mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-23 10:54:07 +08:00
re PR libfortran/32972 (performance of pack/unpack)
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org PR libfortran/32972 * Makefile.am: Add new variable, i_unpack_c, containing unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c, unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c, unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c and unpack_c16.c Add i_unpack_c to gfor_built_src. Add rule to generate i_unpack_c from m4/unpack.m4. * Makefile.in: Regenerated. * libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2, unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8, unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10, unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8, unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16, unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16. * intrinsics/pack_generic.c (unpack1): Add calls to specific unpack1 functions. (unpack0): Add calls to specific unpack0 functions. * m4/unpack.m4: New file. * generated/unpack_i1.c: New file. * generated/unpack_i2.c: New file. * generated/unpack_i4.c: New file. * generated/unpack_i8.c: New file. * generated/unpack_i16.c: New file. * generated/unpack_r4.c: New file. * generated/unpack_r8.c: New file. * generated/unpack_r10.c: New file. * generated/unpack_r16.c: New file. * generated/unpack_c4.c: New file. * generated/unpack_c8.c: New file. * generated/unpack_c10.c: New file. * generated/unpack_c16.c: New file. 2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org PR libfortran/32972 * gfortran.dg/intrinsic_unpack_1.f90: New test case. * gfortran.dg/intrinsic_unpack_2.f90: New test case. * gfortran.dg/intrinsic_unpack_3.f90: New test case. From-SVN: r133469
This commit is contained in:
parent
2ff8644d33
commit
3478bba466
@ -1,3 +1,10 @@
|
||||
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
|
||||
|
||||
PR libfortran/32972
|
||||
* gfortran.dg/intrinsic_unpack_1.f90: New test case.
|
||||
* gfortran.dg/intrinsic_unpack_2.f90: New test case.
|
||||
* gfortran.dg/intrinsic_unpack_3.f90: New test case.
|
||||
|
||||
2008-03-22 Richard Sandiford <rsandifo@nildram.co.uk>
|
||||
|
||||
* gcc.target/mips/dse-1.c: Add checks for zeros.
|
||||
|
95
gcc/testsuite/gfortran.dg/intrinsic_unpack_1.f90
Normal file
95
gcc/testsuite/gfortran.dg/intrinsic_unpack_1.f90
Normal file
@ -0,0 +1,95 @@
|
||||
! { dg-do run }
|
||||
! Program to test the UNPACK intrinsic for the types usually present.
|
||||
program intrinsic_unpack
|
||||
implicit none
|
||||
integer(kind=1), dimension(3, 3) :: a1, b1
|
||||
integer(kind=2), dimension(3, 3) :: a2, b2
|
||||
integer(kind=4), dimension(3, 3) :: a4, b4
|
||||
integer(kind=8), dimension(3, 3) :: a8, b8
|
||||
real(kind=4), dimension(3,3) :: ar4, br4
|
||||
real(kind=8), dimension(3,3) :: ar8, br8
|
||||
logical, dimension(3, 3) :: mask
|
||||
character(len=100) line1, line2
|
||||
integer i
|
||||
|
||||
mask = reshape ((/.false.,.true.,.false.,.true.,.false.,.false.,&
|
||||
&.false.,.false.,.true./), (/3, 3/));
|
||||
a1 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
|
||||
b1 = unpack ((/2_1, 3_1, 4_1/), mask, a1)
|
||||
if (any (b1 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(10I4)') b1
|
||||
write (line2,'(10I4)') unpack((/2_1, 3_1, 4_1/), mask, a1)
|
||||
if (line1 .ne. line2) call abort
|
||||
b1 = -1
|
||||
b1 = unpack ((/2_1, 3_1, 4_1/), mask, 0_1)
|
||||
if (any (b1 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
a2 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
|
||||
b2 = unpack ((/2_2, 3_2, 4_2/), mask, a2)
|
||||
if (any (b2 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(10I4)') b2
|
||||
write (line2,'(10I4)') unpack((/2_2, 3_2, 4_2/), mask, a2)
|
||||
if (line1 .ne. line2) call abort
|
||||
b2 = -1
|
||||
b2 = unpack ((/2_2, 3_2, 4_2/), mask, 0_2)
|
||||
if (any (b2 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
a4 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
|
||||
b4 = unpack ((/2_4, 3_4, 4_4/), mask, a4)
|
||||
if (any (b4 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(10I4)') b4
|
||||
write (line2,'(10I4)') unpack((/2_4, 3_4, 4_4/), mask, a4)
|
||||
if (line1 .ne. line2) call abort
|
||||
b4 = -1
|
||||
b4 = unpack ((/2_4, 3_4, 4_4/), mask, 0_4)
|
||||
if (any (b4 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
a8 = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
|
||||
b8 = unpack ((/2_8, 3_8, 4_8/), mask, a8)
|
||||
if (any (b8 .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(10I4)') b8
|
||||
write (line2,'(10I4)') unpack((/2_8, 3_8, 4_8/), mask, a8)
|
||||
if (line1 .ne. line2) call abort
|
||||
b8 = -1
|
||||
b8 = unpack ((/2_8, 3_8, 4_8/), mask, 0_8)
|
||||
if (any (b8 .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
ar4 = reshape ((/1._4, 0._4, 0._4, 0._4, 1._4, 0._4, 0._4, 0._4, 1._4/), &
|
||||
(/3, 3/));
|
||||
br4 = unpack ((/2._4, 3._4, 4._4/), mask, ar4)
|
||||
if (any (br4 .ne. reshape ((/1._4, 2._4, 0._4, 3._4, 1._4, 0._4, &
|
||||
0._4, 0._4, 4._4/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(9F9.5)') br4
|
||||
write (line2,'(9F9.5)') unpack((/2._4, 3._4, 4._4/), mask, ar4)
|
||||
if (line1 .ne. line2) call abort
|
||||
br4 = -1._4
|
||||
br4 = unpack ((/2._4, 3._4, 4._4/), mask, 0._4)
|
||||
if (any (br4 .ne. reshape ((/0._4, 2._4, 0._4, 3._4, 0._4, 0._4, &
|
||||
0._4, 0._4, 4._4/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
ar8 = reshape ((/1._8, 0._8, 0._8, 0._8, 1._8, 0._8, 0._8, 0._8, 1._8/), &
|
||||
(/3, 3/));
|
||||
br8 = unpack ((/2._8, 3._8, 4._8/), mask, ar8)
|
||||
if (any (br8 .ne. reshape ((/1._8, 2._8, 0._8, 3._8, 1._8, 0._8, &
|
||||
0._8, 0._8, 4._8/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(9F9.5)') br8
|
||||
write (line2,'(9F9.5)') unpack((/2._8, 3._8, 4._8/), mask, ar8)
|
||||
if (line1 .ne. line2) call abort
|
||||
br8 = -1._8
|
||||
br8 = unpack ((/2._8, 3._8, 4._8/), mask, 0._8)
|
||||
if (any (br8 .ne. reshape ((/0._8, 2._8, 0._8, 3._8, 0._8, 0._8, &
|
||||
0._8, 0._8, 4._8/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
end program
|
31
gcc/testsuite/gfortran.dg/intrinsic_unpack_2.f90
Normal file
31
gcc/testsuite/gfortran.dg/intrinsic_unpack_2.f90
Normal file
@ -0,0 +1,31 @@
|
||||
! { dg-do run }
|
||||
! { dg-require-effective-target fortran_large_real }
|
||||
! Program to test the UNPACK intrinsic for large real type
|
||||
program intrinsic_unpack
|
||||
implicit none
|
||||
integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
|
||||
|
||||
real(kind=k), dimension(3,3) :: ark, brk
|
||||
logical, dimension(3, 3) :: mask
|
||||
character(len=100) line1, line2
|
||||
integer i
|
||||
|
||||
mask = reshape ((/.false.,.true.,.false.,.true.,.false.,.false.,&
|
||||
&.false.,.false.,.true./), (/3, 3/));
|
||||
|
||||
ark = reshape ((/1._k, 0._k, 0._k, 0._k, 1._k, 0._k, 0._k, 0._k, 1._k/), &
|
||||
(/3, 3/));
|
||||
brk = unpack ((/2._k, 3._k, 4._k/), mask, ark)
|
||||
if (any (brk .ne. reshape ((/1._k, 2._k, 0._k, 3._k, 1._k, 0._k, &
|
||||
0._k, 0._k, 4._k/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(9F9.5)') brk
|
||||
write (line2,'(9F9.5)') unpack((/2._k, 3._k, 4._k/), mask, ark)
|
||||
if (line1 .ne. line2) call abort
|
||||
brk = -1._k
|
||||
brk = unpack ((/2._k, 3._k, 4._k/), mask, 0._k)
|
||||
if (any (brk .ne. reshape ((/0._k, 2._k, 0._k, 3._k, 0._k, 0._k, &
|
||||
0._k, 0._k, 4._k/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
end program
|
27
gcc/testsuite/gfortran.dg/intrinsic_unpack_3.f90
Normal file
27
gcc/testsuite/gfortran.dg/intrinsic_unpack_3.f90
Normal file
@ -0,0 +1,27 @@
|
||||
! { dg-do run }
|
||||
! { dg-require-effective-target fortran_large_int }
|
||||
! Program to test the UNPACK intrinsic for a long integer type
