gcc/libgfortran/generated/minloc1_4_s1.c

553 lines
13 KiB
C
Raw Normal View History

re PR fortran/36313 ([F03] {MIN,MAX}{LOC,VAL} should accept character arguments) 2017-11-22 Thomas Koenig <tkoenig@gcc.gnu.org> PR fortran/36313 * Makefile.am: Add i_maxloc0s_c, i_maxloc1s_c, i_maxloc2s_c, i_minloc0s_c, i_minloc1s_c and i_minloc2s_c. * Makefile.in: Regenerated. * generated/maxloc0_16_s1.c: New file. * generated/maxloc0_16_s4.c: New file. * generated/maxloc0_4_s1.c: New file. * generated/maxloc0_4_s4.c: New file. * generated/maxloc0_8_s1.c: New file. * generated/maxloc0_8_s4.c: New file. * generated/maxloc1_16_s1.c: New file. * generated/maxloc1_16_s4.c: New file. * generated/maxloc1_4_s1.c: New file. * generated/maxloc1_4_s4.c: New file. * generated/maxloc1_8_s1.c: New file. * generated/maxloc1_8_s4.c: New file. * generated/maxloc2_16_s1.c: New file. * generated/maxloc2_16_s4.c: New file. * generated/maxloc2_4_s1.c: New file. * generated/maxloc2_4_s4.c: New file. * generated/maxloc2_8_s1.c: New file. * generated/maxloc2_8_s4.c: New file. * generated/minloc0_16_s1.c: New file. * generated/minloc0_16_s4.c: New file. * generated/minloc0_4_s1.c: New file. * generated/minloc0_4_s4.c: New file. * generated/minloc0_8_s1.c: New file. * generated/minloc0_8_s4.c: New file. * generated/minloc1_16_s1.c: New file. * generated/minloc1_16_s4.c: New file. * generated/minloc1_4_s1.c: New file. * generated/minloc1_4_s4.c: New file. * generated/minloc1_8_s1.c: New file. * generated/minloc1_8_s4.c: New file. * generated/minloc2_16_s1.c: New file. * generated/minloc2_16_s4.c: New file. * generated/minloc2_4_s1.c: New file. * generated/minloc2_4_s4.c: New file. * generated/minloc2_8_s1.c: New file. * generated/minloc2_8_s4.c: New file. * m4/iforeach-s.m4: New file. * m4/ifunction-s.m4: New file. * m4/maxloc0s.m4: New file. * m4/maxloc1s.m4: New file. * m4/maxloc2s.m4: New file. * m4/minloc0s.m4: New file. * m4/minloc1s.m4: New file. * m4/minloc2s.m4: New file. * gfortran.map: Add new functions. * libgfortran.h: Add gfc_array_s1 and gfc_array_s4. 2017-11-22 Thomas Koenig <tkoenig@gcc.gnu.org> PR fortran/36313 * check.c (int_or_real_or_char_check_f2003): New function. * iresolve.c (gfc_resolve_maxloc): Add number "2" for character arguments and rank-zero return value. (gfc_resolve_minloc): Likewise. * trans-intrinsic.c (gfc_conv_intrinsic_minmaxloc): Handle case of character arguments and rank-zero return value by removing unneeded arguments and calling the library function. 2017-11-22 Thomas Koenig <tkoenig@gcc.gnu.org> PR fortran/36313 * gfortran.dg/maxloc_string_1.f90: New test. * gfortran.dg/minloc_string_1.f90: New test. From-SVN: r255070
2017-11-23 02:08:07 +08:00
/* Implementation of the MINLOC intrinsic
Copyright 2017 Free Software Foundation, Inc.
Contributed by Thomas Koenig
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#if defined (HAVE_GFC_INTEGER_1) && defined (HAVE_GFC_INTEGER_4)
#include <string.h>
static inline int
compare_fcn (const GFC_INTEGER_1 *a, const GFC_INTEGER_1 *b, gfc_charlen_type n)
{
if (sizeof (GFC_INTEGER_1) == 1)
return memcmp (a, b, n);
else
return memcmp_char4 (a, b, n);
}
extern void minloc1_4_s1 (gfc_array_i4 * const restrict,
gfc_array_s1 * const restrict, const index_type * const restrict,
gfc_charlen_type);
export_proto(minloc1_4_s1);
void
minloc1_4_s1 (gfc_array_i4 * const restrict retarray,
gfc_array_s1 * const restrict array,
const index_type * const restrict pdim, gfc_charlen_type string_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
const GFC_INTEGER_1 * restrict base;
GFC_INTEGER_4 * restrict dest;
index_type rank;
index_type n;
index_type len;
index_type delta;
index_type dim;
int continue_loop;
/* Make dim zero based to avoid confusion. */
rank = GFC_DESCRIPTOR_RANK (array) - 1;
dim = (*pdim) - 1;
if (unlikely (dim < 0 || dim > rank))
{
runtime_error ("Dim argument incorrect in MINLOC intrinsic: "
"is %ld, should be between 1 and %ld",
(long int) dim + 1, (long int) rank + 1);
}
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len < 0)
len = 0;
delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len;
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MINLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "MINLOC");
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
base = array->base_addr;
dest = retarray->base_addr;
continue_loop = 1;
while (continue_loop)
{
const GFC_INTEGER_1 * restrict src;
GFC_INTEGER_4 result;
src = base;
{
const GFC_INTEGER_1 *minval;
minval = base;
result = 1;
if (len <= 0)
*dest = 0;
else
{
for (n = 0; n < len; n++, src += delta)
{
if (compare_fcn (src, minval, string_len) < 0)
{
minval = src;
result = (GFC_INTEGER_4)n + 1;
}
}
*dest = result;
}
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
continue_loop = 0;
break;
}
else
{
count[n]++;
base += sstride[n];
dest += dstride[n];
}
}
}
}
extern void mminloc1_4_s1 (gfc_array_i4 * const restrict,
gfc_array_s1 * const restrict, const index_type * const restrict,
gfc_array_l1 * const restrict, gfc_charlen_type);
