
|
||
case '[':
|
||
return &ffi_type_pointer;
|
||
break;
|
||
|
||
case 'Z':
|
||
// On some platforms a bool is a byte, on others an int.
|
||
if (sizeof (jboolean) == sizeof (jbyte))
|
||
return &ffi_type_sint8;
|
||
else
|
||
{
|
||
JvAssert (sizeof (jbyte) == sizeof (jint));
|
||
return &ffi_type_sint32;
|
||
}
|
||
break;
|
||
|
||
case 'B':
|
||
return &ffi_type_sint8;
|
||
break;
|
||
|
||
case 'C':
|
||
return &ffi_type_uint16;
|
||
break;
|
||
|
||
case 'S':
|
||
return &ffi_type_sint16;
|
||
break;
|
||
|
||
case 'I':
|
||
return &ffi_type_sint32;
|
||
break;
|
||
|
||
case 'J':
|
||
return &ffi_type_sint64;
|
||
break;
|
||
|
||
case 'F':
|
||
return &ffi_type_float;
|
||
break;
|
||
|
||
case 'D':
|
||
return &ffi_type_double;
|
||
break;
|
||
|
||
case 'V':
|
||
return &ffi_type_void;
|
||
break;
|
||
}
|
||
|
||
throw_internal_error ("unknown type in signature");
|
||
}
|
||
|
||
/* this function yields the number of actual arguments, that is, if the
|
||
* function is non-static, then one is added to the number of elements
|
||
* found in the signature */
|
||
|
||
int
|
||
_Jv_count_arguments (_Jv_Utf8Const *signature,
|
||
jboolean staticp)
|
||
{
|
||
unsigned char *ptr = (unsigned char*) signature->chars();
|
||
int arg_count = staticp ? 0 : 1;
|
||
|
||
/* first, count number of arguments */
|
||
|
||
// skip '('
|
||
ptr++;
|
||
|
||
// count args
|
||
while (*ptr != ')')
|
||
{
|
||
ptr = skip_one_type (ptr);
|
||
arg_count += 1;
|
||
}
|
||
|
||
return arg_count;
|
||
}
|
||
|
||
/* This beast will build a cif, given the signature. Memory for
|
||
* the cif itself and for the argument types must be allocated by the
|
||
* caller.
|
||
*/
|
||
|
||
int
|
||
_Jv_init_cif (_Jv_Utf8Const* signature,
|
||
int arg_count,
|
||
jboolean staticp,
|
||
ffi_cif *cif,
|
||
ffi_type **arg_types,
|
||
ffi_type **rtype_p)
|
||
{
|
||
unsigned char *ptr = (unsigned char*) signature->chars();
|
||
|
||
int arg_index = 0; // arg number
|
||
int item_count = 0; // stack-item count
|
||
|
||
// setup receiver
|
||
if (!staticp)
|
||
{
|
||
arg_types[arg_index++] = &ffi_type_pointer;
|
||
item_count += 1;
|
||
}
|
||
|
||
// skip '('
|
||
ptr++;
|
||
|
||
// assign arg types
|
||
while (*ptr != ')')
|
||
{
|
||
arg_types[arg_index++] = get_ffi_type_from_signature (ptr);
|
||
|
||
if (*ptr == 'J' || *ptr == 'D')
|
||
item_count += 2;
|
||
else
|
||
item_count += 1;
|
||
|
||
ptr = skip_one_type (ptr);
|
||
}
|
||
|
||
// skip ')'
|
||
ptr++;
|
||
ffi_type *rtype = get_ffi_type_from_signature (ptr);
|
||
|
||
ptr = skip_one_type (ptr);
|
||
if (ptr != (unsigned char*)signature->chars() + signature->len())
|
||
throw_internal_error ("did not find end of signature");
|
||
|
||
ffi_abi cabi = FFI_DEFAULT_ABI;
|
||
#if defined (X86_WIN32) && !defined (__CYGWIN__)
|
||
if (!staticp)
|
||
cabi = FFI_THISCALL;
|
||
#endif
|
||
if (ffi_prep_cif (cif, cabi,
|
||
arg_count, rtype, arg_types) != FFI_OK)
|
||
throw_internal_error ("ffi_prep_cif failed");
|
||
|
||
if (rtype_p != NULL)
|
||
*rtype_p = rtype;
|
||
|
||
return item_count;
|
||
}
|
||
|
||
/* we put this one here, and not in interpret.cc because it
|
||
* calls the utility routines _Jv_count_arguments
|
||
* which are static to this module. The following struct defines the
|
||
* layout we use for the stubs, it's only used in the ncode method. */
|
||
|
||
#if FFI_NATIVE_RAW_API
|
||
# define FFI_PREP_RAW_CLOSURE ffi_prep_raw_closure_loc
|
