mirror of
https://gcc.gnu.org/git/gcc.git
synced 2024-11-23 10:54:07 +08:00
libffi.texi (The Closure API): Fix typo.
* doc/libffi.texi (The Closure API): Fix typo. * doc/libffi.info: Remove. From-SVN: r157049
This commit is contained in:
parent
28c64ec893
commit
22faf0048f
@ -1,3 +1,8 @@
|
||||
2010-02-24 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
|
||||
|
||||
* doc/libffi.texi (The Closure API): Fix typo.
|
||||
* doc/libffi.info: Remove.
|
||||
|
||||
2010-02-15 Matthias Klose <doko@ubuntu.com>
|
||||
|
||||
* src/arm/sysv.S (__ARM_ARCH__): Define for processor
|
||||
|
@ -1,533 +0,0 @@
|
||||
This is doc/libffi.info, produced by makeinfo version 4.12 from
|
||||
./doc/libffi.texi.
|
||||
|
||||
This manual is for Libffi, a portable foreign-function interface
|
||||
library.
|
||||
|
||||
Copyright (C) 2008 Red Hat, Inc.
|
||||
|
||||
Permission is granted to copy, distribute and/or modify this
|
||||
document under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation; either version 2, or
|
||||
(at your option) any later version. A copy of the license is
|
||||
included in the section entitled "GNU General Public License".
|
||||
|
||||
|
||||
INFO-DIR-SECTION
|
||||
START-INFO-DIR-ENTRY
|
||||
* libffi: (libffi). Portable foreign-function interface library.
|
||||
END-INFO-DIR-ENTRY
|
||||
|
||||
|
||||
File: libffi.info, Node: Top, Next: Introduction, Up: (dir)
|
||||
|
||||
libffi
|
||||
******
|
||||
|
||||
This manual is for Libffi, a portable foreign-function interface
|
||||
library.
|
||||
|
||||
Copyright (C) 2008 Red Hat, Inc.
|
||||
|
||||
Permission is granted to copy, distribute and/or modify this
|
||||
document under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation; either version 2, or
|
||||
(at your option) any later version. A copy of the license is
|
||||
included in the section entitled "GNU General Public License".
|
||||
|
||||
|
||||
* Menu:
|
||||
|
||||
* Introduction:: What is libffi?
|
||||
* Using libffi:: How to use libffi.
|
||||
* Missing Features:: Things libffi can't do.
|
||||
* Index:: Index.
|
||||
|
||||
|
||||
File: libffi.info, Node: Introduction, Next: Using libffi, Prev: Top, Up: Top
|
||||
|
||||
1 What is libffi?
|
||||
*****************
|
||||
|
||||
Compilers for high level languages generate code that follow certain
|
||||
conventions. These conventions are necessary, in part, for separate
|
||||
compilation to work. One such convention is the "calling convention".
|
||||
The calling convention is a set of assumptions made by the compiler
|
||||
about where function arguments will be found on entry to a function. A
|
||||
calling convention also specifies where the return value for a function
|
||||
is found. The calling convention is also sometimes called the "ABI" or
|
||||
"Application Binary Interface".
|
||||
|
||||
Some programs may not know at the time of compilation what arguments
|
||||
are to be passed to a function. For instance, an interpreter may be
|
||||
told at run-time about the number and types of arguments used to call a
|
||||
given function. `Libffi' can be used in such programs to provide a
|
||||
bridge from the interpreter program to compiled code.
|
||||
|
||||
The `libffi' library provides a portable, high level programming
|
||||
interface to various calling conventions. This allows a programmer to
|
||||
call any function specified by a call interface description at run time.
|
||||
|
||||
FFI stands for Foreign Function Interface. A foreign function
|
||||
interface is the popular name for the interface that allows code
|
||||
written in one language to call code written in another language. The
|
||||
`libffi' library really only provides the lowest, machine dependent
|
||||
layer of a fully featured foreign function interface. A layer must
|
||||
exist above `libffi' that handles type conversions for values passed
|
||||
between the two languages.
