libgomp: Fix hang when profiling OpenACC programs with CUDA 9.0 nvprof

The version of nvprof in CUDA 9.0 causes a hang when used to profile an
OpenACC program.  This is because it calls acc_get_device_type from
a callback called during device initialization, which then attempts
to acquire acc_device_lock while it is already taken, resulting in
deadlock.  This works around the issue by returning acc_device_none
from acc_get_device_type without attempting to acquire the lock when
initialization has not completed yet.

2020-07-14  Tom de Vries  <tom@codesourcery.com>
	    Cesar Philippidis  <cesar@codesourcery.com>
	    Thomas Schwinge  <thomas@codesourcery.com>
	    Kwok Cheung Yeung  <kcy@codesourcery.com>

	libgomp/
	* oacc-init.c (acc_init_state_lock, acc_init_state, acc_init_thread):
	New variable.
	(acc_init_1): Set acc_init_thread to pthread_self ().  Set
	acc_init_state to initializing at the start, and to initialized at the
	end.
	(self_initializing_p): New function.
	(acc_get_device_type): Return acc_device_none if called by thread that
	is currently executing acc_init_1.
	* libgomp.texi (acc_get_device_type): Update documentation.
	(Implementation Status and Implementation-Defined Behavior): Likewise.
	* testsuite/libgomp.oacc-c-c++-common/acc_prof-init-2.c: New.
This commit is contained in:
Kwok Cheung Yeung 2020-07-14 10:31:35 -07:00
parent bae45b8be5
commit b52643ab90
3 changed files with 129 additions and 0 deletions

View File

@ -1967,6 +1967,12 @@ in @var{devicetype}, to use when executing a parallel or kernels region.
This function returns what device type will be used when executing a
parallel or kernels region.
This function returns @code{acc_device_none} if
@code{acc_get_device_type} is called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks of the OpenACC Profiling Interface (@ref{OpenACC Profiling
Interface}), that is, if the device is currently being initialized.
@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_device_t acc_get_device_type(void);}
@ -3382,6 +3388,11 @@ every event that has been registered.
We're not yet accounting for the fact that @cite{OpenACC events may
occur during event processing}.
We just handle one case specially, as required by CUDA 9.0
@command{nvprof}, that @code{acc_get_device_type}
(@ref{acc_get_device_type})) may be called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks.
We're not yet implementing initialization via a
@code{acc_register_library} function that is either statically linked

View File

@ -40,6 +40,11 @@
static gomp_mutex_t acc_device_lock;
static gomp_mutex_t acc_init_state_lock;
static enum { uninitialized, initializing, initialized } acc_init_state
= uninitialized;
static pthread_t acc_init_thread;
/* A cached version of the dispatcher for the global "current" accelerator type,
e.g. used as the default when creating new host threads. This is the
device-type equivalent of goacc_device_num (which specifies which device to
@ -228,6 +233,11 @@ acc_dev_num_out_of_range (acc_device_t d, int ord, int ndevs)
static struct gomp_device_descr *
acc_init_1 (acc_device_t d, acc_construct_t parent_construct, int implicit)
{
gomp_mutex_lock (&acc_init_state_lock);
acc_init_state = initializing;
acc_init_thread = pthread_self ();
gomp_mutex_unlock (&acc_init_state_lock);
bool check_not_nested_p;
if (implicit)
{
@ -317,6 +327,14 @@ acc_init_1 (acc_device_t d, acc_construct_t parent_construct, int implicit)
&api_info);
}
/* We're setting 'initialized' *after* 'goacc_profiling_dispatch', so that a
nested 'acc_get_device_type' called from a profiling callback still sees
'initializing', so that we don't deadlock when it then again tries to lock
'goacc_prof_lock'. See also the discussion in 'acc_get_device_type'. */
gomp_mutex_lock (&acc_init_state_lock);
acc_init_state = initialized;
gomp_mutex_unlock (&acc_init_state_lock);
return base_dev;
}
@ -643,6 +661,17 @@ acc_set_device_type (acc_device_t d)
ialias (acc_set_device_type)
static bool
self_initializing_p (void)
{
bool res;
gomp_mutex_lock (&acc_init_state_lock);
res = (acc_init_state == initializing
&& pthread_equal (acc_init_thread, pthread_self ()));
gomp_mutex_unlock (&acc_init_state_lock);
return res;
}
acc_device_t
acc_get_device_type (void)
{
@ -652,6 +681,15 @@ acc_get_device_type (void)
if (thr && thr->base_dev)
res = acc_device_type (thr->base_dev->type);
else if (self_initializing_p ())
/* The Cuda libaccinj64.so version 9.0+ calls acc_get_device_type during the
acc_ev_device_init_start event callback, which is dispatched during
acc_init_1. Trying to lock acc_device_lock during such a call (as we do
in the else clause below), will result in deadlock, since the lock has
already been taken by the acc_init_1 caller. We work around this problem
by using the acc_get_device_type property "If the device type has not yet
been selected, the value acc_device_none may be returned". */
;
else
{
acc_prof_info prof_info;

View File

@ -0,0 +1,80 @@
/* { dg-do run } */
/* { dg-timeout 10 } */
/* Test the calling of 'acc_get_device_type' from within
'cb_device_init_start' and 'cb_device_init_end' callbacks. This occurs
when the CUDA 9.0 'nvprof' tool is used, and previously deadlocked. */
#include <assert.h>
#include <stdbool.h>
#include <acc_prof.h>
static acc_prof_reg reg;
static acc_prof_reg unreg;
static acc_prof_lookup_func lookup;
void acc_register_library (acc_prof_reg reg_, acc_prof_reg unreg_, acc_prof_lookup_func lookup_)
{
reg = reg_;
unreg = unreg_;
lookup = lookup_;
}
static bool expect_cb_device_init_start;
static bool expect_cb_device_init_end;
static void cb_device_init_start (acc_prof_info *prof_info, acc_event_info *event_info, acc_api_info *api_info)
{
assert (expect_cb_device_init_start);
expect_cb_device_init_start = false;
acc_device_t acc_device_type;
acc_device_type = acc_get_device_type ();
assert (acc_device_type == acc_device_none);
expect_cb_device_init_end = true;
}
static void cb_device_init_end (acc_prof_info *prof_info, acc_event_info *event_info, acc_api_info *api_info)
{
assert (expect_cb_device_init_end);
expect_cb_device_init_end = false;
acc_device_t acc_device_type;
acc_device_type = acc_get_device_type ();
assert (acc_device_type == acc_device_none);
}
int main(void)
{
acc_register_library (acc_prof_register, acc_prof_unregister, acc_prof_lookup);
reg (acc_ev_device_init_start, cb_device_init_start, acc_reg);
reg (acc_ev_device_init_end, cb_device_init_end, acc_reg);
expect_cb_device_init_start = true;
expect_cb_device_init_end = false;
acc_init (acc_device_host);
assert (!expect_cb_device_init_start);
assert (!expect_cb_device_init_end);
{
acc_device_t acc_device_type;
acc_device_type = acc_get_device_type ();
assert (acc_device_type == acc_device_host);
}
acc_shutdown (acc_device_host);
expect_cb_device_init_start = true;
expect_cb_device_init_end = false;
acc_init (acc_device_default);
assert (!expect_cb_device_init_start);
assert (!expect_cb_device_init_end);
{
acc_device_t acc_device_type;
acc_device_type = acc_get_device_type ();
assert (acc_device_type != acc_device_none);
}
acc_shutdown (acc_device_default);
return 0;
}