mirror of
https://github.com/python/cpython.git
synced 2024-11-26 19:34:19 +08:00
e7b146fb3b
The attached patches update the standard library so that all modules have docstrings beginning with one-line summaries. A new docstring was added to formatter. The docstring for os.py was updated to mention nt, os2, ce in addition to posix, dos, mac.
365 lines
9.3 KiB
Python
365 lines
9.3 KiB
Python
"""Random variable generators.
|
|
|
|
distributions on the real line:
|
|
------------------------------
|
|
normal (Gaussian)
|
|
lognormal
|
|
negative exponential
|
|
gamma
|
|
beta
|
|
|
|
distributions on the circle (angles 0 to 2pi)
|
|
---------------------------------------------
|
|
circular uniform
|
|
von Mises
|
|
|
|
Translated from anonymously contributed C/C++ source.
|
|
|
|
Multi-threading note: the random number generator used here is not
|
|
thread-safe; it is possible that two calls return the same random
|
|
value. See whrandom.py for more info.
|
|
"""
|
|
|
|
import whrandom
|
|
from whrandom import random, uniform, randint, choice, randrange # For export!
|
|
from math import log, exp, pi, e, sqrt, acos, cos, sin
|
|
|
|
# Interfaces to replace remaining needs for importing whrandom
|
|
# XXX TO DO: make the distribution functions below into methods.
|
|
|
|
def makeseed(a=None):
|
|
"""Turn a hashable value into three seed values for whrandom.seed().
|
|
|
|
None or no argument returns (0, 0, 0), to seed from current time.
|
|
|
|
"""
|
|
if a is None:
|
|
return (0, 0, 0)
|
|
a = hash(a)
|
|
a, x = divmod(a, 256)
|
|
a, y = divmod(a, 256)
|
|
a, z = divmod(a, 256)
|
|
x = (x + a) % 256 or 1
|
|
y = (y + a) % 256 or 1
|
|
z = (z + a) % 256 or 1
|
|
return (x, y, z)
|
|
|
|
def seed(a=None):
|
|
"""Seed the default generator from any hashable value.
|
|
|
|
None or no argument returns (0, 0, 0) to seed from current time.
|
|
|
|
"""
|
|
x, y, z = makeseed(a)
|
|
whrandom.seed(x, y, z)
|
|
|
|
class generator(whrandom.whrandom):
|
|
"""Random generator class."""
|
|
|
|
def __init__(self, a=None):
|
|
"""Constructor. Seed from current time or hashable value."""
|
|
self.seed(a)
|
|
|
|
def seed(self, a=None):
|
|
"""Seed the generator from current time or hashable value."""
|
|
x, y, z = makeseed(a)
|
|
whrandom.whrandom.seed(self, x, y, z)
|
|
|
|
def new_generator(a=None):
|
|
"""Return a new random generator instance."""
|
|
return generator(a)
|
|
|
|
# Housekeeping function to verify that magic constants have been
|
|
# computed correctly
|
|
|
|
def verify(name, expected):
|
|
computed = eval(name)
|
|
if abs(computed - expected) > 1e-7:
|
|
raise ValueError, \
|
|
'computed value for %s deviates too much (computed %g, expected %g)' % \
|
|
(name, computed, expected)
|
|
|
|
# -------------------- normal distribution --------------------
|
|
|
|
NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
|
|
verify('NV_MAGICCONST', 1.71552776992141)
|
|
def normalvariate(mu, sigma):
|
|
# mu = mean, sigma = standard deviation
|
|
|
|
# Uses Kinderman and Monahan method. Reference: Kinderman,
|
|
# A.J. and Monahan, J.F., "Computer generation of random
|
|
# variables using the ratio of uniform deviates", ACM Trans
|
|
# Math Software, 3, (1977), pp257-260.
|
|
|
|
while 1:
|
|
u1 = random()
|
|
u2 = random()
|
|
z = NV_MAGICCONST*(u1-0.5)/u2
|
|
zz = z*z/4.0
|
|
if zz <= -log(u2):
|
|
break
|
|
return mu+z*sigma
|
|
|
|
# -------------------- lognormal distribution --------------------
|
|
|
|
def lognormvariate(mu, sigma):
|
|
return exp(normalvariate(mu, sigma))
|
|
|
|
# -------------------- circular uniform --------------------
|
|
|
|
def cunifvariate(mean, arc):
|
|
# mean: mean angle (in radians between 0 and pi)
|
|
# arc: range of distribution (in radians between 0 and pi)
|
|
|
|
return (mean + arc * (random() - 0.5)) % pi
|
|
|
|
# -------------------- exponential distribution --------------------
|
|
|
|
def expovariate(lambd):
|
|
# lambd: rate lambd = 1/mean
|
|
# ('lambda' is a Python reserved word)
|
|
|
|
u = random()
|
|
while u <= 1e-7:
|
|
u = random()
|
|
return -log(u)/lambd
|
|
|
|
# -------------------- von Mises distribution --------------------
|
|
|
|
TWOPI = 2.0*pi
|
|
verify('TWOPI', 6.28318530718)
|
|
|
|
def vonmisesvariate(mu, kappa):