|
||||
program intrinsic_unpack
|
||||
implicit none
|
||||
integer,parameter :: k = selected_int_kind (range (0_8) + 1)
|
||||
integer(kind=k), dimension(3, 3) :: ak, bk
|
||||
logical, dimension(3, 3) :: mask
|
||||
character(len=100) line1, line2
|
||||
integer i
|
||||
|
||||
mask = reshape ((/.false.,.true.,.false.,.true.,.false.,.false.,&
|
||||
&.false.,.false.,.true./), (/3, 3/));
|
||||
|
||||
ak = reshape ((/1, 0, 0, 0, 1, 0, 0, 0, 1/), (/3, 3/));
|
||||
bk = unpack ((/2_k, 3_k, 4_k/), mask, ak)
|
||||
if (any (bk .ne. reshape ((/1, 2, 0, 3, 1, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
write (line1,'(10I4)') bk
|
||||
write (line2,'(10I4)') unpack((/2_k, 3_k, 4_k/), mask, ak)
|
||||
if (line1 .ne. line2) call abort
|
||||
bk = -1
|
||||
bk = unpack ((/2_k, 3_k, 4_k/), mask, 0_k)
|
||||
if (any (bk .ne. reshape ((/0, 2, 0, 3, 0, 0, 0, 0, 4/), (/3, 3/)))) &
|
||||
call abort
|
||||
|
||||
end program
|
@ -1,3 +1,38 @@
|
||||
2007-03-23 Thomas Koenig <tkoenig@gcc.gnu.org
|
||||
|
||||
PR libfortran/32972
|
||||
* Makefile.am: Add new variable, i_unpack_c, containing
|
||||
unpack_i1.c, unpack_i2.c, unpack_i4.c, unpack_i8.c,
|
||||
unpack_i16.c, unpack_r4.c, unpack_r8.c, unpack_r10.c,
|
||||
unpack_r16.c, unpack_c4.c, unpack_c8.c, unpack_c10.c
|
||||
and unpack_c16.c
|
||||
Add i_unpack_c to gfor_built_src.
|
||||
Add rule to generate i_unpack_c from m4/unpack.m4.
|
||||
* Makefile.in: Regenerated.
|
||||
* libgfortran.h: Add prototypes for unpack0_i1, unpack0_i2,
|
||||
unpack0_i4, unpack0_i8, unpack0_i16, unpack0_r4, unpack0_r8,
|
||||
unpack0_r10, unpack0_r16, unpack0_c4, unpack0_c8, unpack0_c10,
|
||||
unpack0_c16, unpack1_i1, unpack1_i2, unpack1_i4, unpack1_i8,
|
||||
unpack1_i16, unpack1_r4, unpack1_r8, unpack1_r10, unpack1_r16,
|
||||
unpack1_c4, unpack1_c8, unpack1_c10 and unpack1_c16.
|
||||
* intrinsics/pack_generic.c (unpack1): Add calls to specific
|
||||
unpack1 functions.
|
||||
(unpack0): Add calls to specific unpack0 functions.
|
||||
* m4/unpack.m4: New file.
|
||||
* generated/unpack_i1.c: New file.
|
||||
* generated/unpack_i2.c: New file.
|
||||
* generated/unpack_i4.c: New file.
|
||||
* generated/unpack_i8.c: New file.
|
||||
* generated/unpack_i16.c: New file.
|
||||
* generated/unpack_r4.c: New file.
|
||||
* generated/unpack_r8.c: New file.
|
||||
* generated/unpack_r10.c: New file.
|
||||
* generated/unpack_r16.c: New file.
|
||||
* generated/unpack_c4.c: New file.
|
||||
* generated/unpack_c8.c: New file.
|
||||
* generated/unpack_c10.c: New file.
|
||||
* generated/unpack_c16.c: New file.
|
||||
|
||||
2008-03-22 Jerry DeLisle <jvdelisle@gcc.gnu.org>
|
||||
|
||||
PR libfortran/35632
|
||||
|
@ -491,6 +491,21 @@ $(srcdir)/generated/pack_c8.c \
|
||||
$(srcdir)/generated/pack_c10.c \
|
||||
$(srcdir)/generated/pack_c16.c
|
||||
|
||||
i_unpack_c = \
|
||||
$(srcdir)/generated/unpack_i1.c \
|
||||
$(srcdir)/generated/unpack_i2.c \
|
||||
$(srcdir)/generated/unpack_i4.c \
|
||||
$(srcdir)/generated/unpack_i8.c \
|
||||
$(srcdir)/generated/unpack_i16.c \
|
||||
$(srcdir)/generated/unpack_r4.c \
|
||||
$(srcdir)/generated/unpack_r8.c \
|
||||
$(srcdir)/generated/unpack_r10.c \
|
||||
$(srcdir)/generated/unpack_r16.c \
|
||||
$(srcdir)/generated/unpack_c4.c \
|
||||
$(srcdir)/generated/unpack_c8.c \
|
||||
$(srcdir)/generated/unpack_c10.c \
|
||||
$(srcdir)/generated/unpack_c16.c
|
||||
|
||||
m4_files= m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
|
||||
m4/any.m4 m4/count.m4 m4/maxloc0.m4 m4/maxloc1.m4 m4/maxval.m4 \
|
||||
m4/minloc0.m4 m4/minloc1.m4 m4/minval.m4 m4/product.m4 m4/sum.m4 \
|
||||
@ -499,7 +514,8 @@ m4_files= m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
|
||||
m4/specific.m4 m4/specific2.m4 m4/head.m4 m4/shape.m4 m4/reshape.m4 \
|
||||
m4/transpose.m4 m4/eoshift1.m4 m4/eoshift3.m4 m4/exponent.m4 \
|
||||
m4/fraction.m4 m4/nearest.m4 m4/set_exponent.m4 m4/pow.m4 \
|
||||
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4
|
||||
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 \
|
||||
m4/unpack.m4
|
||||
|
||||
gfor_built_src= $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
|
||||
$(i_maxloc1_c) $(i_maxval_c) $(i_minloc0_c) $(i_minloc1_c) $(i_minval_c) \
|
||||
@ -507,7 +523,7 @@ gfor_built_src= $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
|
||||
$(i_matmul_c) $(i_matmull_c) $(i_transpose_c) $(i_shape_c) $(i_eoshift1_c) \
|
||||
$(i_eoshift3_c) $(i_cshift1_c) $(i_reshape_c) $(in_pack_c) $(in_unpack_c) \
|
||||
$(i_exponent_c) $(i_fraction_c) $(i_nearest_c) $(i_set_exponent_c) \
|
||||
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) \
|
||||
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) $(i_unpack_c) \
|
||||
selected_int_kind.inc selected_real_kind.inc kinds.h \
|
||||
kinds.inc c99_protos.inc fpu-target.h
|
||||
|
||||
@ -826,6 +842,9 @@ $(i_pow_c): m4/pow.m4 $(I_M4_DEPS)
|
||||
$(i_pack_c): m4/pack.m4 $(I_M4_DEPS)
|
||||
$(M4) -Dfile=$@ -I$(srcdir)/m4 pack.m4 > $@
|
||||
|
||||
$(i_unpack_c): m4/unpack.m4 $(I_M4_DEPS)
|
||||
$(M4) -Dfile=$@ -I$(srcdir)/m4 unpack.m4 > $@
|
||||
|
||||
$(gfor_built_specific_src): m4/specific.m4 m4/head.m4
|
||||
$(M4) -Dfile=$@ -I$(srcdir)/m4 specific.m4 > $@
|
||||
|
||||
|
@ -370,7 +370,19 @@ am__libgfortran_la_SOURCES_DIST = runtime/backtrace.c \
|
||||
$(srcdir)/generated/pack_r8.c $(srcdir)/generated/pack_r10.c \
|
||||
$(srcdir)/generated/pack_r16.c $(srcdir)/generated/pack_c4.c \
|
||||
$(srcdir)/generated/pack_c8.c $(srcdir)/generated/pack_c10.c \
|
||||
$(srcdir)/generated/pack_c16.c selected_int_kind.inc \
|
||||
$(srcdir)/generated/pack_c16.c $(srcdir)/generated/unpack_i1.c \
|
||||
$(srcdir)/generated/unpack_i2.c \
|
||||
$(srcdir)/generated/unpack_i4.c \
|
||||
$(srcdir)/generated/unpack_i8.c \
|
||||
$(srcdir)/generated/unpack_i16.c \
|
||||
$(srcdir)/generated/unpack_r4.c \
|
||||
$(srcdir)/generated/unpack_r8.c \
|
||||
$(srcdir)/generated/unpack_r10.c \
|
||||
$(srcdir)/generated/unpack_r16.c \
|
||||
$(srcdir)/generated/unpack_c4.c \
|
||||
$(srcdir)/generated/unpack_c8.c \
|
||||
$(srcdir)/generated/unpack_c10.c \
|
||||
$(srcdir)/generated/unpack_c16.c selected_int_kind.inc \
|
||||
selected_real_kind.inc kinds.h kinds.inc c99_protos.inc \
|
||||
fpu-target.h io/close.c io/file_pos.c io/format.c io/inquire.c \
|
||||
io/intrinsics.c io/list_read.c io/lock.c io/open.c io/read.c \
|
||||
@ -643,7 +655,11 @@ am__objects_29 = spacing_r4.lo spacing_r8.lo spacing_r10.lo \
|
||||
am__objects_30 = pack_i1.lo pack_i2.lo pack_i4.lo pack_i8.lo \
|
||||
pack_i16.lo pack_r4.lo pack_r8.lo pack_r10.lo pack_r16.lo \
|
||||
pack_c4.lo pack_c8.lo pack_c10.lo pack_c16.lo
|
||||
am__objects_31 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \
|
||||
am__objects_31 = unpack_i1.lo unpack_i2.lo unpack_i4.lo unpack_i8.lo \
|
||||
unpack_i16.lo unpack_r4.lo unpack_r8.lo unpack_r10.lo \
|
||||
unpack_r16.lo unpack_c4.lo unpack_c8.lo unpack_c10.lo \
|
||||
unpack_c16.lo
|
||||
am__objects_32 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \
|
||||
$(am__objects_5) $(am__objects_6) $(am__objects_7) \
|
||||
$(am__objects_8) $(am__objects_9) $(am__objects_10) \
|
||||
$(am__objects_11) $(am__objects_12) $(am__objects_13) \
|
||||
@ -652,11 +668,11 @@ am__objects_31 = $(am__objects_2) $(am__objects_3) $(am__objects_4) \
|
||||
$(am__objects_20) $(am__objects_21) $(am__objects_22) \
|
||||
$(am__objects_23) $(am__objects_24) $(am__objects_25) \
|
||||
$(am__objects_26) $(am__objects_27) $(am__objects_28) \
|
||||
$(am__objects_29) $(am__objects_30)
|
||||
am__objects_32 = close.lo file_pos.lo format.lo inquire.lo \
|
||||
$(am__objects_29) $(am__objects_30) $(am__objects_31)
|
||||
am__objects_33 = close.lo file_pos.lo format.lo inquire.lo \
|
||||
intrinsics.lo list_read.lo lock.lo open.lo read.lo \