||
# define FFI_RAW_SIZE ffi_raw_size
|
||
typedef struct {
|
||
ffi_raw_closure closure;
|
||
_Jv_ClosureList list;
|
||
ffi_cif cif;
|
||
ffi_type *arg_types[0];
|
||
} ncode_closure;
|
||
typedef void (*ffi_closure_fun) (ffi_cif*,void*,INTERP_FFI_RAW_TYPE*,void*);
|
||
#else
|
||
# define FFI_PREP_RAW_CLOSURE ffi_prep_java_raw_closure_loc
|
||
# define FFI_RAW_SIZE ffi_java_raw_size
|
||
typedef struct {
|
||
ffi_java_raw_closure closure;
|
||
_Jv_ClosureList list;
|
||
ffi_cif cif;
|
||
ffi_type *arg_types[0];
|
||
} ncode_closure;
|
||
typedef void (*ffi_closure_fun) (ffi_cif*,void*,ffi_java_raw*,void*);
|
||
#endif
|
||
|
||
void *
|
||
_Jv_InterpMethod::ncode (jclass klass)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
|
||
if (self->ncode != 0)
|
||
return self->ncode;
|
||
|
||
jboolean staticp = (self->accflags & Modifier::STATIC) != 0;
|
||
int arg_count = _Jv_count_arguments (self->signature, staticp);
|
||
|
||
void *code;
|
||
ncode_closure *closure =
|
||
(ncode_closure*)ffi_closure_alloc (sizeof (ncode_closure)
|
||
+ arg_count * sizeof (ffi_type*),
|
||
&code);
|
||
closure->list.registerClosure (klass, closure);
|
||
|
||
_Jv_init_cif (self->signature,
|
||
arg_count,
|
||
staticp,
|
||
&closure->cif,
|
||
&closure->arg_types[0],
|
||
NULL);
|
||
|
||
ffi_closure_fun fun;
|
||
|
||
args_raw_size = FFI_RAW_SIZE (&closure->cif);
|
||
|
||
JvAssert ((self->accflags & Modifier::NATIVE) == 0);
|
||
|
||
if ((self->accflags & Modifier::SYNCHRONIZED) != 0)
|
||
{
|
||
if (staticp)
|
||
{
|
||
if (JVMTI::enabled)
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_class_debug;
|
||
else
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_class;
|
||
}
|
||
else
|
||
{
|
||
if (JVMTI::enabled)
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_object_debug;
|
||
else
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_synch_object;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (staticp)
|
||
{
|
||
if (JVMTI::enabled)
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_class_debug;
|
||
else
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_class;
|
||
}
|
||
else
|
||
{
|
||
if (JVMTI::enabled)
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_normal_debug;
|
||
else
|
||
fun = (ffi_closure_fun)&_Jv_InterpMethod::run_normal;
|
||
}
|
||
}
|
||
|
||
FFI_PREP_RAW_CLOSURE (&closure->closure,
|
||
&closure->cif,
|
||
fun,
|
||
(void*)this,
|
||
code);
|
||
|
||
self->ncode = code;
|
||
|
||
return self->ncode;
|
||
}
|
||
|
||
/* Find the index of the given insn in the array of insn slots
|
||
for this method. Returns -1 if not found. */
|
||
jlong
|
||
_Jv_InterpMethod::insn_index (pc_t pc)
|
||
{
|
||
jlong left = 0;
|
||
#ifdef DIRECT_THREADED
|
||
jlong right = number_insn_slots;
|
||
pc_t insns = prepared;
|
||
#else
|
||
jlong right = code_length;
|
||
pc_t insns = bytecode ();
|
||
#endif
|
||
|
||
while (right >= 0)
|
||
{
|
||
jlong mid = (left + right) / 2;
|
||
if (&insns[mid] == pc)
|
||
return mid;
|
||
|
||
if (pc < &insns[mid])
|
||
right = mid - 1;
|
||
else
|
||
left = mid + 1;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
// Method to check if an exception is caught at some location in a method
|
||
// (meth). Returns true if this method (meth) contains a catch block for the
|
||
// exception (ex). False otherwise. If there is a catch block, it sets the pc
|
||
// to the location of the beginning of the catch block.
