cpython/Lib/test/test_generators.py
Tim Peters ee30927b45 Another variant of the 2-3-5 test, mixing generators with a LazyList class.
Good news:  Some of this stuff is pretty sophisticated (read nuts), and
I haven't bumped into a bug yet.
Bad news:  If I run the doctest in an infinite loop, memory is clearly
leaking.
2001-06-24 05:47:06 +00:00

463 lines
12 KiB
Python

tutorial_tests = """
Let's try a simple generator:
>>> def f():
... yield 1
... yield 2
>>> for i in f():
... print i
1
2
>>> g = f()
>>> g.next()
1
>>> g.next()
2
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in g
StopIteration
"return" stops the generator:
>>> def f():
... yield 1
... return
... yield 2 # never reached
...
>>> g = f()
>>> g.next()
1
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in f
StopIteration
>>> g.next() # once stopped, can't be resumed
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
"raise StopIteration" stops the generator too:
>>> def f():
... yield 1
... return
... yield 2 # never reached
...
>>> g = f()
>>> g.next()
1
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
However, they are not exactly equivalent:
>>> def g1():
... try:
... return
... except:
... yield 1
...
>>> list(g1())
[]
>>> def g2():
... try:
... raise StopIteration
... except:
... yield 42
>>> print list(g2())
[42]
This may be surprising at first:
>>> def g3():
... try:
... return
... finally:
... yield 1
...
>>> list(g3())
[1]
Let's create an alternate range() function implemented as a generator:
>>> def yrange(n):
... for i in range(n):
... yield i
...
>>> list(yrange(5))
[0, 1, 2, 3, 4]
Generators always return to the most recent caller:
>>> def creator():
... r = yrange(5)
... print "creator", r.next()
... return r
...
>>> def caller():
... r = creator()
... for i in r:
... print "caller", i
...
>>> caller()
creator 0
caller 1
caller 2
caller 3
caller 4
Generators can call other generators:
>>> def zrange(n):
... for i in yrange(n):
... yield i
...
>>> list(zrange(5))
[0, 1, 2, 3, 4]
"""
# The examples from PEP 255.
pep_tests = """
Specification: Return
Note that return isn't always equivalent to raising StopIteration: the
difference lies in how enclosing try/except constructs are treated.
For example,
>>> def f1():
... try:
... return
... except:
... yield 1
>>> print list(f1())
[]
because, as in any function, return simply exits, but
>>> def f2():
... try:
... raise StopIteration
... except:
... yield 42
>>> print list(f2())
[42]
because StopIteration is captured by a bare "except", as is any
exception.
Specification: Generators and Exception Propagation
>>> def f():
... return 1/0
>>> def g():
... yield f() # the zero division exception propagates
... yield 42 # and we'll never get here
>>> k = g()
>>> k.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 2, in g
File "<stdin>", line 2, in f
ZeroDivisionError: integer division or modulo by zero
>>> k.next() # and the generator cannot be resumed
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
>>>
Specification: Try/Except/Finally
>>> def f():
... try:
... yield 1
... try:
... yield 2
... 1/0
... yield 3 # never get here
... except ZeroDivisionError:
... yield 4
... yield 5
... raise
... except:
... yield 6
... yield 7 # the "raise" above stops this
... except:
... yield 8
... yield 9
... try:
... x = 12
... finally:
... yield 10
... yield 11
>>> print list(f())
[1, 2, 4, 5, 8, 9, 10, 11]
>>>
Guido's binary tree example.
>>> # A binary tree class.
>>> class Tree:
...
... def __init__(self, label, left=None, right=None):
... self.label = label
... self.left = left
... self.right = right
...
... def __repr__(self, level=0, indent=" "):
... s = level*indent + `self.label`
... if self.left:
... s = s + "\\n" + self.left.__repr__(level+1, indent)
... if self.right:
... s = s + "\\n" + self.right.__repr__(level+1, indent)
... return s
...
... def __iter__(self):
... return inorder(self)
>>> # Create a Tree from a list.
>>> def tree(list):
... n = len(list)
... if n == 0:
... return []
... i = n / 2
... return Tree(list[i], tree(list[:i]), tree(list[i+1:]))
>>> # Show it off: create a tree.
>>> t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
>>> # A recursive generator that generates Tree leaves in in-order.
>>> def inorder(t):
... if t:
... for x in inorder(t.left):
... yield x
... yield t.label
... for x in inorder(t.right):
... yield x
>>> # Show it off: create a tree.
... t = tree("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
... # Print the nodes of the tree in in-order.
... for x in t:
... print x,
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
>>> # A non-recursive generator.
>>> def inorder(node):
... stack = []
... while node:
... while node.left:
... stack.append(node)
... node = node.left
... yield node.label
... while not node.right:
... try:
... node = stack.pop()
... except IndexError:
... return
... yield node.label
... node = node.right
>>> # Exercise the non-recursive generator.
