cpython/Doc/whatsnew/3.1.rst
2009-04-04 11:08:48 +00:00

248 lines
9.3 KiB
ReStructuredText

****************************
What's New In Python 3.1
****************************
.. XXX Add trademark info for Apple, Microsoft.
:Author: Raymond Hettinger
:Release: |release|
:Date: |today|
.. $Id$
Rules for maintenance:
* Anyone can add text to this document. Do not spend very much time
on the wording of your changes, because your text will probably
get rewritten to some degree.
* The maintainer will go through Misc/NEWS periodically and add
changes; it's therefore more important to add your changes to
Misc/NEWS than to this file. (Note: I didn't get to this for 3.0.
GvR.)
* This is not a complete list of every single change; completeness
is the purpose of Misc/NEWS. Some changes I consider too small
or esoteric to include. If such a change is added to the text,
I'll just remove it. (This is another reason you shouldn't spend
too much time on writing your addition.)
* If you want to draw your new text to the attention of the
maintainer, add 'XXX' to the beginning of the paragraph or
section.
* It's OK to just add a fragmentary note about a change. For
example: "XXX Describe the transmogrify() function added to the
socket module." The maintainer will research the change and
write the necessary text.
* You can comment out your additions if you like, but it's not
necessary (especially when a final release is some months away).
* Credit the author of a patch or bugfix. Just the name is
sufficient; the e-mail address isn't necessary. (Due to time
constraints I haven't managed to do this for 3.0. GvR.)
* It's helpful to add the bug/patch number as a comment:
% Patch 12345
XXX Describe the transmogrify() function added to the socket
module.
(Contributed by P.Y. Developer.)
This saves the maintainer the effort of going through the SVN log
when researching a change. (Again, I didn't get to this for 3.0.
GvR.)
This article explains the new features in Python 3.1, compared to 3.0.
.. Compare with previous release in 2 - 3 sentences here.
.. add hyperlink when the documentation becomes available online.
.. ======================================================================
.. Large, PEP-level features and changes should be described here.
.. Should there be a new section here for 3k migration?
.. Or perhaps a more general section describing module changes/deprecation?
.. sets module deprecated
.. ======================================================================
PEP 372: Ordered Dictionaries
=============================
Regular Python dictionaries iterate over key/value pairs in arbitrary order.
Over the years, a number of authors have written alternative implementations
that remember the order that the keys were originally inserted. Based on
the experiences from those implementations, the :mod:`collections` module
now has an :class:`OrderedDict` class.
The OrderedDict API is substantially the same as regular dictionaries
but will iterate over keys and values in a guaranteed order depending on
when a key was first inserted. If a new entry overwrites an existing entry,
the original insertion position is left unchanged. Deleting an entry and
reinserting it will move it to the end.
The standard library now supports use of ordered dictionaries in several
modules. The :mod:`ConfigParser` modules uses them by default. This lets
configuration files be read, modified, and then written back in their original
order. The :mod:`collections` module's :meth:`namedtuple._asdict` method now
returns a dictionary with the values appearing in the same order as the
underlying tuple.count The :mod:`json` module is being built-out with an
*object_pairs_hook* to allow OrderedDicts to be built by the decoder.
Support was also builtin for third-party tools like PyYAML.
.. seealso::
:pep:`372` - Ordered Dictionaries
PEP written by Armin Roancher and Raymond D. Hettinger; implemented by
Raymond Hettinger
PEP 378: Format Specifier for Thousands Separator
=================================================
The builtin :func:`format` function and the :meth:`str.format` method use
a mini-language that now includes a simple, non-locale aware way to format
a number with a thousands separator. That provides a way to humanize a
program's output, improving its professional appearance and readability::
>>> format(Decimal('1234567.89'), ',f')
'1,234,567.89'
The currently supported types are :class:`int` and :class:`Decimal`.
Support for :class:`float` is expected before the beta release.
Discussions are underway about how to specify alternative separators
like dots, spaces, apostrophes, or underscores.
.. seealso::
:pep:`378` - Format Specifier for Thousands Separator
PEP written by Raymond Hettinger; implemented by Eric Smith and
Mark Dickinson.