|
||
jboolean
|
||
_Jv_InterpMethod::check_handler (pc_t *pc, _Jv_InterpMethod *meth,
|
||
java::lang::Throwable *ex)
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
void *logical_pc = (void *) ((insn_slot *) (*pc) - 1);
|
||
#else
|
||
int logical_pc = (*pc) - 1 - meth->bytecode ();
|
||
#endif
|
||
_Jv_InterpException *exc = meth->exceptions ();
|
||
jclass exc_class = ex->getClass ();
|
||
|
||
for (int i = 0; i < meth->exc_count; i++)
|
||
{
|
||
if (PCVAL (exc[i].start_pc) <= logical_pc
|
||
&& logical_pc < PCVAL (exc[i].end_pc))
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
jclass handler = (jclass) exc[i].handler_type.p;
|
||
#else
|
||
jclass handler = NULL;
|
||
if (exc[i].handler_type.i != 0)
|
||
handler
|
||
= (_Jv_Linker::resolve_pool_entry (meth->defining_class,
|
||
exc[i].handler_type.i)).clazz;
|
||
#endif /* DIRECT_THREADED */
|
||
if (handler == NULL || handler->isAssignableFrom (exc_class))
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
(*pc) = (insn_slot *) exc[i].handler_pc.p;
|
||
#else
|
||
(*pc) = meth->bytecode () + exc[i].handler_pc.i;
|
||
#endif /* DIRECT_THREADED */
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
|
||
void
|
||
_Jv_InterpMethod::get_line_table (jlong& start, jlong& end,
|
||
jintArray& line_numbers,
|
||
jlongArray& code_indices)
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
/* For the DIRECT_THREADED case, if the method has not yet been
|
||
* compiled, the linetable will change to insn slots instead of
|
||
* bytecode PCs. It is probably easiest, in this case, to simply
|
||
* compile the method and guarantee that we are using insn
|
||
* slots.
|
||
*/
|
||
_Jv_CompileMethod (this);
|
||
|
||
if (line_table_len > 0)
|
||
{
|
||
start = 0;
|
||
end = number_insn_slots;
|
||
line_numbers = JvNewIntArray (line_table_len);
|
||
code_indices = JvNewLongArray (line_table_len);
|
||
|
||
jint* lines = elements (line_numbers);
|
||
jlong* indices = elements (code_indices);
|
||
for (int i = 0; i < line_table_len; ++i)
|
||
{
|
||
lines[i] = line_table[i].line;
|
||
indices[i] = insn_index (line_table[i].pc);
|
||
}
|
||
}
|
||
#else // !DIRECT_THREADED
|
||
if (line_table_len > 0)
|
||
{
|
||
start = 0;
|
||
end = code_length;
|
||
line_numbers = JvNewIntArray (line_table_len);
|
||
code_indices = JvNewLongArray (line_table_len);
|
||
|
||
jint* lines = elements (line_numbers);
|
||
jlong* indices = elements (code_indices);
|
||
for (int i = 0; i < line_table_len; ++i)
|
||
{
|
||
lines[i] = line_table[i].line;
|
||
indices[i] = (jlong) line_table[i].bytecode_pc;
|
||
}
|
||
}
|
||
#endif // !DIRECT_THREADED
|
||
}
|
||
|
||
int
|
||
_Jv_InterpMethod::get_local_var_table (char **name, char **sig,
|
||
char **generic_sig, jlong *startloc,
|
||
jint *length, jint *slot,
|
||
int table_slot)
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
_Jv_CompileMethod (this);
|
||
#endif
|
||
|
||
if (local_var_table == NULL)
|
||
return -2;
