mirror of
https://github.com/python/cpython.git
synced 2024-11-24 10:24:35 +08:00
c896700235
Multiple reinitializations of Python 3.0 failed on a system without a hardcoded default fs encoding. The patch makes sure that the default fs encoding is freed and reset to NULL on e.g. Linux. I've also taken the liberty to increase the debugging in Objects/object.c:_Py_ForgetReference(). The method is used to validate the reference chain. Reinitialization still fails in the 3rd round of my test suite: * ob object : <refcnt 0 at 0x821c840> type : str refcount: 0 address : 0x821c840 * op->_ob_prev->_ob_next object : <refcnt 0 at 0x821c840> type : str refcount: 0 address : 0x821c840 * op->_ob_next->_ob_prev object : bytearray(b'') type : bytearray refcount: 1 address : 0x826b838 Fatal Python error: UNREF invalid object
1774 lines
41 KiB
C
1774 lines
41 KiB
C
|
|
/* Generic object operations; and implementation of None (NoObject) */
|
|
|
|
#include "Python.h"
|
|
#include "sliceobject.h" /* For PyEllipsis_Type */
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
Py_ssize_t _Py_RefTotal;
|
|
|
|
Py_ssize_t
|
|
_Py_GetRefTotal(void)
|
|
{
|
|
PyObject *o;
|
|
Py_ssize_t total = _Py_RefTotal;
|
|
/* ignore the references to the dummy object of the dicts and sets
|
|
because they are not reliable and not useful (now that the
|
|
hash table code is well-tested) */
|
|
o = _PyDict_Dummy();
|
|
if (o != NULL)
|
|
total -= o->ob_refcnt;
|
|
o = _PySet_Dummy();
|
|
if (o != NULL)
|
|
total -= o->ob_refcnt;
|
|
return total;
|
|
}
|
|
#endif /* Py_REF_DEBUG */
|
|
|
|
int Py_DivisionWarningFlag;
|
|
|
|
/* Object allocation routines used by NEWOBJ and NEWVAROBJ macros.
|
|
These are used by the individual routines for object creation.
|
|
Do not call them otherwise, they do not initialize the object! */
|
|
|
|
#ifdef Py_TRACE_REFS
|
|
/* Head of circular doubly-linked list of all objects. These are linked
|
|
* together via the _ob_prev and _ob_next members of a PyObject, which
|
|
* exist only in a Py_TRACE_REFS build.
|
|
*/
|
|
static PyObject refchain = {&refchain, &refchain};
|
|
|
|
/* Insert op at the front of the list of all objects. If force is true,
|
|
* op is added even if _ob_prev and _ob_next are non-NULL already. If
|
|
* force is false amd _ob_prev or _ob_next are non-NULL, do nothing.
|
|
* force should be true if and only if op points to freshly allocated,
|
|
* uninitialized memory, or you've unlinked op from the list and are
|
|
* relinking it into the front.
|
|
* Note that objects are normally added to the list via _Py_NewReference,
|
|
* which is called by PyObject_Init. Not all objects are initialized that
|
|
* way, though; exceptions include statically allocated type objects, and
|
|
* statically allocated singletons (like Py_True and Py_None).
|
|
*/
|
|
void
|
|
_Py_AddToAllObjects(PyObject *op, int force)
|
|
{
|
|
#ifdef Py_DEBUG
|
|
if (!force) {
|
|
/* If it's initialized memory, op must be in or out of
|
|
* the list unambiguously.