|
||||
|
||||
|
||||
File: libffi.info, Node: Using libffi, Next: Missing Features, Prev: Introduction, Up: Top
|
||||
|
||||
2 Using libffi
|
||||
**************
|
||||
|
||||
* Menu:
|
||||
|
||||
* The Basics:: The basic libffi API.
|
||||
* Simple Example:: A simple example.
|
||||
* Types:: libffi type descriptions.
|
||||
* Multiple ABIs:: Different passing styles on one platform.
|
||||
* The Closure API:: Writing a generic function.
|
||||
|
||||
|
||||
File: libffi.info, Node: The Basics, Next: Simple Example, Up: Using libffi
|
||||
|
||||
2.1 The Basics
|
||||
==============
|
||||
|
||||
`Libffi' assumes that you have a pointer to the function you wish to
|
||||
call and that you know the number and types of arguments to pass it, as
|
||||
well as the return type of the function.
|
||||
|
||||
The first thing you must do is create an `ffi_cif' object that
|
||||
matches the signature of the function you wish to call. This is a
|
||||
separate step because it is common to make multiple calls using a
|
||||
single `ffi_cif'. The "cif" in `ffi_cif' stands for Call InterFace.
|
||||
To prepare a call interface object, use the function `ffi_prep_cif'.
|
||||
|
||||
-- Function: ffi_status ffi_prep_cif (ffi_cif *CIF, ffi_abi ABI,
|
||||
unsigned int NARGS, ffi_type *RTYPE, ffi_type **ARGTYPES)
|
||||
This initializes CIF according to the given parameters.
|
||||
|
||||
ABI is the ABI to use; normally `FFI_DEFAULT_ABI' is what you
|
||||
want. *note Multiple ABIs:: for more information.
|
||||
|
||||
NARGS is the number of arguments that this function accepts.
|
||||
`libffi' does not yet handle varargs functions; see *note Missing
|
||||
Features:: for more information.
|
||||
|
||||
RTYPE is a pointer to an `ffi_type' structure that describes the
|
||||
return type of the function. *Note Types::.
|
||||
|
||||
ARGTYPES is a vector of `ffi_type' pointers. ARGTYPES must have
|
||||
NARGS elements. If NARGS is 0, this argument is ignored.
|
||||
|
||||
`ffi_prep_cif' returns a `libffi' status code, of type
|
||||
`ffi_status'. This will be either `FFI_OK' if everything worked
|
||||
properly; `FFI_BAD_TYPEDEF' if one of the `ffi_type' objects is
|
||||
incorrect; or `FFI_BAD_ABI' if the ABI parameter is invalid.
|
||||
|
||||
To call a function using an initialized `ffi_cif', use the
|
||||
`ffi_call' function:
|
||||
|
||||
-- Function: void ffi_call (ffi_cif *CIF, void *FN, void *RVALUE, void
|
||||
**AVALUES)
|
||||
This calls the function FN according to the description given in
|
||||
CIF. CIF must have already been prepared using `ffi_prep_cif'.
|
||||
|
||||
RVALUE is a pointer to a chunk of memory that will hold the result
|
||||
of the function call. This must be large enough to hold the
|
||||
result and must be suitably aligned; it is the caller's
|
||||
responsibility to ensure this. If CIF declares that the function
|
||||
returns `void' (using `ffi_type_void'), then RVALUE is ignored.
|
||||
If RVALUE is `NULL', then the return value is discarded.
|
||||
|
||||
AVALUES is a vector of `void *' pointers that point to the memory
|
||||
locations holding the argument values for a call. If CIF declares
|
||||
that the function has no arguments (i.e., NARGS was 0), then
|
||||
AVALUES is ignored.
|
||||
|
||||
|
||||
File: libffi.info, Node: Simple Example, Next: Types, Prev: The Basics, Up: Using libffi
|
||||
|
||||
2.2 Simple Example
|
||||
==================
|
||||
|
||||
Here is a trivial example that calls `puts' a few times.