|
||
if (table_slot >= local_var_table_len)
|
||
return -1;
|
||
else
|
||
{
|
||
*name = local_var_table[table_slot].name;
|
||
*sig = local_var_table[table_slot].descriptor;
|
||
*generic_sig = local_var_table[table_slot].descriptor;
|
||
|
||
#ifdef DIRECT_THREADED
|
||
*startloc = insn_index (local_var_table[table_slot].pc);
|
||
#else
|
||
*startloc = static_cast<jlong> (local_var_table[table_slot].bytecode_pc);
|
||
#endif
|
||
*length = static_cast<jint> (local_var_table[table_slot].length);
|
||
*slot = static_cast<jint> (local_var_table[table_slot].slot);
|
||
}
|
||
return local_var_table_len - table_slot - 1;
|
||
}
|
||
|
||
pc_t
|
||
_Jv_InterpMethod::install_break (jlong index)
|
||
{
|
||
return set_insn (index, breakpoint_insn);
|
||
}
|
||
|
||
pc_t
|
||
_Jv_InterpMethod::get_insn (jlong index)
|
||
{
|
||
pc_t code;
|
||
|
||
#ifdef DIRECT_THREADED
|
||
if (index >= number_insn_slots || index < 0)
|
||
return NULL;
|
||
|
||
code = prepared;
|
||
#else // !DIRECT_THREADED
|
||
if (index >= code_length || index < 0)
|
||
return NULL;
|
||
|
||
code = reinterpret_cast<pc_t> (bytecode ());
|
||
#endif // !DIRECT_THREADED
|
||
|
||
return &code[index];
|
||
}
|
||
|
||
pc_t
|
||
_Jv_InterpMethod::set_insn (jlong index, pc_t insn)
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
if (index >= number_insn_slots || index < 0)
|
||
return NULL;
|
||
|
||
pc_t code = prepared;
|
||
code[index].insn = insn->insn;
|
||
#else // !DIRECT_THREADED
|
||
if (index >= code_length || index < 0)
|
||
return NULL;
|
||
|
||
pc_t code = reinterpret_cast<pc_t> (bytecode ());
|
||
code[index] = *insn;
|
||
#endif // !DIRECT_THREADED
|
||
|
||
return &code[index];
|
||
}
|
||
|
||
bool
|
||
_Jv_InterpMethod::breakpoint_at (jlong index)
|
||
{
|
||
pc_t insn = get_insn (index);
|
||
if (insn != NULL)
|
||
{
|
||
#ifdef DIRECT_THREADED
|
||
return (insn->insn == breakpoint_insn->insn);
|
||
#else
|
||
pc_t code = reinterpret_cast<pc_t> (bytecode ());
|
||
return (code[index] == bp_insn_opcode);
|
||
#endif
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
void *
|
||
_Jv_JNIMethod::ncode (jclass klass)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
|
||
if (self->ncode != 0)
|
||
return self->ncode;
|
||
|
||
jboolean staticp = (self->accflags & Modifier::STATIC) != 0;
|
||
int arg_count = _Jv_count_arguments (self->signature, staticp);
|
||
|
||
void *code;
|
||
ncode_closure *closure =
|
||
(ncode_closure*)ffi_closure_alloc (sizeof (ncode_closure)
|
||
+ arg_count * sizeof (ffi_type*),
|
||
&code);
|
||
closure->list.registerClosure (klass, closure);
|
||
|
||
ffi_type *rtype;
|
||
_Jv_init_cif (self->signature,
|
||
arg_count,
|
||
staticp,
|
||
&closure->cif,
|
||
&closure->arg_types[0],
|
||
&rtype);
|
||
|
||
ffi_closure_fun fun;
|
||
|
||
args_raw_size = FFI_RAW_SIZE (&closure->cif);
|
||
|
||
// Initialize the argument types and CIF that represent the actual
|
||
// underlying JNI function.