|
|
*/
|
|
assert((op->_ob_prev == NULL) == (op->_ob_next == NULL));
|
|
}
|
|
#endif
|
|
if (force || op->_ob_prev == NULL) {
|
|
op->_ob_next = refchain._ob_next;
|
|
op->_ob_prev = &refchain;
|
|
refchain._ob_next->_ob_prev = op;
|
|
refchain._ob_next = op;
|
|
}
|
|
}
|
|
#endif /* Py_TRACE_REFS */
|
|
|
|
#ifdef COUNT_ALLOCS
|
|
static PyTypeObject *type_list;
|
|
/* All types are added to type_list, at least when
|
|
they get one object created. That makes them
|
|
immortal, which unfortunately contributes to
|
|
garbage itself. If unlist_types_without_objects
|
|
is set, they will be removed from the type_list
|
|
once the last object is deallocated. */
|
|
int unlist_types_without_objects;
|
|
extern int tuple_zero_allocs, fast_tuple_allocs;
|
|
extern int quick_int_allocs, quick_neg_int_allocs;
|
|
extern int null_strings, one_strings;
|
|
void
|
|
dump_counts(FILE* f)
|
|
{
|
|
PyTypeObject *tp;
|
|
|
|
for (tp = type_list; tp; tp = tp->tp_next)
|
|
fprintf(f, "%s alloc'd: %d, freed: %d, max in use: %d\n",
|
|
tp->tp_name, tp->tp_allocs, tp->tp_frees,
|
|
tp->tp_maxalloc);
|
|
fprintf(f, "fast tuple allocs: %d, empty: %d\n",
|
|
fast_tuple_allocs, tuple_zero_allocs);
|
|
fprintf(f, "fast int allocs: pos: %d, neg: %d\n",
|
|
quick_int_allocs, quick_neg_int_allocs);
|
|
fprintf(f, "null strings: %d, 1-strings: %d\n",
|
|
null_strings, one_strings);
|
|
}
|
|
|
|
PyObject *
|
|
get_counts(void)
|
|
{
|
|
PyTypeObject *tp;
|
|
PyObject *result;
|
|
PyObject *v;
|
|
|
|
result = PyList_New(0);
|
|
if (result == NULL)
|
|
return NULL;
|
|
for (tp = type_list; tp; tp = tp->tp_next) {
|
|
v = Py_BuildValue("(snnn)", tp->tp_name, tp->tp_allocs,
|
|
tp->tp_frees, tp->tp_maxalloc);
|
|
if (v == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
if (PyList_Append(result, v) < 0) {
|
|
Py_DECREF(v);
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(v);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void
|
|
inc_count(PyTypeObject *tp)
|
|
{
|
|
if (tp->tp_next == NULL && tp->tp_prev == NULL) {
|
|
/* first time; insert in linked list */
|
|
if (tp->tp_next != NULL) /* sanity check */
|
|
Py_FatalError("XXX inc_count sanity check");
|
|
if (type_list)
|
|
type_list->tp_prev = tp;
|
|
tp->tp_next = type_list;
|
|
/* Note that as of Python 2.2, heap-allocated type objects
|
|
* can go away, but this code requires that they stay alive
|
|
* until program exit. That's why we're careful with
|
|
* refcounts here. type_list gets a new reference to tp,
|
|
* while ownership of the reference type_list used to hold
|
|
* (if any) was transferred to tp->tp_next in the line above.
|
|
* tp is thus effectively immortal after this.
|
|
*/
|
|
Py_INCREF(tp);
|
|
type_list = tp;
|
|
#ifdef Py_TRACE_REFS
|
|
/* Also insert in the doubly-linked list of all objects,
|
|
* if not already there.
|
|
*/
|
|
_Py_AddToAllObjects((PyObject *)tp, 0);
|
|
#endif
|
|
}
|
|
tp->tp_allocs++;
|
|
if (tp->tp_allocs - tp->tp_frees > tp->tp_maxalloc)
|
|
tp->tp_maxalloc = tp->tp_allocs - tp->tp_frees;
|
|
}
|
|
|
|
void dec_count(PyTypeObject *tp)
|
|
{
|
|
tp->tp_frees++;
|
|
if (unlist_types_without_objects &&
|
|
tp->tp_allocs == tp->tp_frees) {
|
|
/* unlink the type from type_list */
|
|
if (tp->tp_prev)
|
|
tp->tp_prev->tp_next = tp->tp_next;
|
|
else
|
|
type_list = tp->tp_next;
|
|
if (tp->tp_next)
|
|
tp->tp_next->tp_prev = tp->tp_prev;
|
|
tp->tp_next = tp->tp_prev = NULL;
|
|
Py_DECREF(tp);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
/* Log a fatal error; doesn't return. */
|
|
void
|
|
_Py_NegativeRefcount(const char *fname, int lineno, PyObject *op)
|
|
{
|
|
char buf[300];
|
|
|
|
PyOS_snprintf(buf, sizeof(buf),
