BigInteger.java (euclidInv): Take result array as an argument.

2003-02-20  Raif S. Naffah <raif@fl.net.au>

	* java/math/BigInteger.java (euclidInv): Take result array as an
	argument.  Updated all callers.
	(modInverse): Removed unused variables.

From-SVN: r63170
This commit is contained in:
Raif S. Naffah 2003-02-20 16:55:15 +00:00 committed by Tom Tromey
parent 3a24c5134f
commit 4c24ac2716
2 changed files with 19 additions and 16 deletions

View File

@ -1,3 +1,9 @@
2003-02-20 Raif S. Naffah <raif@fl.net.au>
* java/math/BigInteger.java (euclidInv): Take result array as an
argument. Updated all callers.
(modInverse): Removed unused variables.
2003-02-20 Alexandre Oliva <aoliva@redhat.com>
* configure.in: Propagate ORIGINAL_LD_FOR_MULTILIBS to

View File

@ -1017,8 +1017,8 @@ public class BigInteger extends Number implements Comparable
return xy;
}
private static final BigInteger[] euclidInv(BigInteger a, BigInteger b,
BigInteger prevDiv)
private static final void euclidInv(BigInteger a, BigInteger b,
BigInteger prevDiv, BigInteger[] xy)
{
if (b.isZero())
throw new ArithmeticException("not invertible");
@ -1027,20 +1027,19 @@ public class BigInteger extends Number implements Comparable
{
// Success: values are indeed invertible!
// Bottom of the recursion reached; start unwinding.
return new BigInteger[] { neg(prevDiv), ONE };
xy[0] = neg(prevDiv);
xy[1] = ONE;
return;
}
BigInteger[] result;
// Recursion happens in the following conditional!
// If a just contains an int, then use integer math for the rest.
if (a.words == null)
{
int[] xyInt = euclidInv(b.ival, a.ival % b.ival, a.ival / b.ival);
result = new BigInteger[] { // non-shared BI
new BigInteger(xyInt[0]),
new BigInteger(xyInt[1])
};
xy[0] = new BigInteger(xyInt[0]);
xy[1] = new BigInteger(xyInt[1]);
}
else
{
@ -1050,13 +1049,12 @@ public class BigInteger extends Number implements Comparable
// quot and rem may not be in canonical form. ensure
rem.canonicalize();
quot.canonicalize();
result = euclidInv(b, rem, quot);
euclidInv(b, rem, quot, xy);
}
BigInteger t = result[0];
result[0] = add(result[1], times(t, prevDiv), -1);
result[1] = t;
return result;
BigInteger t = xy[0];
xy[0] = add(xy[1], times(t, prevDiv), -1);
xy[1] = t;
}
public BigInteger modInverse(BigInteger y)
@ -1124,9 +1122,8 @@ public class BigInteger extends Number implements Comparable
// quot and rem may not be in canonical form. ensure
rem.canonicalize();
quot.canonicalize();
BigInteger xy0 = new BigInteger();
BigInteger xy1 = new BigInteger();
BigInteger[] xy = euclidInv(y, rem, quot);
BigInteger[] xy = new BigInteger[2];
euclidInv(y, rem, quot, xy);
result = swapped ? xy[0] : xy[1];
// Result can't be negative, so make it positive by adding the