|
||||
size_from_kind.lo transfer.lo unit.lo unix.lo write.lo
|
||||
am__objects_33 = associated.lo abort.lo access.lo args.lo \
|
||||
am__objects_34 = associated.lo abort.lo access.lo args.lo \
|
||||
c99_functions.lo chdir.lo chmod.lo clock.lo cpu_time.lo \
|
||||
cshift0.lo ctime.lo date_and_time.lo dtime.lo env.lo \
|
||||
eoshift0.lo eoshift2.lo erfc_scaled.lo etime.lo exit.lo \
|
||||
@ -670,8 +686,8 @@ am__objects_33 = associated.lo abort.lo access.lo args.lo \
|
||||
system_clock.lo time.lo transpose_generic.lo umask.lo \
|
||||
unlink.lo unpack_generic.lo in_pack_generic.lo \
|
||||
in_unpack_generic.lo
|
||||
am__objects_34 =
|
||||
am__objects_35 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \
|
||||
am__objects_35 =
|
||||
am__objects_36 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \
|
||||
_abs_i4.lo _abs_i8.lo _abs_i16.lo _abs_r4.lo _abs_r8.lo \
|
||||
_abs_r10.lo _abs_r16.lo _aimag_c4.lo _aimag_c8.lo \
|
||||
_aimag_c10.lo _aimag_c16.lo _exp_r4.lo _exp_r8.lo _exp_r10.lo \
|
||||
@ -695,18 +711,18 @@ am__objects_35 = _abs_c4.lo _abs_c8.lo _abs_c10.lo _abs_c16.lo \
|
||||
_conjg_c4.lo _conjg_c8.lo _conjg_c10.lo _conjg_c16.lo \
|
||||
_aint_r4.lo _aint_r8.lo _aint_r10.lo _aint_r16.lo _anint_r4.lo \
|
||||
_anint_r8.lo _anint_r10.lo _anint_r16.lo
|
||||
am__objects_36 = _sign_i4.lo _sign_i8.lo _sign_i16.lo _sign_r4.lo \
|
||||
am__objects_37 = _sign_i4.lo _sign_i8.lo _sign_i16.lo _sign_r4.lo \
|
||||
_sign_r8.lo _sign_r10.lo _sign_r16.lo _dim_i4.lo _dim_i8.lo \
|
||||
_dim_i16.lo _dim_r4.lo _dim_r8.lo _dim_r10.lo _dim_r16.lo \
|
||||
_atan2_r4.lo _atan2_r8.lo _atan2_r10.lo _atan2_r16.lo \
|
||||
_mod_i4.lo _mod_i8.lo _mod_i16.lo _mod_r4.lo _mod_r8.lo \
|
||||
_mod_r10.lo _mod_r16.lo
|
||||
am__objects_37 = misc_specifics.lo
|
||||
am__objects_38 = $(am__objects_35) $(am__objects_36) $(am__objects_37) \
|
||||
am__objects_38 = misc_specifics.lo
|
||||
am__objects_39 = $(am__objects_36) $(am__objects_37) $(am__objects_38) \
|
||||
dprod_r8.lo f2c_specifics.lo
|
||||
am__objects_39 = $(am__objects_1) $(am__objects_31) $(am__objects_32) \
|
||||
$(am__objects_33) $(am__objects_34) $(am__objects_38)
|
||||
@onestep_FALSE@am_libgfortran_la_OBJECTS = $(am__objects_39)
|
||||
am__objects_40 = $(am__objects_1) $(am__objects_32) $(am__objects_33) \
|
||||
$(am__objects_34) $(am__objects_35) $(am__objects_39)
|
||||
@onestep_FALSE@am_libgfortran_la_OBJECTS = $(am__objects_40)
|
||||
@onestep_TRUE@am_libgfortran_la_OBJECTS = libgfortran_c.lo
|
||||
libgfortran_la_OBJECTS = $(am_libgfortran_la_OBJECTS)
|
||||
libgfortranbegin_la_LIBADD =
|
||||
@ -1355,6 +1371,21 @@ $(srcdir)/generated/pack_c8.c \
|
||||
$(srcdir)/generated/pack_c10.c \
|
||||
$(srcdir)/generated/pack_c16.c
|
||||
|
||||
i_unpack_c = \
|
||||
$(srcdir)/generated/unpack_i1.c \
|
||||
$(srcdir)/generated/unpack_i2.c \
|
||||
$(srcdir)/generated/unpack_i4.c \
|
||||
$(srcdir)/generated/unpack_i8.c \
|
||||
$(srcdir)/generated/unpack_i16.c \
|
||||
$(srcdir)/generated/unpack_r4.c \
|
||||
$(srcdir)/generated/unpack_r8.c \
|
||||
$(srcdir)/generated/unpack_r10.c \
|
||||
$(srcdir)/generated/unpack_r16.c \
|
||||
$(srcdir)/generated/unpack_c4.c \
|
||||
$(srcdir)/generated/unpack_c8.c \
|
||||
$(srcdir)/generated/unpack_c10.c \
|
||||
$(srcdir)/generated/unpack_c16.c
|
||||
|
||||
m4_files = m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
|
||||
m4/any.m4 m4/count.m4 m4/maxloc0.m4 m4/maxloc1.m4 m4/maxval.m4 \
|
||||
m4/minloc0.m4 m4/minloc1.m4 m4/minval.m4 m4/product.m4 m4/sum.m4 \
|
||||
@ -1363,7 +1394,8 @@ m4_files = m4/iparm.m4 m4/ifunction.m4 m4/iforeach.m4 m4/all.m4 \
|
||||
m4/specific.m4 m4/specific2.m4 m4/head.m4 m4/shape.m4 m4/reshape.m4 \
|
||||
m4/transpose.m4 m4/eoshift1.m4 m4/eoshift3.m4 m4/exponent.m4 \
|
||||
m4/fraction.m4 m4/nearest.m4 m4/set_exponent.m4 m4/pow.m4 \
|
||||
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4
|
||||
m4/misc_specifics.m4 m4/rrspacing.m4 m4/spacing.m4 m4/pack.m4 \
|
||||
m4/unpack.m4
|
||||
|
||||
gfor_built_src = $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
|
||||
$(i_maxloc1_c) $(i_maxval_c) $(i_minloc0_c) $(i_minloc1_c) $(i_minval_c) \
|
||||
@ -1371,7 +1403,7 @@ gfor_built_src = $(i_all_c) $(i_any_c) $(i_count_c) $(i_maxloc0_c) \
|
||||
$(i_matmul_c) $(i_matmull_c) $(i_transpose_c) $(i_shape_c) $(i_eoshift1_c) \
|
||||
$(i_eoshift3_c) $(i_cshift1_c) $(i_reshape_c) $(in_pack_c) $(in_unpack_c) \
|
||||
$(i_exponent_c) $(i_fraction_c) $(i_nearest_c) $(i_set_exponent_c) \
|
||||
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) \
|
||||
$(i_pow_c) $(i_rrspacing_c) $(i_spacing_c) $(i_pack_c) $(i_unpack_c) \
|
||||
selected_int_kind.inc selected_real_kind.inc kinds.h \
|
||||
kinds.inc c99_protos.inc fpu-target.h
|
||||
|
||||
@ -2061,7 +2093,20 @@ distclean-compile:
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unit.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unix.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unlink.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c10.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c16.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c4.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_c8.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_generic.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i1.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i16.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i2.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i4.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_i8.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r10.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r16.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r4.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/unpack_r8.Plo@am__quote@
|
||||
@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/write.Plo@am__quote@
|
||||
|
||||
.F90.o:
|
||||
@ -4748,6 +4793,97 @@ pack_c16.lo: $(srcdir)/generated/pack_c16.c
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o pack_c16.lo `test -f '$(srcdir)/generated/pack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/pack_c16.c
|
||||
|
||||
unpack_i1.lo: $(srcdir)/generated/unpack_i1.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i1.lo -MD -MP -MF "$(DEPDIR)/unpack_i1.Tpo" -c -o unpack_i1.lo `test -f '$(srcdir)/generated/unpack_i1.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i1.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i1.Tpo" "$(DEPDIR)/unpack_i1.Plo"; else rm -f "$(DEPDIR)/unpack_i1.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i1.c' object='unpack_i1.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i1.lo `test -f '$(srcdir)/generated/unpack_i1.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i1.c
|
||||
|
||||
unpack_i2.lo: $(srcdir)/generated/unpack_i2.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i2.lo -MD -MP -MF "$(DEPDIR)/unpack_i2.Tpo" -c -o unpack_i2.lo `test -f '$(srcdir)/generated/unpack_i2.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i2.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i2.Tpo" "$(DEPDIR)/unpack_i2.Plo"; else rm -f "$(DEPDIR)/unpack_i2.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i2.c' object='unpack_i2.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i2.lo `test -f '$(srcdir)/generated/unpack_i2.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i2.c
|
||||
|
||||
unpack_i4.lo: $(srcdir)/generated/unpack_i4.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i4.lo -MD -MP -MF "$(DEPDIR)/unpack_i4.Tpo" -c -o unpack_i4.lo `test -f '$(srcdir)/generated/unpack_i4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i4.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i4.Tpo" "$(DEPDIR)/unpack_i4.Plo"; else rm -f "$(DEPDIR)/unpack_i4.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i4.c' object='unpack_i4.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i4.lo `test -f '$(srcdir)/generated/unpack_i4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i4.c