|
|
# mu: mean angle (in radians between 0 and 2*pi)
|
|
# kappa: concentration parameter kappa (>= 0)
|
|
# if kappa = 0 generate uniform random angle
|
|
|
|
# Based upon an algorithm published in: Fisher, N.I.,
|
|
# "Statistical Analysis of Circular Data", Cambridge
|
|
# University Press, 1993.
|
|
|
|
# Thanks to Magnus Kessler for a correction to the
|
|
# implementation of step 4.
|
|
|
|
if kappa <= 1e-6:
|
|
return TWOPI * random()
|
|
|
|
a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
|
|
b = (a - sqrt(2.0 * a))/(2.0 * kappa)
|
|
r = (1.0 + b * b)/(2.0 * b)
|
|
|
|
while 1:
|
|
u1 = random()
|
|
|
|
z = cos(pi * u1)
|
|
f = (1.0 + r * z)/(r + z)
|
|
c = kappa * (r - f)
|
|
|
|
u2 = random()
|
|
|
|
if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
|
|
break
|
|
|
|
u3 = random()
|
|
if u3 > 0.5:
|
|
theta = (mu % TWOPI) + acos(f)
|
|
else:
|
|
theta = (mu % TWOPI) - acos(f)
|
|
|
|
return theta
|
|
|
|
# -------------------- gamma distribution --------------------
|
|
|
|
LOG4 = log(4.0)
|
|
verify('LOG4', 1.38629436111989)
|
|
|
|
def gammavariate(alpha, beta):
|
|
# beta times standard gamma
|
|
ainv = sqrt(2.0 * alpha - 1.0)
|
|
return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
|
|
|
|
SG_MAGICCONST = 1.0 + log(4.5)
|
|
verify('SG_MAGICCONST', 2.50407739677627)
|
|
|
|
def stdgamma(alpha, ainv, bbb, ccc):
|
|
# ainv = sqrt(2 * alpha - 1)
|
|
# bbb = alpha - log(4)
|
|
# ccc = alpha + ainv
|
|
|
|
if alpha <= 0.0:
|
|
raise ValueError, 'stdgamma: alpha must be > 0.0'
|
|
|
|
if alpha > 1.0:
|
|
|
|
# Uses R.C.H. Cheng, "The generation of Gamma
|
|
# variables with non-integral shape parameters",
|
|
# Applied Statistics, (1977), 26, No. 1, p71-74
|
|
|
|
while 1:
|
|
u1 = random()
|
|
u2 = random()
|
|
v = log(u1/(1.0-u1))/ainv
|
|
x = alpha*exp(v)
|
|
z = u1*u1*u2
|
|
r = bbb+ccc*v-x
|
|
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
|
|
return x
|
|
|
|
elif alpha == 1.0:
|
|
# expovariate(1)
|
|
u = random()
|
|
while u <= 1e-7:
|
|
u = random()
|
|
return -log(u)
|
|
|
|
else: # alpha is between 0 and 1 (exclusive)
|
|
|
|
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
|
|
|
while 1:
|
|
u = random()
|
|
b = (e + alpha)/e
|
|
p = b*u
|
|
if p <= 1.0:
|
|
x = pow(p, 1.0/alpha)
|
|
else:
|
|
# p > 1
|
|
x = -log((b-p)/alpha)
|
|
u1 = random()
|
|
if not (((p <= 1.0) and (u1 > exp(-x))) or
|
|
((p > 1) and (u1 > pow(x, alpha - 1.0)))):
|
|
break
|
|
return x
|
|
|
|
|
|
# -------------------- Gauss (faster alternative) --------------------
|
|
|
|
gauss_next = None
|
|
def gauss(mu, sigma):