export_proto(mminloc1_4_s1);
void
mminloc1_4_s1 (gfc_array_i4 * const restrict retarray,
gfc_array_s1 * const restrict array,
const index_type * const restrict pdim,
gfc_array_l1 * const restrict mask, gfc_charlen_type string_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_4 * restrict dest;
const GFC_INTEGER_1 * restrict base;
const GFC_LOGICAL_1 * restrict mbase;
index_type rank;
index_type dim;
index_type n;
index_type len;
index_type delta;
index_type mdelta;
int mask_kind;
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
if (unlikely (dim < 0 || dim > rank))
{
runtime_error ("Dim argument incorrect in MINLOC intrinsic: "
"is %ld, should be between 1 and %ld",
(long int) dim + 1, (long int) rank + 1);
}
len = GFC_DESCRIPTOR_EXTENT(array,dim);
if (len <= 0)
return;
mbase = mask->base_addr;
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
runtime_error ("Funny sized logical array");
delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
for (n = 0; n < dim; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
if (extent[n] < 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len;
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
if (extent[n] < 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in MINLOC intrinsic");
if (unlikely (compile_options.bounds_check))
{
bounds_ifunction_return ((array_t *) retarray, extent,
"return value", "MINLOC");
bounds_equal_extents ((array_t *) mask, (array_t *) array,
"MASK argument", "MINLOC");
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
if (extent[n] <= 0)
return;
}
dest = retarray->base_addr;
base = array->base_addr;
while (base)
{
const GFC_INTEGER_1 * restrict src;
const GFC_LOGICAL_1 * restrict msrc;
GFC_INTEGER_4 result;
src = base;
msrc = mbase;
{
const GFC_INTEGER_1 *minval;
minval = base;
result = 0;
for (n = 0; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc)
{
minval = src;
result = (GFC_INTEGER_4)n + 1;
break;
}
}
for (; n < len; n++, src += delta, msrc += mdelta)
{
if (*msrc && compare_fcn (src, minval, string_len) < 0)
{
minval = src;
result = (GFC_INTEGER_4)n + 1;
}
}
*dest = result;
}
/* Advance to the next element. */
count[0]++;
base += sstride[0];
mbase += mstride[0];
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n];
mbase -= mstride[n] * extent[n];
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
{
/* Break out of the loop. */
base = NULL;
break;
}
else
{
count[n]++;
base += sstride[n];
mbase += mstride[n];
dest += dstride[n];
}
}
}
}
extern void sminloc1_4_s1 (gfc_array_i4 * const restrict,
gfc_array_s1 * const restrict, const index_type * const restrict,
GFC_LOGICAL_4 *, gfc_charlen_type);
export_proto(sminloc1_4_s1);
void
sminloc1_4_s1 (gfc_array_i4 * const restrict retarray,
gfc_array_s1 * const restrict array,
const index_type * const restrict pdim,
GFC_LOGICAL_4 * mask, gfc_charlen_type string_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type dstride[GFC_MAX_DIMENSIONS];
GFC_INTEGER_4 * restrict dest;
index_type rank;
index_type n;
index_type dim;
if (*mask)
{
minloc1_4_s1 (retarray, array, pdim, string_len);
return;
}
/* Make dim zero based to avoid confusion. */
dim = (*pdim) - 1;
rank = GFC_DESCRIPTOR_RANK (array) - 1;
if (unlikely (dim < 0 || dim > rank))
{
runtime_error ("Dim argument incorrect in MINLOC intrinsic: "
"is %ld, should be between 1 and %ld",
(long int) dim + 1, (long int) rank + 1);
}
for (n = 0; n < dim; n++)
{
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n) * string_len;
if (extent[n] <= 0)
extent[n] = 0;
}
for (n = dim; n < rank; n++)
{
extent[n] =
GFC_DESCRIPTOR_EXTENT(array,n + 1) * string_len;
if (extent[n] <= 0)
extent[n] = 0;
}
if (retarray->base_addr == NULL)
{
size_t alloc_size, str;
for (n = 0; n < rank; n++)
{
if (n == 0)
str = 1;
else
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
}
retarray->offset = 0;
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
if (alloc_size == 0)
{
/* Make sure we have a zero-sized array. */
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
return;
}
else
retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_INTEGER_4));
}
else
{
if (rank != GFC_DESCRIPTOR_RANK (retarray))
runtime_error ("rank of return array incorrect in"
" MINLOC intrinsic: is %ld, should be %ld",
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
(long int) rank);
if (unlikely (compile_options.bounds_check))
{
for (n=0; n < rank; n++)
{
index_type ret_extent;
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
if (extent[n] != ret_extent)
runtime_error ("Incorrect extent in return value of"
" MINLOC intrinsic in dimension %ld:"
" is %ld, should be %ld", (long int) n + 1,
(long int) ret_extent, (long int) extent[n]);
}
}
}
for (n = 0; n < rank; n++)
{
count[n] = 0;
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
}
dest = retarray->base_addr;
while(1)
{
*dest = 0;
count[0]++;
dest += dstride[0];
n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= dstride[n] * extent[n];
n++;
if (n >= rank)
return;
else
{
count[n]++;
dest += dstride[n];
}
}
}
}
#endif