|
||||
|
||||
unpack_i8.lo: $(srcdir)/generated/unpack_i8.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i8.lo -MD -MP -MF "$(DEPDIR)/unpack_i8.Tpo" -c -o unpack_i8.lo `test -f '$(srcdir)/generated/unpack_i8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i8.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i8.Tpo" "$(DEPDIR)/unpack_i8.Plo"; else rm -f "$(DEPDIR)/unpack_i8.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i8.c' object='unpack_i8.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i8.lo `test -f '$(srcdir)/generated/unpack_i8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i8.c
|
||||
|
||||
unpack_i16.lo: $(srcdir)/generated/unpack_i16.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_i16.lo -MD -MP -MF "$(DEPDIR)/unpack_i16.Tpo" -c -o unpack_i16.lo `test -f '$(srcdir)/generated/unpack_i16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i16.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_i16.Tpo" "$(DEPDIR)/unpack_i16.Plo"; else rm -f "$(DEPDIR)/unpack_i16.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_i16.c' object='unpack_i16.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_i16.lo `test -f '$(srcdir)/generated/unpack_i16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_i16.c
|
||||
|
||||
unpack_r4.lo: $(srcdir)/generated/unpack_r4.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r4.lo -MD -MP -MF "$(DEPDIR)/unpack_r4.Tpo" -c -o unpack_r4.lo `test -f '$(srcdir)/generated/unpack_r4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r4.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r4.Tpo" "$(DEPDIR)/unpack_r4.Plo"; else rm -f "$(DEPDIR)/unpack_r4.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r4.c' object='unpack_r4.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r4.lo `test -f '$(srcdir)/generated/unpack_r4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r4.c
|
||||
|
||||
unpack_r8.lo: $(srcdir)/generated/unpack_r8.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r8.lo -MD -MP -MF "$(DEPDIR)/unpack_r8.Tpo" -c -o unpack_r8.lo `test -f '$(srcdir)/generated/unpack_r8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r8.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r8.Tpo" "$(DEPDIR)/unpack_r8.Plo"; else rm -f "$(DEPDIR)/unpack_r8.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r8.c' object='unpack_r8.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r8.lo `test -f '$(srcdir)/generated/unpack_r8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r8.c
|
||||
|
||||
unpack_r10.lo: $(srcdir)/generated/unpack_r10.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r10.lo -MD -MP -MF "$(DEPDIR)/unpack_r10.Tpo" -c -o unpack_r10.lo `test -f '$(srcdir)/generated/unpack_r10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r10.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r10.Tpo" "$(DEPDIR)/unpack_r10.Plo"; else rm -f "$(DEPDIR)/unpack_r10.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r10.c' object='unpack_r10.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r10.lo `test -f '$(srcdir)/generated/unpack_r10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r10.c
|
||||
|
||||
unpack_r16.lo: $(srcdir)/generated/unpack_r16.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_r16.lo -MD -MP -MF "$(DEPDIR)/unpack_r16.Tpo" -c -o unpack_r16.lo `test -f '$(srcdir)/generated/unpack_r16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r16.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_r16.Tpo" "$(DEPDIR)/unpack_r16.Plo"; else rm -f "$(DEPDIR)/unpack_r16.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_r16.c' object='unpack_r16.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_r16.lo `test -f '$(srcdir)/generated/unpack_r16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_r16.c
|
||||
|
||||
unpack_c4.lo: $(srcdir)/generated/unpack_c4.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c4.lo -MD -MP -MF "$(DEPDIR)/unpack_c4.Tpo" -c -o unpack_c4.lo `test -f '$(srcdir)/generated/unpack_c4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c4.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c4.Tpo" "$(DEPDIR)/unpack_c4.Plo"; else rm -f "$(DEPDIR)/unpack_c4.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c4.c' object='unpack_c4.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c4.lo `test -f '$(srcdir)/generated/unpack_c4.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c4.c
|
||||
|
||||
unpack_c8.lo: $(srcdir)/generated/unpack_c8.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c8.lo -MD -MP -MF "$(DEPDIR)/unpack_c8.Tpo" -c -o unpack_c8.lo `test -f '$(srcdir)/generated/unpack_c8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c8.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c8.Tpo" "$(DEPDIR)/unpack_c8.Plo"; else rm -f "$(DEPDIR)/unpack_c8.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c8.c' object='unpack_c8.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c8.lo `test -f '$(srcdir)/generated/unpack_c8.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c8.c
|
||||
|
||||
unpack_c10.lo: $(srcdir)/generated/unpack_c10.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c10.lo -MD -MP -MF "$(DEPDIR)/unpack_c10.Tpo" -c -o unpack_c10.lo `test -f '$(srcdir)/generated/unpack_c10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c10.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c10.Tpo" "$(DEPDIR)/unpack_c10.Plo"; else rm -f "$(DEPDIR)/unpack_c10.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c10.c' object='unpack_c10.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c10.lo `test -f '$(srcdir)/generated/unpack_c10.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c10.c
|
||||
|
||||
unpack_c16.lo: $(srcdir)/generated/unpack_c16.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT unpack_c16.lo -MD -MP -MF "$(DEPDIR)/unpack_c16.Tpo" -c -o unpack_c16.lo `test -f '$(srcdir)/generated/unpack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c16.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/unpack_c16.Tpo" "$(DEPDIR)/unpack_c16.Plo"; else rm -f "$(DEPDIR)/unpack_c16.Tpo"; exit 1; fi
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ source='$(srcdir)/generated/unpack_c16.c' object='unpack_c16.lo' libtool=yes @AMDEPBACKSLASH@
|
||||
@AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
|
||||
@am__fastdepCC_FALSE@ $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -c -o unpack_c16.lo `test -f '$(srcdir)/generated/unpack_c16.c' || echo '$(srcdir)/'`$(srcdir)/generated/unpack_c16.c
|
||||
|
||||
close.lo: io/close.c
|
||||
@am__fastdepCC_TRUE@ if $(LIBTOOL) --tag=CC --mode=compile $(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -MT close.lo -MD -MP -MF "$(DEPDIR)/close.Tpo" -c -o close.lo `test -f 'io/close.c' || echo '$(srcdir)/'`io/close.c; \
|
||||
@am__fastdepCC_TRUE@ then mv -f "$(DEPDIR)/close.Tpo" "$(DEPDIR)/close.Plo"; else rm -f "$(DEPDIR)/close.Tpo"; exit 1; fi
|
||||
@ -5702,6 +5838,9 @@ fpu-target.h: $(srcdir)/$(FPU_HOST_HEADER)
|
||||
@MAINTAINER_MODE_TRUE@$(i_pack_c): m4/pack.m4 $(I_M4_DEPS)
|
||||
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 pack.m4 > $@
|
||||
|
||||
@MAINTAINER_MODE_TRUE@$(i_unpack_c): m4/unpack.m4 $(I_M4_DEPS)
|
||||
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 unpack.m4 > $@
|
||||
|
||||
@MAINTAINER_MODE_TRUE@$(gfor_built_specific_src): m4/specific.m4 m4/head.m4
|
||||
@MAINTAINER_MODE_TRUE@ $(M4) -Dfile=$@ -I$(srcdir)/m4 specific.m4 > $@
|
||||
|
||||
|
338
libgfortran/generated/unpack_c10.c
Normal file
338
libgfortran/generated/unpack_c10.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_COMPLEX_10)