>>> for x in t:
... print x,
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
"""
# A few examples from Iterator-List and Python-Dev email.
email_tests = """
The difference between yielding None and returning it.
>>> def g():
... for i in range(3):
... yield None
... yield None
... return
>>> list(g())
[None, None, None, None]
Ensure that explicitly raising StopIteration acts like any other exception
in try/except, not like a return.
>>> def g():
... yield 1
... try:
... raise StopIteration
... except:
... yield 2
... yield 3
>>> list(g())
[1, 2, 3]
A generator can't be resumed while it's already running.
>>> def g():
... i = me.next()
... yield i
>>> me = g()
>>> me.next()
Traceback (most recent call last):
...
File "<string>", line 2, in g
ValueError: generator already executing
"""
# Fun tests (for sufficiently warped notions of "fun").
fun_tests = """
Build up to a recursive Sieve of Eratosthenes generator.
>>> def firstn(g, n):
... return [g.next() for i in range(n)]
>>> def intsfrom(i):
... while 1:
... yield i
... i += 1
>>> firstn(intsfrom(5), 7)
[5, 6, 7, 8, 9, 10, 11]
>>> def exclude_multiples(n, ints):
... for i in ints:
... if i % n:
... yield i
>>> firstn(exclude_multiples(3, intsfrom(1)), 6)
[1, 2, 4, 5, 7, 8]
>>> def sieve(ints):
... prime = ints.next()
... yield prime
... not_divisible_by_prime = exclude_multiples(prime, ints)
... for p in sieve(not_divisible_by_prime):
... yield p
>>> primes = sieve(intsfrom(2))
>>> firstn(primes, 20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
Another famous problem: generate all integers of the form
2**i * 3**j * 5**k
in increasing order, where i,j,k >= 0. Trickier than it may look at first!
Try writing it without generators, and correctly, and without generating
3 internal results for each result output.
>>> def times(n, g):
... for i in g:
... yield n * i
>>> firstn(times(10, intsfrom(1)), 10)
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
>>> def merge(g, h):
... ng = g.next()
... nh = h.next()
... while 1:
... if ng < nh:
... yield ng
... ng = g.next()
... elif ng > nh:
... yield nh
... nh = h.next()
... else:
... yield ng
... ng = g.next()
... nh = h.next()
This works, but is doing a whale of a lot or redundant work -- it's not
clear how to get the internal uses of m235 to share a single generator.
Note that me_times2 (etc) each need to see every element in the result
sequence. So this is an example where lazy lists are more natural (you
can look at the head of a lazy list any number of times).
>>> def m235():
... yield 1
... me_times2 = times(2, m235())
... me_times3 = times(3, m235())
... me_times5 = times(5, m235())
... for i in merge(merge(me_times2,
... me_times3),
... me_times5):
... yield i
>>> result = m235()
>>> for i in range(5):
... print firstn(result, 15)
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
Heh. Here's one way to get a shared list, complete with an excruciating
namespace renaming trick. The *pretty* part is that the times() and merge()
functions can be reused as-is, because they only assume their stream
arguments are iterable -- a LazyList is the same as a generator to times().
>>> class LazyList:
... def __init__(self, g):
... self.sofar = []
... self.fetch = g.next
...
... def __getitem__(self, i):
... sofar, fetch = self.sofar, self.fetch
... while i >= len(sofar):
... sofar.append(fetch())
... return sofar[i]
>>> def m235():
... yield 1
... # Gack: m235 below actually refers to a LazyList.
... me_times2 = times(2, m235)
... me_times3 = times(3, m235)
... me_times5 = times(5, m235)
... for i in merge(merge(me_times2,
... me_times3),
... me_times5):
... yield i
>>> m235 = LazyList(m235())
>>> for i in range(5):
... print [m235[j] for j in range(15*i, 15*(i+1))]
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24]
[25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80]
[81, 90, 96, 100, 108, 120, 125, 128, 135, 144, 150, 160, 162, 180, 192]
[200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 360, 375, 384]
[400, 405, 432, 450, 480, 486, 500, 512, 540, 576, 600, 625, 640, 648, 675]
"""
__test__ = {"tut": tutorial_tests,
"pep": pep_tests,
"email": email_tests,
"fun": fun_tests}
# Magic test name that regrtest.py invokes *after* importing this module.
# This worms around a bootstrap problem.
# Note that doctest and regrtest both look in sys.argv for a "-v" argument,
# so this works as expected in both ways of running regrtest.
def test_main():
import doctest, test_generators
doctest.testmod(test_generators)
# This part isn't needed for regrtest, but for running the test directly.
if __name__ == "__main__":
test_main()