Makefile.in: New #defines and friends for Thread.h.

* Makefile.in: New #defines and friends for Thread.h.
        * posix-threads.cc: (struct starter): Remove `object'.
        (_Jv_CondWait): Use interruptable condition variables and new
        recursive mutexes. New return codes on interrupt or non-ownership
        of mutex.
        (_Jv_CondNotify): Ditto.
        (_Jv_CondNotifyAll): Ditto.
        (_Jv_ThreadInterrupt): Set thread interrupt flag directly. Interrupt
        the target thread by signaling its wait condition.
        (_Jv_ThreadInitData): Set `thread_obj' in the thread data struct,
        not the starter struct. Initialize wait_mutex and wait_cond.
        (_Jv_MutexLock): New recursive mutex implementation. Moved from
        posix-threads.h.
        (_Jv_MutexUnlock): Ditto.
        (really_start): Set info->data->thread from pthread_self() to work
        around a race condition. Destroy wait_mutex and wait_cond when run()
        returns.
        * java/lang/Thread.java: (isInterrupted_): Renamed to overloaded
        `isInterrupted(boolean)'. Clear interrupted flag if clear_flag is
        set.
        startable_flag: New private field.
        (Thread): Initialize `startable_flag'.
        (toString): Check for null thread group.
        * java/lang/natThread.cc: (struct natThread): New fields
        `join_mutex', `join_cond'. Removed fields `joiner', `next'.
        (class locker): Removed.
        (initialize_native): Initialize `join_cond' and `join_mutex'.
        (interrupt): Now just calls _Jv_ThreadInterrupt().
        (join): Simplified. Just wait on the target thread's join condition.
        (finish_): Remove join list code. Unset thread group. Signal
        potential joiners by notifying the dying threads join_cond.
        (start): Check for illegal restarts.
        * java/lang/natObject.cc: Check for return value of _Jv_CondWait and
        act appropriatly.
        * include/posix-threads.h: Remove all HAVE_RECURSIVE_MUTEX related
        #defines and #ifdefs.
        (struct _Jv_Thread_t): New fields `thread_obj', `wait_cond',
        `wait_mutex', `next'.
        (struct _Jv_ConditionVariable_t): Define as a struct instead of
        directly mapping to pthread_cond_t.
        (struct _Jv_Mutex_t): New recursive implementation.
        (_Jv_PthreadCheckMonitor): Reimplemented. Simple `owner' check.
        _Jv_HaveCondDestroy: Never define this for posix-threads.
        (_Jv_CondNotify): Remove inline implementation(s), prototype instead.
        (_Jv_CondNotifyAll): Ditto.
        (_Jv_MutexLock): Ditto.
        (_Jv_MutexUnlock): Ditto.
        (_Jv_MutexInit): Changed to reflect new mutex implementation.
        (_Jv_MutexDestroy): Ditto.
        (_Jv_CondDestroy): Removed.
        (_Jv_PthreadGetMutex): Removed.
        * include/win32-threads.h: (_Jv_CondNotify): Guess _JV_NOT_OWNER on an
        error. Add a FIXME about this.
        (_Jv_CondNotifyAll): Ditto.
        * win32-threads.cc: (_Jv_CondWait): Return 0 on a timeout. Guess
        _JV_NOT_OWNER on other errors. Add FIXME.

From-SVN: r32773
This commit is contained in:
Bryce McKinlay 2000-03-28 02:22:24 +00:00 committed by Bryce McKinlay
parent 73780b74b3
commit b834f1fa06
8 changed files with 394 additions and 494 deletions