|
||||
|
||||
void
|
||||
unpack0_c10 (gfc_array_c10 *ret, const gfc_array_c10 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_COMPLEX_10 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_10 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_10 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_COMPLEX_10 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_10));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_c10 (gfc_array_c10 *ret, const gfc_array_c10 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_c10 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_10 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_10 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_COMPLEX_10 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_10));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_c16.c
Normal file
338
libgfortran/generated/unpack_c16.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_COMPLEX_16)
|
||||
|
||||
void
|
||||
unpack0_c16 (gfc_array_c16 *ret, const gfc_array_c16 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_COMPLEX_16 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_16 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_16 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_COMPLEX_16 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_16));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_c16 (gfc_array_c16 *ret, const gfc_array_c16 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_c16 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_16 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_16 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_COMPLEX_16 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_16));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_c4.c
Normal file
338
libgfortran/generated/unpack_c4.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_COMPLEX_4)
|
||||
|
||||
void
|
||||
unpack0_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_COMPLEX_4 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_4 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_4 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_COMPLEX_4 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_c4 (gfc_array_c4 *ret, const gfc_array_c4 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_c4 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_4 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_4 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_COMPLEX_4 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_4));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_c8.c
Normal file
338
libgfortran/generated/unpack_c8.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_COMPLEX_8)
|
||||
|
||||
void
|
||||
unpack0_c8 (gfc_array_c8 *ret, const gfc_array_c8 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_COMPLEX_8 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_8 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_8 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_COMPLEX_8 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_8));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_c8 (gfc_array_c8 *ret, const gfc_array_c8 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_c8 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_COMPLEX_8 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_COMPLEX_8 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_COMPLEX_8 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_COMPLEX_8));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_i1.c
Normal file
338
libgfortran/generated/unpack_i1.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_INTEGER_1)
|
||||
|
||||
void
|
||||
unpack0_i1 (gfc_array_i1 *ret, const gfc_array_i1 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_INTEGER_1 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_1 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_1 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_INTEGER_1 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_1));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_i1 (gfc_array_i1 *ret, const gfc_array_i1 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_i1 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_1 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_1 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_INTEGER_1 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_1));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_i16.c
Normal file
338
libgfortran/generated/unpack_i16.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_INTEGER_16)
|
||||
|
||||
void
|
||||
unpack0_i16 (gfc_array_i16 *ret, const gfc_array_i16 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_INTEGER_16 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_16 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_16 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_INTEGER_16 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_16));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_i16 (gfc_array_i16 *ret, const gfc_array_i16 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_i16 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_16 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_16 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_INTEGER_16 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_16));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_i2.c
Normal file
338
libgfortran/generated/unpack_i2.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_INTEGER_2)
|
||||
|
||||
void
|
||||
unpack0_i2 (gfc_array_i2 *ret, const gfc_array_i2 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_INTEGER_2 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_2 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_2 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_INTEGER_2 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_2));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_i2 (gfc_array_i2 *ret, const gfc_array_i2 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_i2 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_2 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_2 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_INTEGER_2 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_2));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_i4.c
Normal file
338
libgfortran/generated/unpack_i4.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_INTEGER_4)
|
||||
|
||||
void
|
||||
unpack0_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_INTEGER_4 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_4 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_4 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_INTEGER_4 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_4));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_i4 (gfc_array_i4 *ret, const gfc_array_i4 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_i4 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_4 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_4 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_INTEGER_4 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_4));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_i8.c
Normal file
338
libgfortran/generated/unpack_i8.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_INTEGER_8)
|
||||
|
||||
void
|
||||
