... to at least document/test/XFAIL nvptx offloading: PR83812 "operation not
supported on global/shared address space".
libgomp/
PR target/83812
* testsuite/libgomp.oacc-c-c++-common/private-atomic-1.c: New.
See local 'offload_targets' variable in
'libgomp/testsuite/lib/libgomp.exp:libgomp_check_effective_target_offload_target'
vs. global 'libgomp/testsuite/libgomp-test-support.exp.in:offload_targets'
variable.
libgomp/
* testsuite/lib/libgomp.exp
(check_effective_target_offload_target_nvptx): Don't shadow global
'offload_targets' variable.
Fix-up for recent commit 33b647956c
"OpenMP: Fix SIMT for complex/float reduction with && and ||"; see
commit d42088e453 "Avoid -latomic for amdgcn
offloading".
libgomp/
* testsuite/libgomp.c-c++-common/reduction-5.c: Restrict
'-latomic' to nvptx offloading compilation.
* testsuite/libgomp.c-c++-common/reduction-6.c: Likewise.
The team barrier should be notified of any new tasks that become runnable
as the result of a completing task, otherwise the barrier threads might
not resume processing available tasks, resulting in a hang.
2021-05-17 Kwok Cheung Yeung <kcy@codesourcery.com>
libgomp/
* task.c (omp_fulfill_event): Call gomp_team_barrier_set_task_pending
if new tasks generated.
* testsuite/libgomp.c-c++-common/task-detach-13.c: New.
gcc/ChangeLog:
* omp-low.c (finish_taskreg_scan): Use the proper detach decl.
libgomp/ChangeLog:
* testsuite/libgomp.c-c++-common/task-detach-12.c: New test.
* testsuite/libgomp.fortran/task-detach-12.f90: New test.
When a taskloop doesn't have any iterations, GOMP_taskloop* takes an early
return, doesn't create any tasks and more importantly, doesn't create
a taskgroup and doesn't register task reductions. But, the code emitted
in the callers assumes task reductions have been registered and performs
the reduction handling and task reduction unregistration. The pointer
to the task reduction private variables is reused, on input it is the alignment
and only on output it is the pointer, so in the case taskloop with no iterations
the caller attempts to dereference the alignment value as if it was a pointer
and crashes. We could in the early returns register the task reductions
only to have them looped over and unregistered in the caller, but I think
it is better to tell the caller there is nothing to task reduce and bypass
all that.
2021-05-11 Jakub Jelinek <jakub@redhat.com>
PR middle-end/100471
* omp-low.c (lower_omp_task_reductions): For OMP_TASKLOOP, if data
is 0, bypass the reduction loop including
GOMP_taskgroup_reduction_unregister call.
* taskloop.c (GOMP_taskloop): If GOMP_TASK_FLAG_REDUCTION and not
GOMP_TASK_FLAG_NOGROUP, when doing early return clear the task
reduction pointer.
* testsuite/libgomp.c/task-reduction-4.c: New test.
2021-05-07 Tobias Burnus <tobias@codesourcery.com>
Tom de Vries <tdevries@suse.de>
gcc/ChangeLog:
* omp-low.c (lower_rec_simd_input_clauses): Set max_vf = 1 if
a truth_value_p reduction variable is nonintegral.
libgomp/ChangeLog:
* testsuite/libgomp.c-c++-common/reduction-5.c: New test, testing
complex/floating-point || + && reduction with 'omp target'.
* testsuite/libgomp.c-c++-common/reduction-6.c: Likewise.
C/C++ permit logical AND and logical OR also with floating-point or complex
arguments by doing an unequal zero comparison; the result is an 'int' with
value one or zero. Hence, those are also permitted as reduction variable,
even though it is not the most sensible thing to do.
gcc/c/ChangeLog:
* c-typeck.c (c_finish_omp_clauses): Accept float + complex
for || and && reductions.
gcc/cp/ChangeLog:
* semantics.c (finish_omp_reduction_clause): Accept float + complex
for || and && reductions.
gcc/ChangeLog:
* omp-low.c (lower_rec_input_clauses, lower_reduction_clauses): Handle
&& and || with floating-point and complex arguments.
gcc/testsuite/ChangeLog:
* gcc.dg/gomp/clause-1.c: Use 'reduction(&:..)' instead of '...(&&:..)'.
libgomp/ChangeLog:
* testsuite/libgomp.c-c++-common/reduction-1.c: New test.