Other Language Changes
======================
Some smaller changes made to the core Python language are:
* The :func:`int` type gained a ``bit_length`` method that returns the
number of bits necessary to represent its argument in binary::
>>> n = 37
>>> bin(37)
'0b100101'
>>> n.bit_length()
6
>>> n = 2**123-1
>>> n.bit_length()
123
>>> (n+1).bit_length()
124
(Contributed by Fredrik Johansson and Victor Stinner; :issue:`3439`.)
* Integers are now stored internally either in base 2**15 or in base
2**30, the base being determined at build time. Previously, they
were always stored in base 2**15. Using base 2**30 gives
significant performance improvements on 64-bit machines, but
benchmark results on 32-bit machines have been mixed. Therefore,
the default is to use base 2**30 on 64-bit machines and base 2**15
on 32-bit machines; on Unix, there's a new configure option
--enable-big-digits that can be used to override this default.
Apart from the performance improvements this change should be
invisible to end users, with one exception: for testing and
debugging purposes there's a new structseq ``sys.int_info`` that
provides information about the internal format, giving the number of
bits per digit and the size in bytes of the C type used to store
each digit::
>>> import sys
>>> sys.int_info
sys.int_info(bits_per_digit=30, sizeof_digit=4)
(Contributed by Mark Dickinson; :issue:`4258`.)
* Added a :class:`collections.Counter` class to support convenient
counting of unique items in a sequence or iterable::
>>> Counter(['red', 'blue', 'red', 'green', 'blue', 'blue'])
Counter({'blue': 3, 'red': 2, 'green': 1})
(Contributed by Raymond Hettinger; :issue:`1696199`.)
* The :class:`gzip.GzipFile` and :class:`bz2.BZ2File` classs now support
the context manager protocol.
(Contributed by Jacques Frechet; :issue:`4272`.)
* The :mod:`Decimal` module now supports two new methods to create a
decimal object that from a binary :class:`float`. The conversion is
exact but can sometimes be surprising::
>>> Decimal.from_float(1.1)
Decimal('1.100000000000000088817841970012523233890533447265625')
The long decimal result shows the actual binary fraction being
stored for *1.1*. The fraction has many digits because *1.1* cannot
be exactly represented in binary.
(Contributed by Raymond Hettinger and Mark Dickinson.)
* The fields in :func:`format` strings can now be automatically
numbered::
>>> 'Sir {} of {}'.format('Gallahad', 'Camelot')
'Sir Gallahad of Camelot'
Formerly, the string would have required numbered fields such as:
``'Sir {0} of {1}'``.
(Contributed by Eric Smith; :issue:`5237`.)
* The :mod:`itertools` module grew two new functions. The
:func:`itertools.combinations_with_replacement` function is one of
four for generating combinatorics including permutations and Cartesian
products. The :func:`itertools.compress` function mimics its namesake
from APL. Also, the existing :func:`itertools.count` function now has
an optional *step* argument and can accept any type of counting
sequence including :class:`fractions.Fraction` and
:class:`decimal.Decimal`.
(Contributed by Raymond Hettinger.)
.. ======================================================================
Optimizations
-------------
Major performance enhancements have been added:
* The new I/O library (as defined in :pep:`3116`) was mostly written in
Python and quickly proved to be a problematic bottleneck in Python 3.0.
In Python 3.1, the I/O library has been entirely rewritten in C and is
2 to 20 times faster depending on the task at hand. The pure Python
version is still available for experimentation purposes through
the ``_pyio`` module.
(Contributed by Amaury Forgeot d'Arc and Antoine Pitrou.)
* A new configure flag, ``--with-computed-gotos``, enables a faster opcode
dispatch mechanism on compilers which support it. Speedups of up to 20%
have been observed, depending on the system and compiler.
(Contributed by Antoine Pitrou, :issue:`4753`.)
* Add a heuristic so that tuples and dicts containing only untrackable objects
are not tracked by the garbage collector. This can reduce the size of
collections and therefore the garbage collection overhead on long-running
programs, depending on their particular use of datatypes.
(Contributed by Antoine Pitrou, :issue:`4688`.)
XXX The JSON module is getting a C extension for speed.
.. ======================================================================