View File

@ -1,3 +1,62 @@
2000-03-27 Bryce McKinlay <bryce@albatross.co.nz>
* Makefile.in: New #defines and friends for Thread.h.
* posix-threads.cc: (struct starter): Remove `object'.
(_Jv_CondWait): Use interruptable condition variables and new
recursive mutexes. New return codes on interrupt or non-ownership
of mutex.
(_Jv_CondNotify): Ditto.
(_Jv_CondNotifyAll): Ditto.
(_Jv_ThreadInterrupt): Set thread interrupt flag directly. Interrupt
the target thread by signaling its wait condition.
(_Jv_ThreadInitData): Set `thread_obj' in the thread data struct,
not the starter struct. Initialize wait_mutex and wait_cond.
(_Jv_MutexLock): New recursive mutex implementation. Moved from
posix-threads.h.
(_Jv_MutexUnlock): Ditto.
(really_start): Set info->data->thread from pthread_self() to work
around a race condition. Destroy wait_mutex and wait_cond when run()
returns.
* java/lang/Thread.java: (isInterrupted_): Renamed to overloaded
`isInterrupted(boolean)'. Clear interrupted flag if clear_flag is
set.
startable_flag: New private field.
(Thread): Initialize `startable_flag'.
(toString): Check for null thread group.
* java/lang/natThread.cc: (struct natThread): New fields
`join_mutex', `join_cond'. Removed fields `joiner', `next'.
(class locker): Removed.
(initialize_native): Initialize `join_cond' and `join_mutex'.
(interrupt): Now just calls _Jv_ThreadInterrupt().
(join): Simplified. Just wait on the target thread's join condition.
(finish_): Remove join list code. Unset thread group. Signal
potential joiners by notifying the dying threads join_cond.
(start): Check for illegal restarts.
* java/lang/natObject.cc: Check for return value of _Jv_CondWait and
act appropriatly.
* include/posix-threads.h: Remove all HAVE_RECURSIVE_MUTEX related
#defines and #ifdefs.
(struct _Jv_Thread_t): New fields `thread_obj', `wait_cond',
`wait_mutex', `next'.
(struct _Jv_ConditionVariable_t): Define as a struct instead of
directly mapping to pthread_cond_t.
(struct _Jv_Mutex_t): New recursive implementation.
(_Jv_PthreadCheckMonitor): Reimplemented. Simple `owner' check.
_Jv_HaveCondDestroy: Never define this for posix-threads.
(_Jv_CondNotify): Remove inline implementation(s), prototype instead.
(_Jv_CondNotifyAll): Ditto.
(_Jv_MutexLock): Ditto.
(_Jv_MutexUnlock): Ditto.
(_Jv_MutexInit): Changed to reflect new mutex implementation.
(_Jv_MutexDestroy): Ditto.
(_Jv_CondDestroy): Removed.
(_Jv_PthreadGetMutex): Removed.
* include/win32-threads.h: (_Jv_CondNotify): Guess _JV_NOT_OWNER on an
error. Add a FIXME about this.
(_Jv_CondNotifyAll): Ditto.
* win32-threads.cc: (_Jv_CondWait): Return 0 on a timeout. Guess
_JV_NOT_OWNER on other errors. Add FIXME.
2000-03-26 Tom Tromey <tromey@cygnus.com>
* jni.cc (_Jv_JNI_PopSystemFrame): If environment has exception