|
||||
|
||||
#include <stdio.h>
|
||||
#include <ffi.h>
|
||||
|
||||
int main()
|
||||
{
|
||||
ffi_cif cif;
|
||||
ffi_type *args[1];
|
||||
void *values[1];
|
||||
char *s;
|
||||
int rc;
|
||||
|
||||
/* Initialize the argument info vectors */
|
||||
args[0] = &ffi_type_pointer;
|
||||
values[0] = &s;
|
||||
|
||||
/* Initialize the cif */
|
||||
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
|
||||
&ffi_type_uint, args) == FFI_OK)
|
||||
{
|
||||
s = "Hello World!";
|
||||
ffi_call(&cif, puts, &rc, values);
|
||||
/* rc now holds the result of the call to puts */
|
||||
|
||||
/* values holds a pointer to the function's arg, so to
|
||||
call puts() again all we need to do is change the
|
||||
value of s */
|
||||
s = "This is cool!";
|
||||
ffi_call(&cif, puts, &rc, values);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
File: libffi.info, Node: Types, Next: Multiple ABIs, Prev: Simple Example, Up: Using libffi
|
||||
|
||||
2.3 Types
|
||||
=========
|
||||
|
||||
* Menu:
|
||||
|
||||
* Primitive Types:: Built-in types.
|
||||
* Structures:: Structure types.
|
||||
* Type Example:: Structure type example.
|
||||
|
||||
|
||||
File: libffi.info, Node: Primitive Types, Next: Structures, Up: Types
|
||||
|
||||
2.3.1 Primitive Types
|
||||
---------------------
|
||||
|
||||
`Libffi' provides a number of built-in type descriptors that can be
|
||||
used to describe argument and return types:
|
||||
|
||||
`ffi_type_void'
|
||||
The type `void'. This cannot be used for argument types, only for
|
||||
return values.
|
||||
|
||||
`ffi_type_uint8'
|
||||
An unsigned, 8-bit integer type.
|
||||
|
||||
`ffi_type_sint8'
|
||||
A signed, 8-bit integer type.
|
||||
|
||||
`ffi_type_uint16'
|
||||
An unsigned, 16-bit integer type.
|
||||
|
||||
`ffi_type_sint16'
|
||||
A signed, 16-bit integer type.
|
||||
|
||||
`ffi_type_uint32'
|
||||
An unsigned, 32-bit integer type.
|
||||
|
||||
`ffi_type_sint32'
|
||||
A signed, 32-bit integer type.
|
||||
|
||||
`ffi_type_uint64'
|
||||
An unsigned, 64-bit integer type.
|
||||
|
||||
`ffi_type_sint64'
|
||||
A signed, 64-bit integer type.
|
||||
|
||||
`ffi_type_float'
|
||||
The C `float' type.
|
||||
|
||||
`ffi_type_double'
|
||||
The C `double' type.
|
||||
|
||||
`ffi_type_uchar'
|
||||
The C `unsigned char' type.
|
||||
|
||||
`ffi_type_schar'
|
||||
The C `signed char' type. (Note that there is not an exact
|
||||
equivalent to the C `char' type in `libffi'; ordinarily you should
|
||||
either use `ffi_type_schar' or `ffi_type_uchar' depending on
|
||||
whether `char' is signed.)
|
||||
|
||||
`ffi_type_ushort'
|
||||
The C `unsigned short' type.
|
||||
|
||||
`ffi_type_sshort'
|
||||
The C `short' type.
|
||||
|
||||
`ffi_type_uint'
|
||||
The C `unsigned int' type.
|
||||
|
||||
`ffi_type_sint'
|
||||
The C `int' type.
|
||||
|
||||
`ffi_type_ulong'
|
||||
The C `unsigned long' type.
|
||||
|
||||
`ffi_type_slong'
|
||||
The C `long' type.
|
||||
|
||||
`ffi_type_longdouble'
|
||||
On platforms that have a C `long double' type, this is defined.