* testsuite/libgomp.c-c++-common/reduction-2.c: New test.
* testsuite/libgomp.c-c++-common/reduction-3.c: New test.
The test-case included in this patch contains this target region:
...
for (int i0 = 0 ; i0 < N0 ; i0++ )
counter_N0.i += 1;
...
When running with nvptx accelerator, the counter variable is expected to
be N0 after the region, but instead is N0 / 32. The problem is that rather
than getting the result for all warp lanes, we get it for just one lane.
This is caused by the implementation of SIMT being incomplete. It handles
regular reductions, but appearantly not user-defined reductions.
For now, handle this by disabling SIMT in this case, specifically by setting
sctx->max_vf to 1.
Tested libgomp on x86_64-linux with nvptx accelerator.
gcc/ChangeLog:
2021-05-03 Tom de Vries <tdevries@suse.de>
PR target/100321
* omp-low.c (lower_rec_input_clauses): Disable SIMT for user-defined
reduction.
libgomp/ChangeLog:
2021-05-03 Tom de Vries <tdevries@suse.de>
PR target/100321
* testsuite/libgomp.c/target-44.c: New test.
PR84878 fix adds an assertion which can fail, e.g. when stack pointer
is adjusted inside the loop. We have to prevent it and search earlier
for any 'strange' instruction. The solution is to skip the whole loop
if using 'note_stores' we found that one of hard registers is in
'df->regular_block_artificial_uses' set.
Also patch properly prohibit not single-set instruction in loop body.
gcc/ChangeLog:
PR rtl-optimization/100225
PR rtl-optimization/84878
* modulo-sched.c (sms_schedule): Use note_stores to skip loops
where we have an instruction which touches (writes) any hard
register from df->regular_block_artificial_uses set.
Allow not-single-set instruction only right before basic block
tail.
gcc/testsuite/ChangeLog:
PR rtl-optimization/100225
PR rtl-optimization/84878
* gcc.dg/pr100225.c: New test.
libgomp/ChangeLog:
* testsuite/libgomp.oacc-c-c++-common/atomic_capture-3.c: New test.
Consider the test-case libgomp.c/pr81778.c added in this commit, with
this core loop (note: CANARY_SIZE set to 0 for simplicity):
...
int s = 1;
#pragma omp target simd
for (int i = N - 1; i > -1; i -= s)
a[i] = 1;
...
which, given that N is 32, sets a[0..31] to 1.
After omp-expand, this looks like:
...
<bb 5> :
simduid.7 = .GOMP_SIMT_ENTER (simduid.7);
.omp_simt.8 = .GOMP_SIMT_ENTER_ALLOC (simduid.7);
D.3193 = -s;
s.9 = s;
D.3204 = .GOMP_SIMT_LANE ();
D.3205 = -s.9;
D.3206 = (int) D.3204;
D.3207 = D.3205 * D.3206;
i = D.3207 + 31;
D.3209 = 0;
D.3210 = -s.9;
D.3211 = D.3210 - i;
D.3210 = -s.9;
D.3212 = D.3211 / D.3210;
D.3213 = (unsigned int) D.3212;
D.3213 = i >= 0 ? D.3213 : 0;
<bb 19> :
if (D.3209 < D.3213)
goto <bb 6>; [87.50%]
else
goto <bb 7>; [12.50%]
<bb 6> :
a[i] = 1;
D.3215 = -s.9;
D.3219 = .GOMP_SIMT_VF ();
D.3216 = (int) D.3219;
D.3220 = D.3215 * D.3216;
i = D.3220 + i;
D.3209 = D.3209 + 1;
goto <bb 19>; [100.00%]
...
On nvptx, the first time bb6 is executed, i is in the 0..31 range (depending
on the lane that is executing) at bb entry.
So we have the following sequence:
- a[0..31] is set to 1
- i is updated to -32..-1
- D.3209 is updated to 1 (being 0 initially)
- bb19 is executed, and if condition (D.3209 < D.3213) == (1 < 32) evaluates
to true
- bb6 is once more executed, which should not happen because all the elements
that needed to be handled were already handled.