|
||
int extra_args = 1;
|
||
if ((self->accflags & Modifier::STATIC))
|
||
++extra_args;
|
||
jni_arg_types = (ffi_type **) _Jv_AllocBytes ((extra_args + arg_count)
|
||
* sizeof (ffi_type *));
|
||
int offset = 0;
|
||
jni_arg_types[offset++] = &ffi_type_pointer;
|
||
if ((self->accflags & Modifier::STATIC))
|
||
jni_arg_types[offset++] = &ffi_type_pointer;
|
||
memcpy (&jni_arg_types[offset], &closure->arg_types[0],
|
||
arg_count * sizeof (ffi_type *));
|
||
|
||
if (ffi_prep_cif (&jni_cif, _Jv_platform_ffi_abi,
|
||
extra_args + arg_count, rtype,
|
||
jni_arg_types) != FFI_OK)
|
||
throw_internal_error ("ffi_prep_cif failed for JNI function");
|
||
|
||
JvAssert ((self->accflags & Modifier::NATIVE) != 0);
|
||
|
||
// FIXME: for now we assume that all native methods for
|
||
// interpreted code use JNI.
|
||
fun = (ffi_closure_fun) &_Jv_JNIMethod::call;
|
||
|
||
FFI_PREP_RAW_CLOSURE (&closure->closure,
|
||
&closure->cif,
|
||
fun,
|
||
(void*) this,
|
||
code);
|
||
|
||
self->ncode = code;
|
||
return self->ncode;
|
||
}
|
||
|
||
static void
|
||
throw_class_format_error (jstring msg)
|
||
{
|
||
jthrowable t = (msg
|
||
? new java::lang::ClassFormatError (msg)
|
||
: new java::lang::ClassFormatError);
|
||
REPORT_EXCEPTION (t);
|
||
throw t;
|
||
}
|
||
|
||
static void
|
||
throw_class_format_error (const char *msg)
|
||
{
|
||
throw_class_format_error (JvNewStringLatin1 (msg));
|
||
}
|
||
|
||
/* This function finds the method and location where the exception EXC
|
||
is caught in the stack frame. On return, it sets CATCH_METHOD and
|
||
CATCH_LOCATION with the method and location where the catch will
|
||
occur. If the exception is not caught, these are set to 0.
|
||
|
||
This function should only be used with the __GCJ_DEBUG interpreter. */
|
||
static void
|
||
find_catch_location (::java::lang::Throwable *exc, jthread thread,
|
||
jmethodID *catch_method, jlong *catch_loc)
|
||
{
|
||
*catch_method = 0;
|
||
*catch_loc = 0;
|
||
|
||
_Jv_InterpFrame *frame
|
||
= reinterpret_cast<_Jv_InterpFrame *> (thread->interp_frame);
|
||
while (frame != NULL)
|
||
{
|
||
pc_t pc = frame->get_pc ();
|
||
_Jv_InterpMethod *imeth
|
||
= reinterpret_cast<_Jv_InterpMethod *> (frame->self);
|
||
if (imeth->check_handler (&pc, imeth, exc))
|
||
{
|
||
// This method handles the exception.
|
||
*catch_method = imeth->get_method ();
|
||
*catch_loc = imeth->insn_index (pc);
|
||
return;
|
||
}
|
||
|
||
frame = frame->next_interp;
|
||
}
|
||
}
|
||
|
||
/* This method handles JVMTI notifications of thrown exceptions. It
|
||
calls find_catch_location to figure out where the exception is
|
||
caught (if it is caught).