View File

@ -20,81 +20,56 @@ details. */
#include <pthread.h>
#include <sched.h>
#if defined (HAVE_PTHREAD_MUTEXATTR_SETTYPE) || defined (HAVE_PTHREAD_MUTEXATTR_SETKIND_NP)
# define HAVE_RECURSIVE_MUTEX 1
#endif
//
// Typedefs.
//
typedef pthread_cond_t _Jv_ConditionVariable_t;
#if defined (PTHREAD_MUTEX_HAVE_M_COUNT) || defined (PTHREAD_MUTEX_HAVE___M_COUNT)
// On Linux we use implementation details of mutexes in order to get
// faster results.
typedef pthread_mutex_t _Jv_Mutex_t;
#else /* LINUX_THREADS */
#define PTHREAD_MUTEX_IS_STRUCT
typedef struct
{
// Mutex used when locking this structure transiently.
pthread_mutex_t mutex;
#ifndef HAVE_RECURSIVE_MUTEX
// Some systems do not have recursive mutexes, so we must simulate
// them. Solaris is one such system.
// Mutex the thread holds the entire time this mutex is held. This
// is used to make condition variables work properly.
pthread_mutex_t mutex2;
// Condition variable used when waiting for this lock.
pthread_cond_t cond;
// Thread holding this mutex. If COUNT is 0, no thread is holding.
pthread_t thread;
#endif /* HAVE_RECURSIVE_MUTEX */
// Number of times mutex is held. If 0, the lock is not held. We
// do this even if we have a native recursive mutex so that we can
// keep track of whether the lock is held; this lets us do error
// checking. FIXME it would be nice to optimize this; on some
// systems we could do so by relying on implementation details of
// recursive mutexes.
int count;
} _Jv_Mutex_t;
#endif
typedef struct
typedef struct _Jv_Thread_t
{
// Flag values are defined in implementation.
int flags;
// Actual thread id.
pthread_t thread;
// Java Thread object.
java::lang::Thread *thread_obj;
// Condition variable and corresponding mutex, used to implement the
// interruptable wait/notify mechanism.
pthread_cond_t wait_cond;
pthread_mutex_t wait_mutex;
// Next thread for Condition Variable wait-list chain.
_Jv_Thread_t *next;
} _Jv_Thread_t;
typedef void _Jv_ThreadStartFunc (java::lang::Thread *);
// This convenience function is used to return the POSIX mutex
// corresponding to our mutex.
inline pthread_mutex_t *
_Jv_PthreadGetMutex (_Jv_Mutex_t *mu)
// Condition Variables used to implement wait/notify/sleep/interrupt.
typedef struct
{
#if ! defined (PTHREAD_MUTEX_IS_STRUCT)
return mu;
#elif defined (HAVE_RECURSIVE_MUTEX)
return &mu->mutex;
#else
return &mu->mutex2;
#endif
}
// Linked list of Threads that are waiting to be notified.
_Jv_Thread_t *first;
#include <stdio.h>
} _Jv_ConditionVariable_t;
typedef struct
{
// For compatibility, simplicity, and correctness, we do not use the native
// pthreads recursive mutex implementation, but simulate them instead.
// Mutex the thread holds the entire time this mutex is held.
pthread_mutex_t mutex;
// Thread holding this mutex.
pthread_t owner;
// Number of times mutex is held (lock depth). If 0, the lock is not held.
int count;
} _Jv_Mutex_t;
// This is a convenience function used only by the pthreads thread
// implementation. This is slow, but that's too bad -- we need to do
@ -104,95 +79,44 @@ _Jv_PthreadGetMutex (_Jv_Mutex_t *mu)
inline int
_Jv_PthreadCheckMonitor (_Jv_Mutex_t *mu)
{
pthread_mutex_t *pmu;
#ifdef HAVE_RECURSIVE_MUTEX
pmu = _Jv_PthreadGetMutex (mu);
// See if the mutex is locked by this thread.
if (pthread_mutex_trylock (pmu))
return 1;
#if defined (PTHREAD_MUTEX_HAVE_M_COUNT)
// On Linux we exploit knowledge of the implementation.
int r = pmu->m_count == 1;
#elif defined (PTHREAD_MUTEX_HAVE___M_COUNT)
// In glibc 2.1, the first time the mutex is grabbed __m_count is
// set to 0 and __m_owner is set to pthread_self().
int r = ! pmu->__m_count;
#else
int r = mu->count == 0;
#endif
#else /* HAVE_RECURSIVE_MUTEX */
// In this case we must lock our structure and then see if this
// thread owns the mutex.
pmu = &mu->mutex;
if (pthread_mutex_lock (pmu))
return 1;
int r = mu->thread != pthread_self () || mu->count == 0;
#endif /* HAVE_RECURSIVE_MUTEX */
pthread_mutex_unlock (pmu);
return r;
pthread_t self = pthread_self();
if (mu->owner == self)
return 0;
else return 1;
}
//
// Condition variables.
//
int _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
jlong millis, jint nanos);
int _Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu);
int _Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu);
inline void
_Jv_CondInit (_Jv_ConditionVariable_t *cv)
{
pthread_cond_init (cv, 0);
cv->first = NULL;
}
#ifndef LINUX_THREADS
// pthread_cond_destroy does nothing on Linux and it is a win to avoid
// defining this macro.
#define _Jv_HaveCondDestroy
inline void
_Jv_CondDestroy (_Jv_ConditionVariable_t *cv)
{
pthread_cond_destroy (cv);
}
#endif /* LINUX_THREADS */
int _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
jlong millis, jint nanos);
inline int
_Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
return _Jv_PthreadCheckMonitor (mu) || pthread_cond_signal (cv);
}
inline int
_Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
return _Jv_PthreadCheckMonitor (mu) || pthread_cond_broadcast (cv);
}
//
// Mutexes.
//
#ifdef RECURSIVE_MUTEX_IS_DEFAULT
inline void
_Jv_MutexInit (_Jv_Mutex_t *mu)
{
pthread_mutex_init (_Jv_PthreadGetMutex (mu), NULL);
#ifdef PTHREAD_MUTEX_IS_STRUCT
pthread_mutex_init (&mu->mutex, NULL);
mu->count = 0;
#endif
mu->owner = 0;
}
#else
void _Jv_MutexInit (_Jv_Mutex_t *mu);
#endif
int _Jv_MutexLock (_Jv_Mutex_t *mu);
int _Jv_MutexUnlock (_Jv_Mutex_t *mu);
#ifndef LINUX_THREADS
@ -201,53 +125,14 @@ void _Jv_MutexInit (_Jv_Mutex_t *mu);
#define _Jv_HaveMutexDestroy
#ifdef HAVE_RECURSIVE_MUTEX
inline void
inline void
_Jv_MutexDestroy (_Jv_Mutex_t *mu)
{
pthread_mutex_destroy (_Jv_PthreadGetMutex (mu));
pthread_mutex_destroy (&mu->mutex);
}
#else /* HAVE_RECURSIVE_MUTEX */
extern void _Jv_MutexDestroy (_Jv_Mutex_t *mu);
#endif /* HAVE_RECURSIVE_MUTEX */
#endif /* LINUX_THREADS */
#ifdef HAVE_RECURSIVE_MUTEX
inline int
_Jv_MutexLock (_Jv_Mutex_t *mu)
{
int r = pthread_mutex_lock (_Jv_PthreadGetMutex (mu));
#ifdef PTHREAD_MUTEX_IS_STRUCT
if (! r)
++mu->count;
#endif
return r;
}
inline int
_Jv_MutexUnlock (_Jv_Mutex_t *mu)
{
int r = pthread_mutex_unlock (_Jv_PthreadGetMutex (mu));
#ifdef PTHREAD_MUTEX_IS_STRUCT
if (! r)
--mu->count;
#endif
return r;
}
#else /* HAVE_RECURSIVE_MUTEX */
extern int _Jv_MutexLock (_Jv_Mutex_t *mu);
extern int _Jv_MutexUnlock (_Jv_Mutex_t *mu);
#endif /* HAVE_RECURSIVE_MUTEX */
//
// Thread creation and manipulation.
//