|
|
|
|
# When x and y are two variables from [0, 1), uniformly
|
|
# distributed, then
|
|
#
|
|
# cos(2*pi*x)*sqrt(-2*log(1-y))
|
|
# sin(2*pi*x)*sqrt(-2*log(1-y))
|
|
#
|
|
# are two *independent* variables with normal distribution
|
|
# (mu = 0, sigma = 1).
|
|
# (Lambert Meertens)
|
|
# (corrected version; bug discovered by Mike Miller, fixed by LM)
|
|
|
|
# Multithreading note: When two threads call this function
|
|
# simultaneously, it is possible that they will receive the
|
|
# same return value. The window is very small though. To
|
|
# avoid this, you have to use a lock around all calls. (I
|
|
# didn't want to slow this down in the serial case by using a
|
|
# lock here.)
|
|
|
|
global gauss_next
|
|
|
|
z = gauss_next
|
|
gauss_next = None
|
|
if z is None:
|
|
x2pi = random() * TWOPI
|
|
g2rad = sqrt(-2.0 * log(1.0 - random()))
|
|
z = cos(x2pi) * g2rad
|
|
gauss_next = sin(x2pi) * g2rad
|
|
|
|
return mu + z*sigma
|
|
|
|
# -------------------- beta --------------------
|
|
|
|
def betavariate(alpha, beta):
|
|
|
|
# Discrete Event Simulation in C, pp 87-88.
|
|
|
|
y = expovariate(alpha)
|
|
z = expovariate(1.0/beta)
|
|
return z/(y+z)
|
|
|
|
# -------------------- Pareto --------------------
|
|
|
|
def paretovariate(alpha):
|
|
# Jain, pg. 495
|
|
|
|
u = random()
|
|
return 1.0 / pow(u, 1.0/alpha)
|
|
|
|
# -------------------- Weibull --------------------
|
|
|
|
def weibullvariate(alpha, beta):
|
|
# Jain, pg. 499; bug fix courtesy Bill Arms
|
|
|
|
u = random()
|
|
return alpha * pow(-log(u), 1.0/beta)
|
|
|
|
# -------------------- shuffle --------------------
|
|
# Not quite a random distribution, but a standard algorithm.
|
|
# This implementation due to Tim Peters.
|
|
|
|
def shuffle(x, random=random, int=int):
|
|
"""x, random=random.random -> shuffle list x in place; return None.
|
|
|
|
Optional arg random is a 0-argument function returning a random
|
|
float in [0.0, 1.0); by default, the standard random.random.
|
|
|
|
Note that for even rather small len(x), the total number of
|
|
permutations of x is larger than the period of most random number
|
|
generators; this implies that "most" permutations of a long
|
|
sequence can never be generated.
|
|
"""
|
|
|
|
for i in xrange(len(x)-1, 0, -1):
|
|
# pick an element in x[:i+1] with which to exchange x[i]
|
|
j = int(random() * (i+1))
|
|
x[i], x[j] = x[j], x[i]
|
|
|
|
# -------------------- test program --------------------
|
|
|
|
def test(N = 200):
|
|
print 'TWOPI =', TWOPI
|
|
print 'LOG4 =', LOG4
|
|
print 'NV_MAGICCONST =', NV_MAGICCONST
|
|
print 'SG_MAGICCONST =', SG_MAGICCONST
|
|
test_generator(N, 'random()')
|
|
test_generator(N, 'normalvariate(0.0, 1.0)')
|
|
test_generator(N, 'lognormvariate(0.0, 1.0)')
|
|
test_generator(N, 'cunifvariate(0.0, 1.0)')
|
|
test_generator(N, 'expovariate(1.0)')
|
|
test_generator(N, 'vonmisesvariate(0.0, 1.0)')
|
|
test_generator(N, 'gammavariate(0.5, 1.0)')
|
|
test_generator(N, 'gammavariate(0.9, 1.0)')
|
|
test_generator(N, 'gammavariate(1.0, 1.0)')
|
|
test_generator(N, 'gammavariate(2.0, 1.0)')
|
|
test_generator(N, 'gammavariate(20.0, 1.0)')
|
|
test_generator(N, 'gammavariate(200.0, 1.0)')
|
|
test_generator(N, 'gauss(0.0, 1.0)')
|
|
test_generator(N, 'betavariate(3.0, 3.0)')
|
|
test_generator(N, 'paretovariate(1.0)')
|
|
test_generator(N, 'weibullvariate(1.0, 1.0)')
|
|
|
|
def test_generator(n, funccall):
|
|
import time
|
|
print n, 'times', funccall
|
|
code = compile(funccall, funccall, 'eval')
|
|
sum = 0.0
|
|
sqsum = 0.0
|
|
smallest = 1e10
|
|
largest = -1e10
|
|
t0 = time.time()
|
|
for i in range(n):
|
|
x = eval(code)
|
|
sum = sum + x
|
|
sqsum = sqsum + x*x
|
|
smallest = min(x, smallest)
|
|
largest = max(x, largest)
|
|
t1 = time.time()
|
|
print round(t1-t0, 3), 'sec,',
|
|
avg = sum/n
|
|
stddev = sqrt(sqsum/n - avg*avg)
|
|
print 'avg %g, stddev %g, min %g, max %g' % \
|
|
(avg, stddev, smallest, largest)
|
|
|
|
if __name__ == '__main__':
|
|
test()
|