|
|
"%s:%i object at %p has negative ref count "
|
|
"%" PY_FORMAT_SIZE_T "d",
|
|
fname, lineno, op, op->ob_refcnt);
|
|
Py_FatalError(buf);
|
|
}
|
|
|
|
#endif /* Py_REF_DEBUG */
|
|
|
|
void
|
|
Py_IncRef(PyObject *o)
|
|
{
|
|
Py_XINCREF(o);
|
|
}
|
|
|
|
void
|
|
Py_DecRef(PyObject *o)
|
|
{
|
|
Py_XDECREF(o);
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Init(PyObject *op, PyTypeObject *tp)
|
|
{
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
/* Any changes should be reflected in PyObject_INIT (objimpl.h) */
|
|
Py_Type(op) = tp;
|
|
_Py_NewReference(op);
|
|
return op;
|
|
}
|
|
|
|
PyVarObject *
|
|
PyObject_InitVar(PyVarObject *op, PyTypeObject *tp, Py_ssize_t size)
|
|
{
|
|
if (op == NULL)
|
|
return (PyVarObject *) PyErr_NoMemory();
|
|
/* Any changes should be reflected in PyObject_INIT_VAR */
|
|
op->ob_size = size;
|
|
Py_Type(op) = tp;
|
|
_Py_NewReference((PyObject *)op);
|
|
return op;
|
|
}
|
|
|
|
PyObject *
|
|
_PyObject_New(PyTypeObject *tp)
|
|
{
|
|
PyObject *op;
|
|
op = (PyObject *) PyObject_MALLOC(_PyObject_SIZE(tp));
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
return PyObject_INIT(op, tp);
|
|
}
|
|
|
|
PyVarObject *
|
|
_PyObject_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
|
|
{
|
|
PyVarObject *op;
|
|
const size_t size = _PyObject_VAR_SIZE(tp, nitems);
|
|
op = (PyVarObject *) PyObject_MALLOC(size);
|
|
if (op == NULL)
|
|
return (PyVarObject *)PyErr_NoMemory();
|
|
return PyObject_INIT_VAR(op, tp, nitems);
|
|
}
|
|
|
|
/* Implementation of PyObject_Print with recursion checking */
|
|
static int
|
|
internal_print(PyObject *op, FILE *fp, int flags, int nesting)
|
|
{
|
|
int ret = 0;
|
|
if (nesting > 10) {
|
|
PyErr_SetString(PyExc_RuntimeError, "print recursion");
|
|
return -1;
|
|
}
|
|
if (PyErr_CheckSignals())
|
|
return -1;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return -1;
|
|
}
|
|
#endif
|
|
clearerr(fp); /* Clear any previous error condition */
|
|
if (op == NULL) {
|
|
Py_BEGIN_ALLOW_THREADS
|
|
fprintf(fp, "<nil>");
|
|
Py_END_ALLOW_THREADS
|
|
}
|
|
else {
|
|
if (op->ob_refcnt <= 0)
|
|
/* XXX(twouters) cast refcount to long until %zd is
|
|
universally available */
|
|
Py_BEGIN_ALLOW_THREADS
|
|
fprintf(fp, "<refcnt %ld at %p>",
|
|
(long)op->ob_refcnt, op);
|
|
Py_END_ALLOW_THREADS
|
|
else {
|
|
PyObject *s;
|
|
if (flags & Py_PRINT_RAW)
|
|
s = PyObject_Str(op);
|
|
else
|
|
s = PyObject_Repr(op);
|
|
if (s == NULL)
|
|
ret = -1;
|
|
else if (PyString_Check(s)) {
|
|
fwrite(PyString_AS_STRING(s), 1,
|
|
PyString_GET_SIZE(s), fp);
|
|
}
|
|
else if (PyUnicode_Check(s)) {
|
|
PyObject *t;
|
|
t = _PyUnicode_AsDefaultEncodedString(s, NULL);
|
|
if (t == NULL)
|
|
ret = 0;
|
|
else {
|
|
fwrite(PyString_AS_STRING(t), 1,
|
|
PyString_GET_SIZE(t), fp);
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"str() or repr() returned '%.100s'",
|
|
s->ob_type->tp_name);
|
|
ret = -1;
|
|
}
|
|
Py_XDECREF(s);
|
|
}
|
|
}
|
|
if (ret == 0) {
|
|
if (ferror(fp)) {
|
|
PyErr_SetFromErrno(PyExc_IOError);
|
|
clearerr(fp);
|
|
ret = -1;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
PyObject_Print(PyObject *op, FILE *fp, int flags)
|
|
{
|
|
return internal_print(op, fp, flags, 0);
|
|
}
|
|
|
|
/* For debugging convenience. Set a breakpoint here and call it from your DLL */
|
|
void
|
|
_Py_BreakPoint(void)
|
|
{
|
|
}
|
|
|
|
|
|
/* For debugging convenience. See Misc/gdbinit for some useful gdb hooks */
|
|
void
|
|
_PyObject_Dump(PyObject* op)
|
|
{
|
|
if (op == NULL)
|
|
fprintf(stderr, "NULL\n");
|
|
else {
|
|
fprintf(stderr, "object : ");
|
|
(void)PyObject_Print(op, stderr, 0);
|
|