|
||
|
||
Like find_catch_location, this should only be called with the
|
||
__GCJ_DEBUG interpreter. Since a few exceptions occur outside the
|
||
interpreter proper, it is important to not call this function
|
||
without checking JVMTI_REQUESTED_EVENT(Exception) first. */
|
||
void
|
||
_Jv_ReportJVMTIExceptionThrow (jthrowable ex)
|
||
{
|
||
jthread thread = ::java::lang::Thread::currentThread ();
|
||
_Jv_Frame *frame = reinterpret_cast<_Jv_Frame *> (thread->frame);
|
||
jmethodID throw_meth = frame->self->get_method ();
|
||
jlocation throw_loc = -1;
|
||
if (frame->frame_type == frame_interpreter)
|
||
{
|
||
_Jv_InterpFrame * iframe
|
||
= reinterpret_cast<_Jv_InterpFrame *> (frame);
|
||
_Jv_InterpMethod *imeth
|
||
= reinterpret_cast<_Jv_InterpMethod *> (frame->self);
|
||
throw_loc = imeth->insn_index (iframe->get_pc ());
|
||
}
|
||
|
||
jlong catch_loc;
|
||
jmethodID catch_method;
|
||
find_catch_location (ex, thread, &catch_method, &catch_loc);
|
||
_Jv_JVMTI_PostEvent (JVMTI_EVENT_EXCEPTION, thread,
|
||
_Jv_GetCurrentJNIEnv (), throw_meth, throw_loc,
|
||
ex, catch_method, catch_loc);
|
||
}
|
||
|
||
|
||
|
||
void
|
||
_Jv_InterpreterEngine::do_verify (jclass klass)
|
||
{
|
||
_Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
|
||
for (int i = 0; i < klass->method_count; i++)
|
||
{
|
||
using namespace java::lang::reflect;
|
||
_Jv_MethodBase *imeth = iclass->interpreted_methods[i];
|
||
_Jv_ushort accflags = klass->methods[i].accflags;
|
||
if ((accflags & (Modifier::NATIVE | Modifier::ABSTRACT)) == 0)
|
||
{
|
||
_Jv_InterpMethod *im = reinterpret_cast<_Jv_InterpMethod *> (imeth);
|
||
_Jv_VerifyMethod (im);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
_Jv_InterpreterEngine::do_create_ncode (jclass klass)
|
||
{
|
||
_Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
|
||
for (int i = 0; i < klass->method_count; i++)
|
||
{
|
||
// Just skip abstract methods. This is particularly important
|
||
// because we don't resize the interpreted_methods array when
|
||
// miranda methods are added to it.
|
||
if ((klass->methods[i].accflags
|
||
& java::lang::reflect::Modifier::ABSTRACT)
|
||
!= 0)
|
||
continue;
|
||
|
||
_Jv_MethodBase *imeth = iclass->interpreted_methods[i];
|
||
|
||
if ((klass->methods[i].accflags & java::lang::reflect::Modifier::NATIVE)
|
||
!= 0)
|
||
{
|
||
// You might think we could use a virtual `ncode' method in
|
||
// the _Jv_MethodBase and unify the native and non-native
|
||
// cases. Well, we can't, because we don't allocate these
|
||
// objects using `new', and thus they don't get a vtable.
|
||
_Jv_JNIMethod *jnim = reinterpret_cast<_Jv_JNIMethod *> (imeth);
|
||
klass->methods[i].ncode = jnim->ncode (klass);
|
||
}
|
||
else if (imeth != 0) // it could be abstract
|
||
{
|
||
_Jv_InterpMethod *im = reinterpret_cast<_Jv_InterpMethod *> (imeth);
|
||
klass->methods[i].ncode = im->ncode (klass);
|
||
}
|
||
}
|
||
}
|
||
|
||
_Jv_ClosureList **
|
||
_Jv_InterpreterEngine::do_get_closure_list (jclass klass)
|
||
{
|
||
_Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
|
||
|
||
if (!iclass->closures)
|
||
iclass->closures = _Jv_ClosureListFinalizer ();
|
||
|
||
return iclass->closures;
|
||
}
|
||
|
||
void
|
||
_Jv_InterpreterEngine::do_allocate_static_fields (jclass klass,
|
||
int pointer_size,
|
||
int other_size)
|
||
{
|
||
_Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
|
||
|
||
// Splitting the allocations here lets us scan reference fields and
|
||
// avoid scanning non-reference fields. How reference fields are
|
||
// scanned is a bit tricky: we allocate using _Jv_AllocRawObj, which
|
||
// means that this memory will be scanned conservatively (same
|
||
// difference, since we know all the contents here are pointers).