|
||||
On other platforms, it is not.
|
||||
|
||||
`ffi_type_pointer'
|
||||
A generic `void *' pointer. You should use this for all pointers,
|
||||
regardless of their real type.
|
||||
|
||||
Each of these is of type `ffi_type', so you must take the address
|
||||
when passing to `ffi_prep_cif'.
|
||||
|
||||
|
||||
File: libffi.info, Node: Structures, Next: Type Example, Prev: Primitive Types, Up: Types
|
||||
|
||||
2.3.2 Structures
|
||||
----------------
|
||||
|
||||
Although `libffi' has no special support for unions or bit-fields, it
|
||||
is perfectly happy passing structures back and forth. You must first
|
||||
describe the structure to `libffi' by creating a new `ffi_type' object
|
||||
for it.
|
||||
|
||||
-- ffi_type:
|
||||
The `ffi_type' has the following members:
|
||||
`size_t size'
|
||||
This is set by `libffi'; you should initialize it to zero.
|
||||
|
||||
`unsigned short alignment'
|
||||
This is set by `libffi'; you should initialize it to zero.
|
||||
|
||||
`unsigned short type'
|
||||
For a structure, this should be set to `FFI_TYPE_STRUCT'.
|
||||
|
||||
`ffi_type **elements'
|
||||
This is a `NULL'-terminated array of pointers to `ffi_type'
|
||||
objects. There is one element per field of the struct.
|
||||
|
||||
|
||||
File: libffi.info, Node: Type Example, Prev: Structures, Up: Types
|
||||
|
||||
2.3.3 Type Example
|
||||
------------------
|
||||
|
||||
The following example initializes a `ffi_type' object representing the
|
||||
`tm' struct from Linux's `time.h'.
|
||||
|
||||
Here is how the struct is defined:
|
||||
|
||||
struct tm {
|
||||
int tm_sec;
|
||||
int tm_min;
|
||||
int tm_hour;
|
||||
int tm_mday;
|
||||
int tm_mon;
|
||||
int tm_year;
|
||||
int tm_wday;
|
||||
int tm_yday;
|
||||
int tm_isdst;
|
||||
/* Those are for future use. */
|
||||
long int __tm_gmtoff__;
|
||||
__const char *__tm_zone__;
|
||||
};
|
||||
|
||||
Here is the corresponding code to describe this struct to `libffi':
|
||||
|
||||
{
|
||||
ffi_type tm_type;
|
||||
ffi_type *tm_type_elements[12];
|
||||
int i;
|
||||
|
||||
tm_type.size = tm_type.alignment = 0;
|
||||
tm_type.elements = &tm_type_elements;
|
||||
|
||||
for (i = 0; i < 9; i++)
|
||||
tm_type_elements[i] = &ffi_type_sint;
|
||||
|
||||
tm_type_elements[9] = &ffi_type_slong;
|
||||
tm_type_elements[10] = &ffi_type_pointer;
|
||||
tm_type_elements[11] = NULL;
|
||||
|
||||
/* tm_type can now be used to represent tm argument types and
|
||||
return types for ffi_prep_cif() */
|
||||
}
|
||||
|
||||
|
||||
File: libffi.info, Node: Multiple ABIs, Next: The Closure API, Prev: Types, Up: Using libffi
|
||||
|
||||
2.4 Multiple ABIs
|
||||
=================
|
||||
|
||||
A given platform may provide multiple different ABIs at once. For
|
||||
instance, the x86 platform has both `stdcall' and `fastcall' functions.
|
||||
|
||||
`libffi' provides some support for this. However, this is
|
||||
necessarily platform-specific.
|
||||
|
||||
|
||||
File: libffi.info, Node: The Closure API, Prev: Multiple ABIs, Up: Using libffi
|
||||
|
||||
2.5 The Closure API
|
||||
===================
|
||||
|
||||
`libffi' also provides a way to write a generic function - a function
|
||||
that can accept and decode any combination of arguments. This can be
|
||||
useful when writing an interpreter, or to provide wrappers for
|
||||
arbitrary functions.