View File

@ -54,13 +54,15 @@ int _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
inline int
_Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *)
{
return PulseEvent (*cv) ? 0 : GetLastError (); // FIXME: Map error code?
// FIXME: check for mutex ownership?
return PulseEvent (*cv) ? 0 : _JV_NOT_OWNER; // FIXME?
}
inline int
_Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *)
{
return PulseEvent (*cv) ? 0 : GetLastError (); // FIXME: Map error code?
// FIXME: check for mutex ownership?
return PulseEvent (*cv) ? 0 : _JV_NOT_OWNER; // FIXME?
}
//

View File

@ -79,12 +79,11 @@ public class Thread implements Runnable
public static boolean interrupted ()
{
return currentThread().isInterrupted_();
return currentThread().isInterrupted (true);
}
// FIXME: it seems to me that this should be synchronized.
// Check the threads interrupted status. Note that this does not clear the
// threads interrupted status (per JDK 1.2 online API documentation).
// thread's interrupted status (per JDK 1.2 online API documentation).
public boolean isInterrupted ()
{
return interrupt_flag;
@ -119,11 +118,18 @@ public class Thread implements Runnable
private static final native void run_ (Object obj);
private final native void finish_ ();
// Convenience method to check and clear the thread's interrupted status.
private boolean isInterrupted_ ()
// Check the thread's interrupted status. If clear_flag is true, the
// thread's interrupted status is also cleared.
private boolean isInterrupted (boolean clear_flag)
{
boolean r = interrupt_flag;
interrupt_flag = false;
if (clear_flag && r)
{
// Only clear the flag if we saw it as set. Otherwise this could
// potentially cause us to miss an interrupt in a race condition,
// because this method is not synchronized.
interrupt_flag = false;
}
return r;
}
@ -221,6 +227,8 @@ public class Thread implements Runnable
data = null;
interrupt_flag = false;
alive_flag = false;
startable_flag = true;
if (current != null)
{
daemon_flag = current.isDaemon();
@ -267,7 +275,8 @@ public class Thread implements Runnable
public String toString ()
{
return "Thread[" + name + "," + priority + "," + group.getName() + "]";
return "Thread[" + name + "," + priority + "," +
(group == null ? "" : group.getName()) + "]";
}
public static native void yield ();
@ -280,6 +289,7 @@ public class Thread implements Runnable
private boolean daemon_flag;
private boolean interrupt_flag;
private boolean alive_flag;
private boolean startable_flag;
// Our native data.
private RawData data;

View File

@ -198,11 +198,15 @@ java::lang::Object::wait (jlong timeout, jint nanos)
if (timeout < 0 || nanos < 0 || nanos > 999999)
JvThrow (new IllegalArgumentException);
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
if (_Jv_CondWait (&si->condition, &si->mutex, timeout, nanos))
JvThrow (new IllegalMonitorStateException(JvNewStringLatin1
("current thread not owner")));
if (Thread::interrupted())
JvThrow (new InterruptedException);
switch (_Jv_CondWait (&si->condition, &si->mutex, timeout, nanos))
{
case _JV_NOT_OWNER:
JvThrow (new IllegalMonitorStateException (JvNewStringLatin1
("current thread not owner")));
case _JV_INTERRUPTED:
if (Thread::interrupted ())
JvThrow (new InterruptedException);
}
}
//

