Tweak the way that is_a is implemented

At the moment, class hierarchies that use is_a are expected
to define specialisations like:

  template <>
  template <>
  inline bool
  is_a_helper <cgraph_node *>::test (symtab_node *p)
  {
    return p->type == SYMTAB_FUNCTION;
  }

But this doesn't scale well to larger hierarchies, because it only
defines ::test for an argument that is exactly “symtab_node *”
(and not for example “const symtab_node *” or something that
comes between cgraph_node and symtab_node in the hierarchy).

For example:

  struct A { int x; };
  struct B : A {};
  struct C : B {};

  template <>
  template <>
  inline bool
  is_a_helper <C *>::test (A *a)
  {
    return a->x == 1;
  }

  bool f(B *b) { return is_a<C *> (b); }

gives:

  warning: inline function ‘static bool is_a_helper<T>::test(U*) [with U = B; T = C*]’ used but never defined

and:

  bool f(const A *a) { return is_a<const C *> (a); }

gives:

  warning: inline function ‘static bool is_a_helper<T>::test(U*) [with U = const A; T = const C*]’ used but never defined

This patch instead allows is_a to be implemented by specialising
is_a_helper as a whole, for example:

  template<>
  struct is_a_helper<C *> : static_is_a_helper<C *>
  {
    static inline bool test (const A *a) { return a->x == 1; }
  };

It also adds a general specialisation of is_a_helper for const
pointers.  Together, this makes both of the above examples work.

gcc/
	* is-a.h (reinterpret_is_a_helper): New class.
	(static_is_a_helper): Likewise.
	(is_a_helper): Inherit from reinterpret_is_a_helper.
	(is_a_helper<const T *>): New specialization.
This commit is contained in:
Richard Sandiford 2020-12-13 10:41:09 +00:00
parent 1751a78eca
commit 1498b1a8fb

View File

@ -116,9 +116,30 @@ the connection between the types has not been made. See below.
EXTENDING THE GENERIC TYPE FACILITY EXTENDING THE GENERIC TYPE FACILITY
Each connection between types must be made by defining a specialization of the Method 1
template member function 'test' of the template class 'is_a_helper'. For --------
example,
If DERIVED is derived from BASE, and if BASE contains enough information
to determine whether an object is actually an instance of DERIVED,
then you can make the above routines work for DERIVED by defining
a specialization of is_a_helper such as:
template<>
struct is_a_helper<DERIVED *> : static_is_a_helper<DERIVED *>
{
static inline bool test (const BASE *p) { return ...; }
};
This test function should return true if P is an instanced of DERIVED.
This on its own is enough; the comments below for method 2 do not apply.
Method 2
--------
Alternatively, if two types are connected in ways other than C++
inheritance, each connection between them must be made by defining a
specialization of the template member function 'test' of the template
class 'is_a_helper'. For example,
template <> template <>
template <> template <>
@ -145,15 +166,52 @@ when needed may result in a crash. For example,
#ifndef GCC_IS_A_H #ifndef GCC_IS_A_H
#define GCC_IS_A_H #define GCC_IS_A_H
/* A base class that specializations of is_a_helper can use if casting
U * to T is simply a reinterpret_cast. */
template <typename T>
struct reinterpret_is_a_helper
{
template <typename U>
static inline T cast (U *p) { return reinterpret_cast <T> (p); }
};
/* A base class that specializations of is_a_helper can use if casting
U * to T is simply a static_cast. This is more type-safe than
reinterpret_is_a_helper. */
template <typename T>
struct static_is_a_helper
{
template <typename U>
static inline T cast (U *p) { return static_cast <T> (p); }
};
/* A generic type conversion internal helper class. */ /* A generic type conversion internal helper class. */
template <typename T> template <typename T>
struct is_a_helper struct is_a_helper : reinterpret_is_a_helper<T>
{ {
template <typename U> template <typename U>
static inline bool test (U *p); static inline bool test (U *p);
};
/* Reuse the definition of is_a_helper<T *> to implement
is_a_helper<const T *>. */
template <typename T>
struct is_a_helper<const T *>
{
template <typename U> template <typename U>
static inline T cast (U *p); static inline const T *cast (const U *p)
{
return is_a_helper<T *>::cast (const_cast <U *> (p));
}
template <typename U>
static inline bool test (const U *p)
{
return is_a_helper<T *>::test (p);
}
}; };
/* Note that we deliberately do not define the 'test' member template. Not /* Note that we deliberately do not define the 'test' member template. Not
@ -161,19 +219,6 @@ struct is_a_helper
not been defined, rather than a run-time error. See the discussion above not been defined, rather than a run-time error. See the discussion above
for when to define this member. */ for when to define this member. */
/* This is the generic implementation for casting from one type to another.
Do not use this routine directly; it is an internal function. See the
discussion above for when to define this member. */
template <typename T>
template <typename U>
inline T
is_a_helper <T>::cast (U *p)
{
return reinterpret_cast <T> (p);
}
/* The public interface. */ /* The public interface. */
/* A generic test for a type relationship. See the discussion above for when /* A generic test for a type relationship. See the discussion above for when