/* XXX(twouters) cast refcount to long until %zd is
|
|
universally available */
|
|
fprintf(stderr, "\n"
|
|
"type : %s\n"
|
|
"refcount: %ld\n"
|
|
"address : %p\n",
|
|
Py_Type(op)==NULL ? "NULL" : Py_Type(op)->tp_name,
|
|
(long)op->ob_refcnt,
|
|
op);
|
|
}
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Repr(PyObject *v)
|
|
{
|
|
PyObject *res;
|
|
if (PyErr_CheckSignals())
|
|
return NULL;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (v == NULL)
|
|
return PyUnicode_FromString("<NULL>");
|
|
if (Py_Type(v)->tp_repr == NULL)
|
|
return PyUnicode_FromFormat("<%s object at %p>",
|
|
v->ob_type->tp_name, v);
|
|
res = (*v->ob_type->tp_repr)(v);
|
|
if (res != NULL && !PyUnicode_Check(res)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__repr__ returned non-string (type %.200s)",
|
|
res->ob_type->tp_name);
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_Str(PyObject *v)
|
|
{
|
|
PyObject *res;
|
|
if (PyErr_CheckSignals())
|
|
return NULL;
|
|
#ifdef USE_STACKCHECK
|
|
if (PyOS_CheckStack()) {
|
|
PyErr_SetString(PyExc_MemoryError, "stack overflow");
|
|
return NULL;
|
|
}
|
|
#endif
|
|
if (v == NULL)
|
|
return PyUnicode_FromString("<NULL>");
|
|
if (PyUnicode_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
if (Py_Type(v)->tp_str == NULL)
|
|
return PyObject_Repr(v);
|
|
|
|
/* It is possible for a type to have a tp_str representation that loops
|
|
infinitely. */
|
|
if (Py_EnterRecursiveCall(" while getting the str of an object"))
|
|
return NULL;
|
|
res = (*Py_Type(v)->tp_str)(v);
|
|
Py_LeaveRecursiveCall();
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (!PyUnicode_Check(res)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__str__ returned non-string (type %.200s)",
|
|
Py_Type(res)->tp_name);
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
/* The new comparison philosophy is: we completely separate three-way
|
|
comparison from rich comparison. That is, PyObject_Compare() and
|
|
PyObject_Cmp() *just* use the tp_compare slot. And PyObject_RichCompare()
|
|
and PyObject_RichCompareBool() *just* use the tp_richcompare slot.
|
|
|
|
See (*) below for practical amendments.
|
|
|
|
IOW, only cmp() uses tp_compare; the comparison operators (==, !=, <=, <,
|
|
>=, >) only use tp_richcompare. Note that list.sort() only uses <.
|
|
|
|
(And yes, eventually we'll rip out cmp() and tp_compare.)
|
|
|
|
The calling conventions are different: tp_compare only gets called with two
|
|
objects of the appropriate type; tp_richcompare gets called with a first
|
|
argument of the appropriate type and a second object of an arbitrary type.
|
|
We never do any kind of coercion.
|
|
|
|
The return conventions are also different.
|
|
|
|
The tp_compare slot should return a C int, as follows:
|
|
|
|
-1 if a < b or if an exception occurred
|
|
0 if a == b
|
|
+1 if a > b
|
|
|
|
No other return values are allowed. PyObject_Compare() has the same
|
|
calling convention.
|
|
|
|
The tp_richcompare slot should return an object, as follows:
|
|
|
|
NULL if an exception occurred
|
|
NotImplemented if the requested comparison is not implemented
|
|
any other false value if the requested comparison is false
|
|
any other true value if the requested comparison is true
|
|
|
|
The PyObject_RichCompare[Bool]() wrappers raise TypeError when they get
|
|
NotImplemented.
|
|
|
|
(*) Practical amendments:
|
|
|
|
- If rich comparison returns NotImplemented, == and != are decided by
|
|
comparing the object pointer (i.e. falling back to the base object
|
|
implementation).
|
|
|
|
- If three-way comparison is not implemented, it falls back on rich
|
|
comparison (but not the other way around!).