View File

@ -35,47 +35,16 @@ details. */
struct natThread
{
// These are used to interrupt sleep and join calls. We can share a
// condition variable here since this thread can either be sleeping
// or waiting for a thread exit, but not both.
_Jv_Mutex_t interrupt_mutex;
_Jv_ConditionVariable_t interrupt_cond;
// condition variable here since it only ever gets notified when the thread
// exits.
_Jv_Mutex_t join_mutex;
_Jv_ConditionVariable_t join_cond;
// This is private data for the thread system layer.
_Jv_Thread_t *thread;
// Each thread has its own JNI object.
JNIEnv *jni_env;
// All threads waiting to join this thread are linked together and
// waiting on their respective `interrupt' condition variables.
// When this thread exits, it notifies each such thread by
// signalling the condition. In this case the `interrupt_flag' is
// not set; this is how the waiting thread knows whether the join
// has failed or whether it should throw an exception.
struct natThread *joiner;
// Chain for waiters.
struct natThread *next;
};
// We use this for its side effects: it lets us lock a mutex directly
// and not lose if an exception is thrown.
class locker
{
private:
_Jv_Mutex_t *mutex;
public:
locker (_Jv_Mutex_t *m)
: mutex (m)
{
_Jv_MutexLock (mutex);
}
~locker ()
{
_Jv_MutexUnlock (mutex);
}
};
// This is called from the constructor to initialize the native side
@ -90,14 +59,12 @@ java::lang::Thread::initialize_native (void)
// any "interesting" point.
natThread *nt = (natThread *) _Jv_AllocBytes (sizeof (natThread));
data = reinterpret_cast<gnu::gcj::RawData *> (nt);
_Jv_MutexInit (&nt->interrupt_mutex);
_Jv_CondInit (&nt->interrupt_cond);
_Jv_MutexInit (&nt->join_mutex);
_Jv_CondInit (&nt->join_cond);
_Jv_ThreadInitData (&nt->thread, this);
// FIXME: if JNI_ENV is set we will want to free it. It is
// malloc()d.
nt->jni_env = NULL;
nt->joiner = 0;
nt->next = 0;
}
jint
@ -125,90 +92,33 @@ java::lang::Thread::destroy (void)
void
java::lang::Thread::interrupt (void)
{
interrupt_flag = true;
// Wake up this thread, whether it is sleeping or waiting for
// another thread to exit.
natThread *nt = (natThread *) data;
_Jv_MutexLock (&nt->interrupt_mutex);
// Notify the interrupt condition to interrupt sleep() and join() calls.
_Jv_CondNotify (&nt->interrupt_cond, &nt->interrupt_mutex);
// Send a signal to the target thread to interrupt system calls. On Linux,
// this will also interrupt the target thread from *any* _Jv_CondWait call,
// ie wait(). This behaviour is not portable, however.
_Jv_ThreadInterrupt (nt->thread);
_Jv_MutexUnlock (&nt->interrupt_mutex);
}
void
java::lang::Thread::join (jlong millis, jint nanos)
{
// FIXME: what if we are trying to join ourselves with no timeout?
if (millis < 0 || nanos < 0 || nanos > 999999)
_Jv_Throw (new IllegalArgumentException);
Thread *current = currentThread ();
if (current->isInterrupted_ ())
_Jv_Throw (new InterruptedException);
// Update the list of all threads waiting for this thread to exit.
// We grab a mutex when doing this in order to ensure that the
// required state changes are atomic.
_Jv_MonitorEnter (this);
if (! isAlive ())
{
_Jv_MonitorExit (this);
return;
}
// Here `CURR_NT' is the native structure for the currently
// executing thread, while `NT' is the native structure for the
// thread we are trying to join.
natThread *curr_nt = (natThread *) current->data;
// Here `NT' is the native structure for the thread we are trying to join.
natThread *nt = (natThread *) data;
JvAssert (curr_nt->next == NULL);
// Put thread CURR_NT onto NT's list. When NT exits, it will
// traverse its list and notify all joiners.
curr_nt->next = nt->joiner;
nt->joiner = curr_nt;
_Jv_MonitorExit (this);
// Now wait for: (1) an interrupt, (2) the thread to exit, or (3)
// the timeout to occur. Use a `locker' object because _Jv_CondWait
// can throw an exception.
{
locker l (&curr_nt->interrupt_mutex);
_Jv_CondWait (&curr_nt->interrupt_cond,
&curr_nt->interrupt_mutex,
millis, nanos);
}
// Now the join has completed, one way or another. Update the
// joiners list to account for this.
_Jv_MonitorEnter (this);
JvAssert (nt->joiner != NULL);
natThread *prev = 0;
natThread *t;
for (t = nt->joiner; t != NULL; t = t->next)
// the timeout to occur.
_Jv_MutexLock (&nt->join_mutex);
if (! isAlive ())
{
if (t == curr_nt)
{
if (prev)
prev->next = t->next;
else
nt->joiner = t->next;
t->next = 0;
break;
}
prev = t;
_Jv_MutexUnlock (&nt->join_mutex);
return;
}
JvAssert (t != NULL);
_Jv_MonitorExit (this);
_Jv_CondWait (&nt->join_cond, &nt->join_mutex, millis, nanos);
_Jv_MutexUnlock (&nt->join_mutex);
if (current->isInterrupted_ ())
if (current->isInterrupted (true))
_Jv_Throw (new InterruptedException);
}
@ -245,43 +155,31 @@ java::lang::Thread::sleep (jlong millis, jint nanos)
++nanos;
Thread *current = currentThread ();
if (current->isInterrupted_ ())
_Jv_Throw (new InterruptedException);
// We use a condition variable to implement sleeping so that an
// interrupt can wake us up.
// interrupt can wake us up.
natThread *nt = (natThread *) current->data;
{
// Use a locker because _Jv_CondWait can throw an exception.
locker l (&nt->interrupt_mutex);
_Jv_CondWait (&nt->interrupt_cond, &nt->interrupt_mutex,
millis, nanos);
}
_Jv_MutexLock (&nt->join_mutex);
_Jv_CondWait (&nt->join_cond, &nt->join_mutex, millis, nanos);
_Jv_MutexUnlock (&nt->join_mutex);
if (current->isInterrupted_ ())
if (current->isInterrupted (true))
_Jv_Throw (new InterruptedException);
}
void
java::lang::Thread::finish_ ()
{
// Notify all threads waiting to join this this.
_Jv_MonitorEnter (this);
alive_flag = false;
// Note that we don't bother cleaning up the joiner list here. That
// is taken care of when each thread wakes up again.
natThread *nt = (natThread *) data;
for (natThread *t = nt->joiner; t != NULL; t = t->next)
{
_Jv_MutexLock (&t->interrupt_mutex);
_Jv_CondNotify (&t->interrupt_cond, &t->interrupt_mutex);
_Jv_MutexUnlock (&t->interrupt_mutex);
}
group->remove (this);
_Jv_MonitorExit (this);
group = NULL;
// Signal any threads that are waiting to join() us.
_Jv_MutexLock (&nt->join_mutex);
alive_flag = false;
_Jv_CondNotifyAll (&nt->join_cond, &nt->join_mutex);
_Jv_MutexUnlock (&nt->join_mutex);
}
void
@ -314,10 +212,12 @@ java::lang::Thread::start (void)
{
JvSynchronize sync (this);
if (alive_flag)
// Its illegal to re-start() a thread, even if its dead.
if (!startable_flag)
_Jv_Throw (new IllegalThreadStateException);
alive_flag = true;
startable_flag = false;
natThread *nt = (natThread *) data;
_Jv_ThreadStart (this, nt->thread, (_Jv_ThreadStartFunc *) &run_);
}