unpack0_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_INTEGER_8 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_8 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_8 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_INTEGER_8 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_i8 (gfc_array_i8 *ret, const gfc_array_i8 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_i8 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_INTEGER_8 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_INTEGER_8 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_INTEGER_8 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_INTEGER_8));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_r10.c
Normal file
338
libgfortran/generated/unpack_r10.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_REAL_10)
|
||||
|
||||
void
|
||||
unpack0_r10 (gfc_array_r10 *ret, const gfc_array_r10 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_REAL_10 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_10 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_10 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_REAL_10 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_10));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_r10 (gfc_array_r10 *ret, const gfc_array_r10 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_r10 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_10 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_10 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_REAL_10 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_10));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_r16.c
Normal file
338
libgfortran/generated/unpack_r16.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_REAL_16)
|
||||
|
||||
void
|
||||
unpack0_r16 (gfc_array_r16 *ret, const gfc_array_r16 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_REAL_16 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_16 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_16 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_REAL_16 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_16));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_r16 (gfc_array_r16 *ret, const gfc_array_r16 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_r16 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_16 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_16 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_REAL_16 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_16));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_r4.c
Normal file
338
libgfortran/generated/unpack_r4.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_REAL_4)
|
||||
|
||||
void
|
||||
unpack0_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_REAL_4 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_4 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_4 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_REAL_4 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_4));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_r4 (gfc_array_r4 *ret, const gfc_array_r4 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_r4 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_4 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_4 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_REAL_4 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_4));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
338
libgfortran/generated/unpack_r8.c
Normal file
338
libgfortran/generated/unpack_r8.c
Normal file
@ -0,0 +1,338 @@
|
||||
/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#if defined (HAVE_GFC_REAL_8)
|
||||
|
||||
void
|
||||
unpack0_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector,
|
||||
const gfc_array_l1 *mask, const GFC_REAL_8 *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_8 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_8 *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const GFC_REAL_8 fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_r8 (gfc_array_r8 *ret, const gfc_array_r8 *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_r8 *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
GFC_REAL_8 *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
GFC_REAL_8 *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const GFC_REAL_8 *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof (GFC_REAL_8));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -196,8 +196,103 @@ void
|
||||
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
|
||||
const gfc_array_l1 *mask, const gfc_array_char *field)
|
||||
{
|
||||
unpack_internal (ret, vector, mask, field,
|
||||
GFC_DESCRIPTOR_SIZE (vector),
|
||||
int type;
|
||||
index_type size;
|
||||
|
||||
type = GFC_DESCRIPTOR_TYPE (vector);
|
||||
size = GFC_DESCRIPTOR_SIZE (vector);
|
||||
|
||||
switch(type)
|
||||
{
|
||||
case GFC_DTYPE_INTEGER:
|
||||
case GFC_DTYPE_LOGICAL:
|
||||
switch(size)
|
||||
{
|
||||
case sizeof (GFC_INTEGER_1):
|
||||
unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
|
||||
mask, (gfc_array_i1 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_INTEGER_2):
|
||||
unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
|
||||
mask, (gfc_array_i2 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_INTEGER_4):
|
||||
unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
|
||||
mask, (gfc_array_i4 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_INTEGER_8):
|
||||
unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
|
||||
mask, (gfc_array_i8 *) field);
|
||||
return;
|
||||
|
||||
#ifdef HAVE_GFC_INTEGER_16
|
||||
case sizeof (GFC_INTEGER_16):
|
||||
unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
|
||||
mask, (gfc_array_i16 *) field);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
case GFC_DTYPE_REAL:
|
||||
switch (size)
|
||||
{
|
||||
case sizeof (GFC_REAL_4):
|
||||
unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
|
||||
mask, (gfc_array_r4 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_REAL_8):
|
||||
unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
|
||||
mask, (gfc_array_r8 *) field);
|
||||
return;
|
||||
|
||||
#ifdef HAVE_GFC_REAL_10
|
||||
case sizeof (GFC_REAL_10):
|
||||
unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
|
||||
mask, (gfc_array_r10 *) field);
|
||||
return;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_REAL_16
|
||||
case sizeof (GFC_REAL_16):
|
||||
unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
|
||||
mask, (gfc_array_r16 *) field);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
|
||||
case GFC_DTYPE_COMPLEX:
|
||||
switch (size)
|
||||
{
|
||||
case sizeof (GFC_COMPLEX_4):
|
||||
unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
|
||||
mask, (gfc_array_c4 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_COMPLEX_8):
|
||||
unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
|
||||
mask, (gfc_array_c8 *) field);
|
||||
return;
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_10
|
||||
case sizeof (GFC_COMPLEX_10):
|
||||
unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
|
||||
mask, (gfc_array_c10 *) field);
|
||||
return;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_16
|
||||
case sizeof (GFC_COMPLEX_16):
|
||||
unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
|
||||
mask, (gfc_array_c16 *) field);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
unpack_internal (ret, vector, mask, field, size,
|
||||
GFC_DESCRIPTOR_SIZE (field));
|
||||
}
|
||||
|
||||
@ -227,6 +322,102 @@ unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
|
||||
{
|
||||
gfc_array_char tmp;
|
||||
|
||||
int type;
|
||||
index_type size;
|
||||
|
||||
type = GFC_DESCRIPTOR_TYPE (vector);
|
||||
size = GFC_DESCRIPTOR_SIZE (vector);
|
||||
|
||||
switch(type)
|
||||
{
|
||||
case GFC_DTYPE_INTEGER:
|
||||
case GFC_DTYPE_LOGICAL:
|
||||
switch(size)
|
||||
{
|
||||
case sizeof (GFC_INTEGER_1):
|
||||
unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
|
||||
mask, (GFC_INTEGER_1 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_INTEGER_2):
|
||||
unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
|
||||
mask, (GFC_INTEGER_2 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_INTEGER_4):
|
||||
unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
|
||||
mask, (GFC_INTEGER_4 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_INTEGER_8):
|
||||
unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
|
||||
mask, (GFC_INTEGER_8 *) field);
|
||||
return;
|
||||
|
||||
#ifdef HAVE_GFC_INTEGER_16
|
||||
case sizeof (GFC_INTEGER_16):
|
||||
unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
|
||||
mask, (GFC_INTEGER_16 *) field);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
|
||||
case GFC_DTYPE_REAL:
|
||||
switch(size)
|
||||
{
|
||||
case sizeof (GFC_REAL_4):
|
||||
unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
|
||||
mask, (GFC_REAL_4 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_REAL_8):
|
||||
unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
|
||||
mask, (GFC_REAL_8 *) field);
|
||||
return;
|
||||
|
||||
#ifdef HAVE_GFC_REAL_10
|
||||
case sizeof (GFC_REAL_10):
|
||||
unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
|
||||
mask, (GFC_REAL_10 *) field);
|
||||
return;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_REAL_16
|
||||
case sizeof (GFC_REAL_16):
|
||||
unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
|
||||
mask, (GFC_REAL_16 *) field);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
|
||||
case GFC_DTYPE_COMPLEX:
|
||||
switch(size)
|
||||
{
|
||||
case sizeof (GFC_COMPLEX_4):
|
||||
unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
|
||||
mask, (GFC_COMPLEX_4 *) field);
|
||||
return;
|
||||
|
||||
case sizeof (GFC_COMPLEX_8):
|
||||
unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
|
||||
mask, (GFC_COMPLEX_8 *) field);
|
||||
return;
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_10
|
||||
case sizeof (GFC_COMPLEX_10):
|
||||
unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
|
||||
mask, (GFC_COMPLEX_10 *) field);
|
||||
return;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_16
|
||||
case sizeof (GFC_COMPLEX_16):
|
||||
unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
|
||||
mask, (GFC_COMPLEX_16 *) field);
|
||||
return;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
memset (&tmp, 0, sizeof (tmp));
|
||||
tmp.dtype = 0;
|
||||
tmp.data = field;
|
||||
|
@ -774,6 +774,142 @@ extern void pack_c16 (gfc_array_c16 *, const gfc_array_c16 *,
|
||||
internal_proto(pack_c16);
|
||||
#endif
|
||||
|
||||
/* Internal auxiliary functions for the unpack intrinsic. */
|
||||
|
||||
extern void unpack0_i1 (gfc_array_i1 *, const gfc_array_i1 *,
|
||||
const gfc_array_l1 *, const GFC_INTEGER_1 *);
|
||||
internal_proto(unpack0_i1);
|
||||
|
||||
extern void unpack0_i2 (gfc_array_i2 *, const gfc_array_i2 *,
|
||||
const gfc_array_l1 *, const GFC_INTEGER_2 *);
|
||||
internal_proto(unpack0_i2);
|
||||
|
||||
extern void unpack0_i4 (gfc_array_i4 *, const gfc_array_i4 *,
|
||||
const gfc_array_l1 *, const GFC_INTEGER_4 *);
|
||||
internal_proto(unpack0_i4);
|
||||
|
||||
extern void unpack0_i8 (gfc_array_i8 *, const gfc_array_i8 *,
|
||||
const gfc_array_l1 *, const GFC_INTEGER_8 *);
|
||||
internal_proto(unpack0_i8);
|
||||
|
||||
#ifdef HAVE_GFC_INTEGER_16
|
||||
|
||||
extern void unpack0_i16 (gfc_array_i16 *, const gfc_array_i16 *,
|
||||
const gfc_array_l1 *, const GFC_INTEGER_16 *);
|
||||
internal_proto(unpack0_i16);
|
||||
|
||||
#endif
|
||||
|
||||
extern void unpack0_r4 (gfc_array_r4 *, const gfc_array_r4 *,
|
||||
const gfc_array_l1 *, const GFC_REAL_4 *);
|
||||
internal_proto(unpack0_r4);
|
||||
|
||||
extern void unpack0_r8 (gfc_array_r8 *, const gfc_array_r8 *,
|
||||
const gfc_array_l1 *, const GFC_REAL_8 *);
|
||||
internal_proto(unpack0_r8);
|
||||
|
||||
#ifdef HAVE_GFC_REAL_10
|
||||
|
||||
extern void unpack0_r10 (gfc_array_r10 *, const gfc_array_r10 *,
|
||||
const gfc_array_l1 *, const GFC_REAL_10 *);
|
||||
internal_proto(unpack0_r10);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_REAL_16
|
||||
|
||||
extern void unpack0_r16 (gfc_array_r16 *, const gfc_array_r16 *,
|
||||
const gfc_array_l1 *, const GFC_REAL_16 *);
|
||||
internal_proto(unpack0_r16);
|
||||
|
||||
#endif
|
||||
|
||||
extern void unpack0_c4 (gfc_array_c4 *, const gfc_array_c4 *,
|
||||
const gfc_array_l1 *, const GFC_COMPLEX_4 *);
|
||||
internal_proto(unpack0_c4);
|
||||
|
||||
extern void unpack0_c8 (gfc_array_c8 *, const gfc_array_c8 *,
|
||||
const gfc_array_l1 *, const GFC_COMPLEX_8 *);
|
||||
internal_proto(unpack0_c8);
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_10
|
||||
|
||||
extern void unpack0_c10 (gfc_array_c10 *, const gfc_array_c10 *,
|
||||
const gfc_array_l1 *mask, const GFC_COMPLEX_10 *);
|
||||
internal_proto(unpack0_c10);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_16
|
||||
|
||||
extern void unpack0_c16 (gfc_array_c16 *, const gfc_array_c16 *,
|
||||
const gfc_array_l1 *, const GFC_COMPLEX_16 *);
|
||||
internal_proto(unpack0_c16);
|
||||
|
||||
#endif
|
||||
|
||||
extern void unpack1_i1 (gfc_array_i1 *, const gfc_array_i1 *,
|
||||
const gfc_array_l1 *, const gfc_array_i1 *);
|
||||
internal_proto(unpack1_i1);
|
||||
|
||||
extern void unpack1_i2 (gfc_array_i2 *, const gfc_array_i2 *,
|
||||
const gfc_array_l1 *, const gfc_array_i2 *);
|
||||
internal_proto(unpack1_i2);
|
||||
|
||||
extern void unpack1_i4 (gfc_array_i4 *, const gfc_array_i4 *,
|
||||
const gfc_array_l1 *, const gfc_array_i4 *);
|
||||
internal_proto(unpack1_i4);
|
||||
|
||||
extern void unpack1_i8 (gfc_array_i8 *, const gfc_array_i8 *,
|
||||
const gfc_array_l1 *, const gfc_array_i8 *);
|
||||
internal_proto(unpack1_i8);
|
||||
|
||||
#ifdef HAVE_GFC_INTEGER_16
|
||||
extern void unpack1_i16 (gfc_array_i16 *, const gfc_array_i16 *,
|
||||
const gfc_array_l1 *, const gfc_array_i16 *);
|
||||
internal_proto(unpack1_i16);
|
||||
#endif
|
||||
|
||||
extern void unpack1_r4 (gfc_array_r4 *, const gfc_array_r4 *,
|
||||
const gfc_array_l1 *, const gfc_array_r4 *);
|
||||
internal_proto(unpack1_r4);
|
||||
|
||||
extern void unpack1_r8 (gfc_array_r8 *, const gfc_array_r8 *,
|
||||
const gfc_array_l1 *, const gfc_array_r8 *);
|
||||
internal_proto(unpack1_r8);
|
||||
|
||||
#ifdef HAVE_GFC_REAL_10
|
||||
extern void unpack1_r10 (gfc_array_r10 *, const gfc_array_r10 *,
|
||||
const gfc_array_l1 *, const gfc_array_r10 *);
|
||||
internal_proto(unpack1_r10);
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_REAL_16
|
||||
extern void unpack1_r16 (gfc_array_r16 *, const gfc_array_r16 *,
|
||||
const gfc_array_l1 *, const gfc_array_r16 *);
|
||||
internal_proto(unpack1_r16);
|
||||
#endif
|
||||
|
||||
extern void unpack1_c4 (gfc_array_c4 *, const gfc_array_c4 *,
|
||||
const gfc_array_l1 *, const gfc_array_c4 *);
|
||||
internal_proto(unpack1_c4);
|
||||
|
||||
extern void unpack1_c8 (gfc_array_c8 *, const gfc_array_c8 *,
|
||||
const gfc_array_l1 *, const gfc_array_c8 *);
|
||||
internal_proto(unpack1_c8);
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_10
|
||||
extern void unpack1_c10 (gfc_array_c10 *, const gfc_array_c10 *,
|
||||
const gfc_array_l1 *, const gfc_array_c10 *);
|
||||
internal_proto(unpack1_c10);
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_GFC_COMPLEX_16
|
||||
extern void unpack1_c16 (gfc_array_c16 *, const gfc_array_c16 *,
|
||||
const gfc_array_l1 *, const gfc_array_c16 *);
|
||||
internal_proto(unpack1_c16);
|
||||
#endif
|
||||
|
||||
/* string_intrinsics.c */
|
||||
|
||||
extern int compare_string (GFC_INTEGER_4, const char *,
|
||||
|
339
libgfortran/m4/unpack.m4
Normal file
339
libgfortran/m4/unpack.m4
Normal file
@ -0,0 +1,339 @@
|
||||
`/* Specific implementation of the UNPACK intrinsic
|
||||
Copyright 2008 Free Software Foundation, Inc.