|
|
|
|
*/
|
|
|
|
/* Forward */
|
|
static PyObject *do_richcompare(PyObject *v, PyObject *w, int op);
|
|
|
|
/* Perform a three-way comparison, raising TypeError if three-way comparison
|
|
is not supported. */
|
|
static int
|
|
do_compare(PyObject *v, PyObject *w)
|
|
{
|
|
cmpfunc f;
|
|
int ok;
|
|
|
|
if (v->ob_type == w->ob_type &&
|
|
(f = v->ob_type->tp_compare) != NULL) {
|
|
return (*f)(v, w);
|
|
}
|
|
|
|
/* Now try three-way compare before giving up. This is intentionally
|
|
elaborate; if you have a it will raise TypeError if it detects two
|
|
objects that aren't ordered with respect to each other. */
|
|
ok = PyObject_RichCompareBool(v, w, Py_LT);
|
|
if (ok < 0)
|
|
return -1; /* Error */
|
|
if (ok)
|
|
return -1; /* Less than */
|
|
ok = PyObject_RichCompareBool(v, w, Py_GT);
|
|
if (ok < 0)
|
|
return -1; /* Error */
|
|
if (ok)
|
|
return 1; /* Greater than */
|
|
ok = PyObject_RichCompareBool(v, w, Py_EQ);
|
|
if (ok < 0)
|
|
return -1; /* Error */
|
|
if (ok)
|
|
return 0; /* Equal */
|
|
|
|
/* Give up */
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unorderable types: '%.100s' != '%.100s'",
|
|
v->ob_type->tp_name,
|
|
w->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
/* Perform a three-way comparison. This wraps do_compare() with a check for
|
|
NULL arguments and a recursion check. */
|
|
int
|
|
PyObject_Compare(PyObject *v, PyObject *w)
|
|
{
|
|
int res;
|
|
|
|
if (v == NULL || w == NULL) {
|
|
if (!PyErr_Occurred())
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
if (Py_EnterRecursiveCall(" in cmp"))
|
|
return -1;
|
|
res = do_compare(v, w);
|
|
Py_LeaveRecursiveCall();
|
|
return res < 0 ? -1 : res;
|
|
}
|
|
|
|
/* Map rich comparison operators to their swapped version, e.g. LT <--> GT */
|
|
int _Py_SwappedOp[] = {Py_GT, Py_GE, Py_EQ, Py_NE, Py_LT, Py_LE};
|
|
|
|
static char *opstrings[] = {"<", "<=", "==", "!=", ">", ">="};
|
|
|
|
/* Perform a rich comparison, raising TypeError when the requested comparison
|
|
operator is not supported. */
|
|
static PyObject *
|
|
do_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
richcmpfunc f;
|
|
PyObject *res;
|
|
|
|
if (v->ob_type != w->ob_type &&
|
|
PyType_IsSubtype(w->ob_type, v->ob_type) &&
|
|
(f = w->ob_type->tp_richcompare) != NULL) {
|
|
res = (*f)(w, v, _Py_SwappedOp[op]);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
if ((f = v->ob_type->tp_richcompare) != NULL) {
|
|
res = (*f)(v, w, op);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
if ((f = w->ob_type->tp_richcompare) != NULL) {
|
|
res = (*f)(w, v, _Py_SwappedOp[op]);
|
|
if (res != Py_NotImplemented)
|
|
return res;
|
|
Py_DECREF(res);
|
|
}
|
|
/* If neither object implements it, provide a sensible default
|
|
for == and !=, but raise an exception for ordering. */
|
|
switch (op) {
|
|
case Py_EQ:
|
|
res = (v == w) ? Py_True : Py_False;
|
|
break;
|
|
case Py_NE:
|
|
res = (v != w) ? Py_True : Py_False;
|
|
break;
|
|
default:
|
|
/* XXX Special-case None so it doesn't show as NoneType() */
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unorderable types: %.100s() %s %.100s()",
|
|
v->ob_type->tp_name,
|
|
opstrings[op],
|
|
w->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
/* Perform a rich comparison with object result. This wraps do_richcompare()
|
|
with a check for NULL arguments and a recursion check. */
|
|
|
|
PyObject *
|
|
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
|
|
assert(Py_LT <= op && op <= Py_GE);
|
|
if (v == NULL || w == NULL) {
|
|
if (!PyErr_Occurred())
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (Py_EnterRecursiveCall(" in cmp"))
|
|
return NULL;
|
|
res = do_richcompare(v, w, op);
|
|
Py_LeaveRecursiveCall();
|
|
return res;
|
|
}
|
|
|
|
/* Perform a rich comparison with integer result. This wraps
|
|
PyObject_RichCompare(), returning -1 for error, 0 for false, 1 for true. */
|
|
int
|
|
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
int ok;
|
|
|
|
res = PyObject_RichCompare(v, w, op);
|
|
if (res == NULL)
|
|
return -1;
|
|
if (PyBool_Check(res))
|
|
ok = (res == Py_True);
|
|
else
|
|
ok = PyObject_IsTrue(res);
|
|
Py_DECREF(res);
|
|
return ok;
|
|
}
|
|
|
|
/* Turn the result of a three-way comparison into the result expected by a
|
|
rich comparison. */
|
|
PyObject *
|
|
Py_CmpToRich(int op, int cmp)
|
|
{
|
|
PyObject *res;
|
|
int ok;
|
|
|
|
if (PyErr_Occurred())
|
|
return NULL;
|
|
switch (op) {
|
|
case Py_LT:
|
|
ok = cmp < 0;
|
|
break;
|
|
case Py_LE:
|
|
ok = cmp <= 0;
|
|
break;
|
|
case Py_EQ:
|
|
ok = cmp == 0;
|
|
break;
|
|
case Py_NE:
|
|
ok = cmp != 0;
|
|
break;
|
|
case Py_GT:
|
|
ok = cmp > 0;
|
|
break;
|
|
case Py_GE:
|
|
ok = cmp >= 0;
|
|
break;
|
|
default:
|
|
PyErr_BadArgument();
|
|
return NULL;
|
|
}
|
|
res = ok ? Py_True : Py_False;
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
/* Set of hash utility functions to help maintaining the invariant that
|
|
if a==b then hash(a)==hash(b)
|
|
|
|
All the utility functions (_Py_Hash*()) return "-1" to signify an error.