|
||||
|
||||
This facility is called the "closure API". Closures are not
|
||||
supported on all platforms; you can check the `FFI_CLOSURES' define to
|
||||
determine whether they are supported on the current platform.
|
||||
|
||||
Because closures work by assembling a tiny function at runtime, they
|
||||
require special allocation on platforms that have a non-executable
|
||||
heap. Memory management for closures is handled by a pair of functions:
|
||||
|
||||
-- Function: void *ffi_closure_alloc (size_t SIZE, void **CODE)
|
||||
Allocate a chunk of memory holding SIZE bytes. This returns a
|
||||
pointer to the writable address, and sets *CODE to the
|
||||
corresponding executable address.
|
||||
|
||||
SIZE should be sufficient to hold a `ffi_closure' object.
|
||||
|
||||
-- Function: void ffi_closure_free (void *WRITABLE)
|
||||
Free memory allocated using `ffi_closure_alloc'. The argument is
|
||||
the writable address that was returned.
|
||||
|
||||
Once you have allocated the memory for a closure, you must construct
|
||||
a `ffi_cif' describing the function call. Finally you can prepare the
|
||||
closure function:
|
||||
|
||||
-- Function: ffi_status ffi_prep_closure_loc (ffi_closure *CLOSURE,
|
||||
ffi_cif *CIF, void (*FUN) (ffi_cif *CIF, void *RET, void
|
||||
**ARGS, void *USER_DATA), void *USER_DATA, void *CODELOC)
|
||||
Prepare a closure function.
|
||||
|
||||
CLOSURE is the address of a `ffi_closure' object; this is the
|
||||
writable address returned by `ffi_closure_alloc'.
|
||||
|
||||
CIF is the `ffi_cif' describing the function parameters.
|
||||
|
||||
USER_DATA is an arbitrary datum that is passed, uninterpreted, to
|
||||
your closure function.
|
||||
|
||||
CODELOC is the executable address returned by `ffi_closure_alloc'.
|
||||
|
||||
FUN is the function which will be called when the closure is
|
||||
invoked. It is called with the arguments:
|
||||
CIF
|
||||
The `ffi_cif' passed to `ffi_prep_closure_loc'.
|
||||
|
||||
RET
|
||||
A pointer to the memory used for the function's return value.
|
||||
FUN must fill this, unless the function is declared as
|
||||
returning `void'.
|
||||
|
||||
ARGS
|
||||
A vector of pointers to memory holding the arguments to the
|
||||
function.
|
||||
|
||||
USER_DATA
|
||||
The same USER_DATA that was passed to `ffi_prep_closure_loc'.
|
||||
|
||||
`ffi_prep_closure_loc' will return `FFI_OK' if everything went ok,
|
||||
and something else on error.
|
||||
|
||||
After calling `ffi_prep_closure_loc', you can cast CODELOC to the
|
||||
appropriate pointer-to-function type.
|
||||
|
||||
You may see old code referring to `ffi_prep_closure'. This function
|
||||
is deprecated, as it cannot handle the need for separate writable and
|
||||
executable addresses.
|
||||
|
||||
|
||||
File: libffi.info, Node: Missing Features, Next: Index, Prev: Using libffi, Up: Top
|
||||
|
||||
3 Missing Features
|
||||
******************
|
||||
|
||||
`libffi' is missing a few features. We welcome patches to add support
|
||||
for these.
|
||||
|
||||
* There is no support for calling varargs functions. This may work
|
||||
on some platforms, depending on how the ABI is defined, but it is
|
||||
not reliable.
|
||||
|
||||
* There is no support for bit fields in structures.
|
||||
|
||||
* The closure API is
|
||||
|
||||
* The "raw" API is undocumented.
|
||||
|
||||
|
||||
File: libffi.info, Node: Index, Prev: Missing Features, Up: Top
|
||||
|
||||
Index
|
||||
*****
|
||||
|
||||
|