|
||||
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>, based on
|
||||
unpack_generic.c by Paul Brook <paul@nowt.org>.
|
||||
|
||||
This file is part of the GNU Fortran 95 runtime library (libgfortran).
|
||||
|
||||
Libgfortran is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later version.
|
||||
|
||||
In addition to the permissions in the GNU General Public License, the
|
||||
Free Software Foundation gives you unlimited permission to link the
|
||||
compiled version of this file into combinations with other programs,
|
||||
and to distribute those combinations without any restriction coming
|
||||
from the use of this file. (The General Public License restrictions
|
||||
do apply in other respects; for example, they cover modification of
|
||||
the file, and distribution when not linked into a combine
|
||||
executable.)
|
||||
|
||||
Ligbfortran is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with libgfortran; see the file COPYING. If not,
|
||||
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, USA. */
|
||||
|
||||
#include "libgfortran.h"
|
||||
#include <stdlib.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>'
|
||||
|
||||
include(iparm.m4)dnl
|
||||
|
||||
`#if defined (HAVE_'rtype_name`)
|
||||
|
||||
void
|
||||
unpack0_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
|
||||
const gfc_array_l1 *mask, const 'rtype_name` *fptr)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
'rtype_name` *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
'rtype_name` *vptr;
|
||||
/* Value for field, this is constant. */
|
||||
const 'rtype_name` fval = *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = fval;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
unpack1_'rtype_code` ('rtype` *ret, const 'rtype` *vector,
|
||||
const gfc_array_l1 *mask, const 'rtype` *field)
|
||||
{
|
||||
/* r.* indicates the return array. */
|
||||
index_type rstride[GFC_MAX_DIMENSIONS];
|
||||
index_type rstride0;
|
||||
index_type rs;
|
||||
'rtype_name` *rptr;
|
||||
/* v.* indicates the vector array. */
|
||||
index_type vstride0;
|
||||
'rtype_name` *vptr;
|
||||
/* f.* indicates the field array. */
|
||||
index_type fstride[GFC_MAX_DIMENSIONS];
|
||||
index_type fstride0;
|
||||
const 'rtype_name` *fptr;
|
||||
/* m.* indicates the mask array. */
|
||||
index_type mstride[GFC_MAX_DIMENSIONS];
|
||||
index_type mstride0;
|
||||
const GFC_LOGICAL_1 *mptr;
|
||||
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type n;
|
||||
index_type dim;
|
||||
|
||||
int empty;
|
||||
int mask_kind;
|
||||
|
||||
empty = 0;
|
||||
|
||||
mptr = mask->data;
|
||||
|
||||
/* Use the same loop for all logical types, by using GFC_LOGICAL_1
|
||||
and using shifting to address size and endian issues. */
|
||||
|
||||
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
||||
|
||||
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
||||
#ifdef HAVE_GFC_LOGICAL_16
|
||||
|| mask_kind == 16
|
||||
#endif
|
||||
)
|
||||
{
|
||||
/* Do not convert a NULL pointer as we use test for NULL below. */
|
||||
if (mptr)
|
||||
mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
|
||||
}
|
||||
else
|
||||
runtime_error ("Funny sized logical array");
|
||||
|
||||
if (ret->data == NULL)
|
||||
{
|
||||
/* The front end has signalled that we need to populate the
|
||||
return array descriptor. */
|
||||
dim = GFC_DESCRIPTOR_RANK (mask);
|
||||
rs = 1;
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
ret->dim[n].stride = rs;
|
||||
ret->dim[n].lbound = 0;
|
||||
ret->dim[n].ubound = mask->dim[n].ubound - mask->dim[n].lbound;
|
||||
extent[n] = ret->dim[n].ubound + 1;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
rs *= extent[n];
|
||||
}
|
||||
ret->offset = 0;
|
||||
ret->data = internal_malloc_size (rs * sizeof ('rtype_name`));
|
||||
}
|
||||
else
|
||||
{
|
||||
dim = GFC_DESCRIPTOR_RANK (ret);
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
extent[n] = ret->dim[n].ubound + 1 - ret->dim[n].lbound;
|
||||
empty = empty || extent[n] <= 0;
|
||||
rstride[n] = ret->dim[n].stride;
|
||||
fstride[n] = field->dim[n].stride;
|
||||
mstride[n] = mask->dim[n].stride * mask_kind;
|
||||
}
|
||||
if (rstride[0] == 0)
|
||||
rstride[0] = 1;
|
||||
}
|
||||
|
||||
if (empty)
|
||||
return;
|
||||
|
||||
if (fstride[0] == 0)
|
||||
fstride[0] = 1;
|
||||
if (mstride[0] == 0)
|
||||
mstride[0] = 1;
|
||||
|
||||
vstride0 = vector->dim[0].stride;
|
||||
if (vstride0 == 0)
|
||||
vstride0 = 1;
|
||||
rstride0 = rstride[0];
|
||||
fstride0 = fstride[0];
|
||||
mstride0 = mstride[0];
|
||||
rptr = ret->data;
|
||||
fptr = field->data;
|
||||
vptr = vector->data;
|
||||
|
||||
while (rptr)
|
||||
{
|
||||
if (*mptr)
|
||||
{
|
||||
/* From vector. */
|
||||
*rptr = *vptr;
|
||||
vptr += vstride0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* From field. */
|
||||
*rptr = *fptr;
|
||||
}
|
||||
/* Advance to the next element. */
|
||||
rptr += rstride0;
|
||||
fptr += fstride0;
|
||||
mptr += mstride0;
|
||||
count[0]++;
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
rptr -= rstride[n] * extent[n];
|
||||
fptr -= fstride[n] * extent[n];
|
||||
mptr -= mstride[n] * extent[n];
|
||||
n++;
|
||||
if (n >= dim)
|
||||
{
|
||||
/* Break out of the loop. */
|
||||
rptr = NULL;
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
rptr += rstride[n];
|
||||
fptr += fstride[n];
|
||||
mptr += mstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
'
|
Loading…
Reference in New Issue
Block a user