|
|
*/
|
|
|
|
long
|
|
_Py_HashDouble(double v)
|
|
{
|
|
double intpart, fractpart;
|
|
int expo;
|
|
long hipart;
|
|
long x; /* the final hash value */
|
|
/* This is designed so that Python numbers of different types
|
|
* that compare equal hash to the same value; otherwise comparisons
|
|
* of mapping keys will turn out weird.
|
|
*/
|
|
|
|
fractpart = modf(v, &intpart);
|
|
if (fractpart == 0.0) {
|
|
/* This must return the same hash as an equal int or long. */
|
|
if (intpart > LONG_MAX || -intpart > LONG_MAX) {
|
|
/* Convert to long and use its hash. */
|
|
PyObject *plong; /* converted to Python long */
|
|
if (Py_IS_INFINITY(intpart))
|
|
/* can't convert to long int -- arbitrary */
|
|
v = v < 0 ? -271828.0 : 314159.0;
|
|
plong = PyLong_FromDouble(v);
|
|
if (plong == NULL)
|
|
return -1;
|
|
x = PyObject_Hash(plong);
|
|
Py_DECREF(plong);
|
|
return x;
|
|
}
|
|
/* Fits in a C long == a Python int, so is its own hash. */
|
|
x = (long)intpart;
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
/* The fractional part is non-zero, so we don't have to worry about
|
|
* making this match the hash of some other type.
|
|
* Use frexp to get at the bits in the double.
|
|
* Since the VAX D double format has 56 mantissa bits, which is the
|
|
* most of any double format in use, each of these parts may have as
|
|
* many as (but no more than) 56 significant bits.
|
|
* So, assuming sizeof(long) >= 4, each part can be broken into two
|
|
* longs; frexp and multiplication are used to do that.
|
|
* Also, since the Cray double format has 15 exponent bits, which is
|
|
* the most of any double format in use, shifting the exponent field
|
|
* left by 15 won't overflow a long (again assuming sizeof(long) >= 4).