View File

@ -40,7 +40,6 @@ extern "C"
struct starter
{
_Jv_ThreadStartFunc *method;
java::lang::Thread *object;
_Jv_Thread_t *data;
};
@ -78,30 +77,23 @@ static int non_daemon_count;
// Wait for the condition variable "CV" to be notified.
// Return values:
// 0: the condition was notified, or the timeout expired.
// _JV_NOT_OWNER: the thread does not own the mutex "MU".
// _JV_INTERRUPTED: the thread was interrupted. Its interrupted flag is set.
int
_Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
jlong millis, jint nanos)
{
if (_Jv_PthreadCheckMonitor (mu))
return 1;
pthread_t self = pthread_self();
if (mu->owner != self)
return _JV_NOT_OWNER;
int r;
pthread_mutex_t *pmu = _Jv_PthreadGetMutex (mu);
struct timespec ts;
jlong m, m2, startTime;
bool done_sleeping = false;
jlong m, startTime;
if (millis == 0 && nanos == 0)
{
#ifdef LINUX_THREADS
// pthread_cond_timedwait can be interrupted by a signal on linux, while
// pthread_cond_wait can not. So pthread_cond_timedwait() forever.
m = java::lang::Long::MAX_VALUE;
ts.tv_sec = LONG_MAX;
ts.tv_nsec = 0;
#endif
}
else
if (millis > 0 || nanos > 0)
{
startTime = java::lang::System::currentTimeMillis();
m = millis + startTime;
@ -109,172 +101,178 @@ _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
ts.tv_nsec = ((m % 1000) * 1000000) + nanos;
}
java::lang::Thread *current = _Jv_ThreadCurrent();
_Jv_Thread_t *current = _Jv_ThreadCurrentData ();
java::lang::Thread *current_obj = _Jv_ThreadCurrent ();
do
// Add this thread to the cv's wait set.
current->next = NULL;
if (cv->first == NULL)
cv->first = current;
else
for (_Jv_Thread_t *t = cv->first;; t = t->next)
{
if (t->next == NULL)
{
t->next = current;
break;
}
}
pthread_mutex_lock (&current->wait_mutex);
// Now that we hold the wait mutex, check if this thread has been
// interrupted already.
if (current_obj->interrupt_flag)
{
r = EINTR;
// Check to ensure the thread hasn't already been interrupted.
if (!(current->isInterrupted ()))
{
#ifdef LINUX_THREADS
// FIXME: in theory, interrupt() could be called on this thread
// between the test above and the wait below, resulting in the
// interupt() call failing. I don't see a way to fix this
// without significant changes to the implementation.
r = pthread_cond_timedwait (cv, pmu, &ts);
#else
if (millis == 0 && nanos == 0)
r = pthread_cond_wait (cv, pmu);
else
r = pthread_cond_timedwait (cv, pmu, &ts);
#endif
}
if (r == EINTR)
{
/* We were interrupted by a signal. Either this is
because we were interrupted intentionally (i.e. by
Thread.interrupt()) or by the GC if it is
signal-based. */
if (current->isInterrupted ())
{
r = 0;
done_sleeping = true;
}
else
{
/* We were woken up by the GC or another signal. */
m2 = java::lang::System::currentTimeMillis ();
if (m2 >= m)
{
r = 0;
done_sleeping = true;
}
}
}
else if (r == ETIMEDOUT)
{
/* A timeout is a normal result. */
r = 0;
done_sleeping = true;
}
else
done_sleeping = true;
pthread_mutex_unlock (&current->wait_mutex);
return _JV_INTERRUPTED;
}
while (! done_sleeping);
return r != 0;
}
// Record the current lock depth, so it can be restored when we re-aquire it.
int count = mu->count;
#ifndef RECURSIVE_MUTEX_IS_DEFAULT
void
_Jv_MutexInit (_Jv_Mutex_t *mu)
{
#ifdef HAVE_RECURSIVE_MUTEX
pthread_mutexattr_t *val = NULL;
#if defined (HAVE_PTHREAD_MUTEXATTR_SETTYPE)
pthread_mutexattr_t attr;
// If this is slow, then allocate it statically and only initialize
// it once.
pthread_mutexattr_init (&attr);
pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
val = &attr;
#elif defined (HAVE_PTHREAD_MUTEXATTR_SETKIND_NP)
pthread_mutexattr_t attr;
pthread_mutexattr_init (&attr);
pthread_mutexattr_setkind_np (&attr, PTHREAD_MUTEX_RECURSIVE_NP);
val = &attr;
#endif