- consequently, elements that should not be written are written
- with CANARY_SIZE == 0, we may run into a libgomp error:
...
libgomp: cuCtxSynchronize error: an illegal memory access was encountered
...
and with CANARY_SIZE unmodified, we run into:
...
Expected 0, got 1 at base[-961]
Aborted (core dumped)
...
The cause of this is as follows:
- because the step s is a variable rather than a constant, an alternative
IV (D.3209 in our example) is generated in expand_omp_simd, and the
loop condition is tested in terms of the alternative IV rather than
the original IV (i in our example).
- the SIMT code in expand_omp_simd works by modifying step and initial value.
- The initial value fd->loop.n1 is loaded into a variable n1, which is
modified by the SIMT code and then used there-after.
- The step fd->loop.step is loaded into a variable step, which is modified
by the SIMT code, but afterwards there are uses of both step and
fd->loop.step.
- There are uses of fd->loop.step in the alternative IV handling code,
which should use step instead.
Fix this by introducing an additional variable orig_step, which is not
modified by the SIMT code and replacing all remaining uses of fd->loop.step
by either step or orig_step.
Build on x86_64-linux with nvptx accelerator, tested libgomp.
This fixes for-5.c and for-6.c FAILs I'm currently seeing on a quadro m1200
with driver 450.66.
gcc/ChangeLog:
2020-10-02 Tom de Vries <tdevries@suse.de>
* omp-expand.c (expand_omp_simd): Add step_orig, and replace uses of
fd->loop.step by either step or orig_step.
libgomp/ChangeLog:
2020-10-02 Tom de Vries <tdevries@suse.de>
* testsuite/libgomp.c/pr81778.c: New test.
When running the test-case included in this patch using an
nvptx accelerator, it fails in execution.
The problem is that the expansion of GOMP_SIMT_XCHG_BFLY is optimized away
during pass_jump as "trivially dead insns".
This is caused by this code in expand_GOMP_SIMT_XCHG_BFLY:
...
class expand_operand ops[3];
create_output_operand (&ops[0], target, mode);
...
expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops);
...
which doesn't guarantee that target is assigned to by the expanded insn.
F.i., if target is:
...
(gdb) call debug_rtx ( target )
(subreg/s/u:QI (reg:SI 40 [ _61 ]) 0)
...
then after expand_insn, we have:
...
(gdb) call debug_rtx ( ops[0].value )
(reg:QI 57)
...
See commit 3af3bec2e4 "internal-fn: Avoid dropping the lhs of some
calls [PR94941]" for a similar problem.
Fix this in the same way, by adding:
...
if (!rtx_equal_p (target, ops[0].value))
emit_move_insn (target, ops[0].value);
...
where applicable in the expand_GOMP_SIMT_* functions.
Tested libgomp on x86_64 with nvptx accelerator.
gcc/ChangeLog:
2021-04-28 Tom de Vries <tdevries@suse.de>
PR target/100232
* internal-fn.c (expand_GOMP_SIMT_ENTER_ALLOC)
(expand_GOMP_SIMT_LAST_LANE, expand_GOMP_SIMT_ORDERED_PRED)
(expand_GOMP_SIMT_VOTE_ANY, expand_GOMP_SIMT_XCHG_BFLY)
(expand_GOMP_SIMT_XCHG_IDX): Ensure target is assigned to.
If configured with --enable-offload-defaulted, configured but not installed
offload compilers and libgomp plugins are silently ignored. Useful for
distribution compilers where those are in separate optional packages.
2021-04-28 Jakub Jelinek <jakub@redhat.com>
Tobias Burnus <tobias@codesourcery.com>
ChangeLog:
* configure.ac (--enable-offload-defaulted): New.
* configure: Regenerate.
gcc/ChangeLog:
* configure.ac (OFFLOAD_DEFAULTED): AC_DEFINE if offload-defaulted.
* gcc.c (process_command): New variable.
(driver::maybe_putenv_OFFLOAD_TARGETS): If OFFLOAD_DEFAULTED,
set it if -foffload is defaulted.