|
|
*/
|
|
v = frexp(v, &expo);
|
|
v *= 2147483648.0; /* 2**31 */
|
|
hipart = (long)v; /* take the top 32 bits */
|
|
v = (v - (double)hipart) * 2147483648.0; /* get the next 32 bits */
|
|
x = hipart + (long)v + (expo << 15);
|
|
if (x == -1)
|
|
x = -2;
|
|
return x;
|
|
}
|
|
|
|
long
|
|
_Py_HashPointer(void *p)
|
|
{
|
|
#if SIZEOF_LONG >= SIZEOF_VOID_P
|
|
return (long)p;
|
|
#else
|
|
/* convert to a Python long and hash that */
|
|
PyObject* longobj;
|
|
long x;
|
|
|
|
if ((longobj = PyLong_FromVoidPtr(p)) == NULL) {
|
|
x = -1;
|
|
goto finally;
|
|
}
|
|
x = PyObject_Hash(longobj);
|
|
|
|
finally:
|
|
Py_XDECREF(longobj);
|
|
return x;
|
|
#endif
|
|
}
|
|
|
|
|
|
long
|
|
PyObject_Hash(PyObject *v)
|
|
{
|
|
PyTypeObject *tp = v->ob_type;
|
|
if (tp->tp_hash != NULL)
|
|
return (*tp->tp_hash)(v);
|
|
/* Otherwise, the object can't be hashed */
|
|
PyErr_Format(PyExc_TypeError, "unhashable type: '%.200s'",
|
|
v->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GetAttrString(PyObject *v, const char *name)
|
|
{
|
|
PyObject *w, *res;
|
|
|
|
if (Py_Type(v)->tp_getattr != NULL)
|
|
return (*Py_Type(v)->tp_getattr)(v, (char*)name);
|
|
w = PyUnicode_InternFromString(name);
|
|
if (w == NULL)
|
|
return NULL;
|
|
res = PyObject_GetAttr(v, w);
|
|
Py_XDECREF(w);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
PyObject_HasAttrString(PyObject *v, const char *name)
|
|
{
|
|
PyObject *res = PyObject_GetAttrString(v, name);
|
|
if (res != NULL) {
|
|
Py_DECREF(res);
|
|
return 1;
|
|
}
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_SetAttrString(PyObject *v, const char *name, PyObject *w)
|
|
{
|
|
PyObject *s;
|
|
int res;
|
|
|
|
if (Py_Type(v)->tp_setattr != NULL)
|
|
return (*Py_Type(v)->tp_setattr)(v, (char*)name, w);
|
|
s = PyUnicode_InternFromString(name);
|
|
if (s == NULL)
|
|
return -1;
|
|
res = PyObject_SetAttr(v, s, w);
|
|
Py_XDECREF(s);
|
|
return res;
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_GetAttr(PyObject *v, PyObject *name)
|
|
{
|
|
PyTypeObject *tp = Py_Type(v);
|
|
|
|
if (!PyUnicode_Check(name)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
if (tp->tp_getattro != NULL)
|
|
return (*tp->tp_getattro)(v, name);
|
|
if (tp->tp_getattr != NULL)
|
|
return (*tp->tp_getattr)(v, PyUnicode_AsString(name));
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%U'",
|
|
tp->tp_name, name);
|
|
return NULL;
|
|
}
|
|
|
|
int
|
|
PyObject_HasAttr(PyObject *v, PyObject *name)
|
|
{
|
|
PyObject *res = PyObject_GetAttr(v, name);
|
|
if (res != NULL) {
|
|
Py_DECREF(res);
|
|
return 1;
|
|
}
|
|
PyErr_Clear();
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_SetAttr(PyObject *v, PyObject *name, PyObject *value)
|
|
{
|
|
PyTypeObject *tp = Py_Type(v);
|
|
int err;
|
|
|
|
if (!PyUnicode_Check(name)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
Py_INCREF(name);
|
|
|
|
PyUnicode_InternInPlace(&name);
|
|
if (tp->tp_setattro != NULL) {
|
|
err = (*tp->tp_setattro)(v, name, value);
|
|
Py_DECREF(name);
|
|
return err;
|
|
}
|
|
if (tp->tp_setattr != NULL) {
|
|
err = (*tp->tp_setattr)(v, PyUnicode_AsString(name), value);
|
|
Py_DECREF(name);
|
|
return err;
|
|
}
|
|
Py_DECREF(name);
|
|
assert(name->ob_refcnt >= 1);
|
|
if (tp->tp_getattr == NULL && tp->tp_getattro == NULL)
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.100s' object has no attributes "
|
|
"(%s .%U)",
|
|
tp->tp_name,
|
|
value==NULL ? "del" : "assign to",
|
|
name);
|
|
else
|
|
PyErr_Format(PyExc_TypeError,
|
|
"'%.100s' object has only read-only attributes "
|
|
"(%s .%U)",
|
|
tp->tp_name,
|
|