pthread_mutex_init (_Jv_PthreadGetMutex (mu), val);
#ifdef PTHREAD_MUTEX_IS_STRUCT
// Release the monitor mutex.
mu->count = 0;
#endif
#if defined (HAVE_PTHREAD_MUTEXATTR_SETTYPE) || defined (HAVE_PTHREAD_MUTEXATTR_SETKIND_NP)
pthread_mutexattr_destroy (&attr);
#endif
#else /* HAVE_RECURSIVE_MUTEX */
// No recursive mutex, so simulate one.
pthread_mutex_init (&mu->mutex, NULL);
pthread_mutex_init (&mu->mutex2, NULL);
pthread_cond_init (&mu->cond, 0);
mu->count = 0;
#endif /* HAVE_RECURSIVE_MUTEX */
}
#endif /* not RECURSIVE_MUTEX_IS_DEFAULT */
#if ! defined (LINUX_THREADS) && ! defined (HAVE_RECURSIVE_MUTEX)
void
_Jv_MutexDestroy (_Jv_Mutex_t *mu)
{
pthread_mutex_destroy (&mu->mutex);
pthread_mutex_destroy (&mu->mutex2);
pthread_cond_destroy (&mu->cond);
}
int
_Jv_MutexLock (_Jv_Mutex_t *mu)
{
if (pthread_mutex_lock (&mu->mutex))
return -1;
while (1)
{
if (mu->count == 0)
{
// Grab the lock.
mu->thread = pthread_self ();
mu->count = 1;
pthread_mutex_lock (&mu->mutex2);
break;
}
else if (pthread_self () == mu->thread)
{
// Already have the lock.
mu->count += 1;
break;
}
else
{
// Try to acquire the lock.
pthread_cond_wait (&mu->cond, &mu->mutex);
}
}
mu->owner = 0;
pthread_mutex_unlock (&mu->mutex);
int r = 0;
bool done_sleeping = false;
while (! done_sleeping)
{
if (millis == 0 && nanos == 0)
r = pthread_cond_wait (&current->wait_cond, &current->wait_mutex);
else
r = pthread_cond_timedwait (&current->wait_cond, &current->wait_mutex,
&ts);
// In older glibc's (prior to 2.1.3), the cond_wait functions may
// spuriously wake up on a signal. Catch that here.
if (r != EINTR)
done_sleeping = true;
}
// Check for an interrupt *before* unlocking the wait mutex.
jboolean interrupted = current_obj->interrupt_flag;
pthread_mutex_unlock (&current->wait_mutex);
// Reaquire the monitor mutex, and restore the lock count.
pthread_mutex_lock (&mu->mutex);
mu->owner = self;
mu->count = count;
// If we were interrupted, or if a timeout occured, remove ourself from
// the cv wait list now. (If we were notified normally, notify() will have
// already taken care of this)
if (r == ETIMEDOUT || interrupted)
{
_Jv_Thread_t *prev = NULL;
for (_Jv_Thread_t *t = cv->first; t != NULL; t = t->next)
{
if (t == current)
{
if (prev != NULL)
prev->next = t->next;
else
cv->first = t->next;
t->next = NULL;
break;
}
prev = t;
}
if (interrupted)
return _JV_INTERRUPTED;
}
return 0;
}
int
_Jv_MutexUnlock (_Jv_Mutex_t *mu)
_Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
if (pthread_mutex_lock (&mu->mutex))
return -1;
int r = 0;
if (mu->count == 0 || pthread_self () != mu->thread)
r = -1;
else
if (_Jv_PthreadCheckMonitor (mu))
return _JV_NOT_OWNER;
_Jv_Thread_t *target;
_Jv_Thread_t *prev = NULL;
for (target = cv->first; target != NULL; target = target->next)
{
mu->count -= 1;
if (! mu->count)
{
pthread_mutex_unlock (&mu->mutex2);
pthread_cond_signal (&mu->cond);
pthread_mutex_lock (&target->wait_mutex);
if (target->thread_obj->interrupt_flag)
{
// Don't notify a thread that has already been interrupted.
pthread_mutex_unlock (&target->wait_mutex);
prev = target;
continue;
}
pthread_cond_signal (&target->wait_cond);
pthread_mutex_unlock (&target->wait_mutex);
// Two successive notify() calls should not be delivered to the same
// thread, so we remove the target thread from the cv wait list now.
if (prev == NULL)
cv->first = target->next;
else
prev->next = target->next;
target->next = NULL;
break;
}
pthread_mutex_unlock (&mu->mutex);
return r;
return 0;
}
#endif /* not LINUX_THREADS and not HAVE_RECURSIVE_MUTEX */
int
_Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
if (_Jv_PthreadCheckMonitor (mu))
return _JV_NOT_OWNER;
_Jv_Thread_t *target;
_Jv_Thread_t *prev = NULL;
for (target = cv->first; target != NULL; target = target->next)