|
||
// Then we put pointers into this memory into the 'fields'
|
||
// structure. Most of these are interior pointers, which is ok (but
|
||
// even so the pointer to the first reference field will be used and
|
||
// that is not an interior pointer). The 'fields' array is also
|
||
// allocated with _Jv_AllocRawObj (see defineclass.cc), so it will
|
||
// be scanned. A pointer to this array is held by Class and thus
|
||
// seen by the collector.
|
||
char *reference_fields = (char *) _Jv_AllocRawObj (pointer_size);
|
||
char *non_reference_fields = (char *) _Jv_AllocBytes (other_size);
|
||
|
||
for (int i = 0; i < klass->field_count; i++)
|
||
{
|
||
_Jv_Field *field = &klass->fields[i];
|
||
|
||
if ((field->flags & java::lang::reflect::Modifier::STATIC) == 0)
|
||
continue;
|
||
|
||
char *base = field->isRef() ? reference_fields : non_reference_fields;
|
||
field->u.addr = base + field->u.boffset;
|
||
|
||
if (iclass->field_initializers[i] != 0)
|
||
{
|
||
_Jv_Linker::resolve_field (field, klass->loader);
|
||
_Jv_InitField (0, klass, i);
|
||
}
|
||
}
|
||
|
||
// Now we don't need the field_initializers anymore, so let the
|
||
// collector get rid of it.
|
||
iclass->field_initializers = 0;
|
||
}
|
||
|
||
_Jv_ResolvedMethod *
|
||
_Jv_InterpreterEngine::do_resolve_method (_Jv_Method *method, jclass klass,
|
||
jboolean staticp)
|
||
{
|
||
int arg_count = _Jv_count_arguments (method->signature, staticp);
|
||
|
||
_Jv_ResolvedMethod* result = (_Jv_ResolvedMethod*)
|
||
_Jv_AllocBytes (sizeof (_Jv_ResolvedMethod)
|
||
+ arg_count*sizeof (ffi_type*));
|
||
|
||
result->stack_item_count
|
||
= _Jv_init_cif (method->signature,
|
||
arg_count,
|
||
staticp,
|
||
&result->cif,
|
||
&result->arg_types[0],
|
||
NULL);
|
||
|
||
result->method = method;
|
||
result->klass = klass;
|
||
|
||
return result;
|
||
}
|
||
|
||
void
|
||
_Jv_InterpreterEngine::do_post_miranda_hook (jclass klass)
|
||
{
|
||
_Jv_InterpClass *iclass = (_Jv_InterpClass *) klass->aux_info;
|
||
for (int i = 0; i < klass->method_count; i++)
|
||
{
|
||
// Just skip abstract methods. This is particularly important
|
||
// because we don't resize the interpreted_methods array when
|
||
// miranda methods are added to it.
|
||
if ((klass->methods[i].accflags
|
||
& java::lang::reflect::Modifier::ABSTRACT)
|
||
!= 0)
|
||
continue;
|
||
// Miranda method additions mean that the `methods' array moves.
|
||
// We cache a pointer into this array, so we have to update.
|
||
iclass->interpreted_methods[i]->self = &klass->methods[i];
|
||
}
|
||
}
|
||
|
||
#ifdef DIRECT_THREADED
|
||
void
|
||
_Jv_CompileMethod (_Jv_InterpMethod* method)
|
||
{
|
||
if (method->prepared == NULL)
|
||
{
|
||
if (JVMTI::enabled)
|
||
_Jv_InterpMethod::run_debug (NULL, NULL, method);
|
||
else
|
||
_Jv_InterpMethod::run (NULL, NULL, method);
|
||
}
|
||
}
|
||
#endif // DIRECT_THREADED
|