* lto-wrapper.c (OFFLOAD_TARGET_DEFAULT_ENV): Define.
(compile_offload_image): If OFFLOAD_DEFAULTED and
OFFLOAD_TARGET_DEFAULT is in the environment, don't fail
if corresponding mkoffload can't be found.
(compile_images_for_offload_targets): Likewise. Free and clear
offload_names if no valid offload is found.
* config.in: Regenerate.
* configure: Regenerate.
libgomp/ChangeLog:
* configure.ac (OFFLOAD_DEFAULTED): AC_DEFINE if offload-defaulted.
* target.c (gomp_load_plugin_for_device): If set and if a plugin
can't be dlopened, silently assume it has no devices.
* Makefile.in: Regenerate.
* config.h.in: Regenerate.
* configure: Regenerate.
It turned out that a compiler built without offloading support
and one with can produce slightly different diagnostic.
Offloading support implies ENABLE_OFFLOAD which implies that
g->have_offload is set when offloading is actually needed.
In cgraphunit.c, the latter causes flag_generate_offload = 1,
which in turn affects tree.c's free_lang_data.
The result is that the front-end specific diagnostic gets reset
('tree_diagnostics_defaults (global_dc)'), which affects in this
case 'Warning' vs. 'warning' via the Fortran frontend.
Result: 'Warning:' vs. 'warning:'.
Side note: Other FE also override the diagnostic, leading to
similar differences, e.g. the C++ FE outputs mangled function
names differently, cf. patch thread.
libgomp/ChangeLog:
* testsuite/libgomp.oacc-fortran/par-reduction-2-1.f:
Use [Ww]arning in dg-bogus as FE diagnostic and default
diagnostic differ and the result depends on ENABLE_OFFLOAD.
* testsuite/libgomp.oacc-fortran/par-reduction-2-2.f: Likewise.
* testsuite/libgomp.oacc-fortran/parallel-dims.f90: Likewise.
* testsuite/libgomp.oacc-fortran/parallel-reduction.f90: Likewise.
gcc/testsuite/ChangeLog:
* gfortran.dg/goacc/classify-serial.f95:
Use [Ww]arning in dg-bogus as FE diagnostic and default
diagnostic differ and the result depends on ENABLE_OFFLOAD.
* gfortran.dg/goacc/kernels-decompose-2.f95: Likewise.
* gfortran.dg/goacc/routine-module-mod-1.f90: Likewise.
libatomic isn't built for amdgcn but reduction-16.c adds it
via -foffload=-latomic when offloading for nvptx is enabled.
The following avoids linker errors when offloading to amdgcn is enabled
as well.
2021-04-21 Richard Biener <rguenther@suse.de>
libgomp/
* testsuite/libgomp.c-c++-common/reduction-16.c: Use -latomic
only on nvptx-none.
For the tests modified below, the effective target line has to be effective
when compiling for an offload target, except that variable-not-offloaded.c
would compile with unified-share memory and pr86416-*.c if long double/float128
is supported.
The previous check used a run-time device ability check. This new variant
now enables those dg- lines when _compiling_ for nvptx or gcn.
libgomp/ChangeLog:
* testsuite/lib/libgomp.exp (offload_target_to_openacc_device_type):
New, based on check_effective_target_offload_target_nvptx.
(check_effective_target_offload_target_nvptx): Call it.
(check_effective_target_offload_target_amdgcn): New.
* testsuite/libgomp.c-c++-common/function-not-offloaded.c:
Require target offload_target_nvptx || offload_target_amdgcn.
* testsuite/libgomp.c-c++-common/variable-not-offloaded.c: Likewise.
* testsuite/libgomp.c/pr86416-1.c: Likewise.
* testsuite/libgomp.c/pr86416-2.c: Likewise.
As can be seen under valgrind, the testcase didn't bind in the last part
the fortran pointers properly to the c pointers.
2021-04-14 Jakub Jelinek <jakub@redhat.com>
PR testsuite/100071
* testsuite/libgomp.fortran/alloc-1.F90: Call c_f_pointer after last
cp = omp_alloc with cp, p arguments instead of cq, q and call
c_f_pointer after last cq = omp_alloc with cq, q.