{
pthread_mutex_lock (&target->wait_mutex);
pthread_cond_signal (&target->wait_cond);
pthread_mutex_unlock (&target->wait_mutex);
if (prev != NULL)
prev->next = NULL;
prev = target;
}
if (prev != NULL)
prev->next = NULL;
cv->first = NULL;
return 0;
}
void
_Jv_ThreadInterrupt (_Jv_Thread_t *data)
{
pthread_mutex_lock (&data->wait_mutex);
// Set the thread's interrupted flag *after* aquiring its wait_mutex. This
// ensures that there are no races with the interrupt flag being set after
// the waiting thread checks it and before pthread_cond_wait is entered.
data->thread_obj->interrupt_flag = true;
// Interrupt blocking system calls using a signal.
// pthread_kill (data->thread, INTR);
pthread_cond_signal (&data->wait_cond);
pthread_mutex_unlock (&data->wait_mutex);
}
static void
handle_intr (int)
@ -300,10 +298,14 @@ _Jv_InitThreads (void)
}
void
_Jv_ThreadInitData (_Jv_Thread_t **data, java::lang::Thread *)
_Jv_ThreadInitData (_Jv_Thread_t **data, java::lang::Thread *obj)
{
_Jv_Thread_t *info = new _Jv_Thread_t;
info->flags = 0;
info->thread_obj = obj;
pthread_mutex_init (&info->wait_mutex, NULL);
pthread_cond_init (&info->wait_cond, NULL);
// FIXME register a finalizer for INFO here.
// FIXME also must mark INFO somehow.
@ -331,10 +333,16 @@ really_start (void *x)
{
struct starter *info = (struct starter *) x;
pthread_setspecific (_Jv_ThreadKey, info->object);
pthread_setspecific (_Jv_ThreadKey, info->data->thread_obj);
pthread_setspecific (_Jv_ThreadDataKey, info->data);
info->method (info->object);
// glibc 2.1.3 doesn't set the value of `thread' until after start_routine
// is called. Since it may need to be accessed from the new thread, work
// around the potential race here by explicitly setting it again.
info->data->thread = pthread_self ();
info->method (info->data->thread_obj);
if (! (info->data->flags & FLAG_DAEMON))
{
pthread_mutex_lock (&daemon_mutex);
@ -343,6 +351,12 @@ really_start (void *x)
pthread_cond_signal (&daemon_cond);
pthread_mutex_unlock (&daemon_mutex);
}
#ifndef LINUX_THREADS
// Clean up. These calls do nothing on Linux.
pthread_mutex_destroy (&info->data->wait_mutex);
pthread_cond_destroy (&info->data->wait_cond);
#endif /* ! LINUX_THREADS */
return NULL;
}
@ -367,7 +381,6 @@ _Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
// FIXME: handle marking the info object for GC.
info = (struct starter *) _Jv_AllocBytes (sizeof (struct starter));
info->method = meth;
info->object = thread;
info->data = data;
if (! thread->isDaemon())
@ -389,6 +402,39 @@ _Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
}
}
int
_Jv_MutexLock (_Jv_Mutex_t *mu)
{
pthread_t self = pthread_self ();
if (mu->owner == self)
{
mu->count++;
}
else
{
pthread_mutex_lock (&mu->mutex);
mu->count = 1;
mu->owner = self;
}
return 0;
}
int
_Jv_MutexUnlock (_Jv_Mutex_t *mu)
{
if (_Jv_PthreadCheckMonitor (mu))
return _JV_NOT_OWNER;
mu->count--;
if (mu->count == 0)
{
mu->owner = 0;
pthread_mutex_unlock (&mu->mutex);
}
return 0;
}
void
_Jv_ThreadWait (void)
{
@ -397,9 +443,3 @@ _Jv_ThreadWait (void)
pthread_cond_wait (&daemon_cond, &daemon_mutex);
pthread_mutex_unlock (&daemon_mutex);
}
void
_Jv_ThreadInterrupt (_Jv_Thread_t *data)
{
pthread_kill (data->thread, INTR);
}

View File

@ -69,6 +69,8 @@ _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu, jlong millis, jint n
DWORD time;
DWORD rval;
// FIXME: check for mutex ownership?
_Jv_MutexUnlock (mu);
if((millis == 0) && (nanos > 0))
@ -82,9 +84,7 @@ _Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu, jlong millis, jint n
_Jv_MutexLock (mu);
if (rval == WAIT_FAILED)
return GetLastError (); // FIXME: Map to errno?
else if (rval == WAIT_TIMEOUT)
return ETIMEDOUT;
return _JV_NOT_OWNER; // FIXME?
else
return 0;
}