value==NULL ? "del" : "assign to",
|
|
name);
|
|
return -1;
|
|
}
|
|
|
|
/* Helper to get a pointer to an object's __dict__ slot, if any */
|
|
|
|
PyObject **
|
|
_PyObject_GetDictPtr(PyObject *obj)
|
|
{
|
|
Py_ssize_t dictoffset;
|
|
PyTypeObject *tp = Py_Type(obj);
|
|
|
|
dictoffset = tp->tp_dictoffset;
|
|
if (dictoffset == 0)
|
|
return NULL;
|
|
if (dictoffset < 0) {
|
|
Py_ssize_t tsize;
|
|
size_t size;
|
|
|
|
tsize = ((PyVarObject *)obj)->ob_size;
|
|
if (tsize < 0)
|
|
tsize = -tsize;
|
|
size = _PyObject_VAR_SIZE(tp, tsize);
|
|
|
|
dictoffset += (long)size;
|
|
assert(dictoffset > 0);
|
|
assert(dictoffset % SIZEOF_VOID_P == 0);
|
|
}
|
|
return (PyObject **) ((char *)obj + dictoffset);
|
|
}
|
|
|
|
PyObject *
|
|
PyObject_SelfIter(PyObject *obj)
|
|
{
|
|
Py_INCREF(obj);
|
|
return obj;
|
|
}
|
|
|
|
/* Generic GetAttr functions - put these in your tp_[gs]etattro slot */
|
|
|
|
PyObject *
|
|
PyObject_GenericGetAttr(PyObject *obj, PyObject *name)
|
|
{
|
|
PyTypeObject *tp = Py_Type(obj);
|
|
PyObject *descr = NULL;
|
|
PyObject *res = NULL;
|
|
descrgetfunc f;
|
|
Py_ssize_t dictoffset;
|
|
PyObject **dictptr;
|
|
|
|
if (!PyUnicode_Check(name)){
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
goto done;
|
|
}
|
|
|
|
/* Inline _PyType_Lookup */
|
|
{
|
|
Py_ssize_t i, n;
|
|
PyObject *mro, *base, *dict;
|
|
|
|
/* Look in tp_dict of types in MRO */
|
|
mro = tp->tp_mro;
|
|
assert(mro != NULL);
|
|
assert(PyTuple_Check(mro));
|
|
n = PyTuple_GET_SIZE(mro);
|
|
for (i = 0; i < n; i++) {
|
|
base = PyTuple_GET_ITEM(mro, i);
|
|
assert(PyType_Check(base));
|
|
dict = ((PyTypeObject *)base)->tp_dict;
|
|
assert(dict && PyDict_Check(dict));
|
|
descr = PyDict_GetItem(dict, name);
|
|
if (descr != NULL)
|
|
break;
|
|
}
|
|
}
|
|
|
|
Py_XINCREF(descr);
|
|
|
|
f = NULL;
|
|
if (descr != NULL) {
|
|
f = descr->ob_type->tp_descr_get;
|
|
if (f != NULL && PyDescr_IsData(descr)) {
|
|
res = f(descr, obj, (PyObject *)obj->ob_type);
|
|
Py_DECREF(descr);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Inline _PyObject_GetDictPtr */
|
|
dictoffset = tp->tp_dictoffset;
|
|
if (dictoffset != 0) {
|
|
PyObject *dict;
|
|
if (dictoffset < 0) {
|
|
Py_ssize_t tsize;
|
|
size_t size;
|
|
|
|
tsize = ((PyVarObject *)obj)->ob_size;
|
|
if (tsize < 0)
|
|
tsize = -tsize;
|
|
size = _PyObject_VAR_SIZE(tp, tsize);
|
|
|
|
dictoffset += (long)size;
|
|
assert(dictoffset > 0);
|
|
assert(dictoffset % SIZEOF_VOID_P == 0);
|
|
}
|
|
dictptr = (PyObject **) ((char *)obj + dictoffset);
|
|
dict = *dictptr;
|
|
if (dict != NULL) {
|
|
res = PyDict_GetItem(dict, name);
|
|
if (res != NULL) {
|
|
Py_INCREF(res);
|
|
Py_XDECREF(descr);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (f != NULL) {
|
|
res = f(descr, obj, (PyObject *)Py_Type(obj));
|
|
Py_DECREF(descr);
|
|
goto done;
|
|
}
|
|
|
|
if (descr != NULL) {
|
|
res = descr;
|
|
/* descr was already increfed above */
|
|
goto done;
|
|
}
|
|
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object has no attribute '%.400s'",
|
|
tp->tp_name, PyUnicode_AsString(name));
|
|
done:
|
|
Py_DECREF(name);
|
|
return res;
|
|
}
|
|
|
|
int
|
|
PyObject_GenericSetAttr(PyObject *obj, PyObject *name, PyObject *value)
|
|
{
|
|
PyTypeObject *tp = Py_Type(obj);
|
|
PyObject *descr;
|
|
descrsetfunc f;
|
|
PyObject **dictptr;
|
|
int res = -1;
|
|
|
|
if (!PyUnicode_Check(name)){
|
|
PyErr_Format(PyExc_TypeError,
|
|
"attribute name must be string, not '%.200s'",
|
|
name->ob_type->tp_name);
|
|
return -1;
|
|
}
|
|
else
|
|
Py_INCREF(name);
|
|
|
|
if (tp->tp_dict == NULL) {
|
|
if (PyType_Ready(tp) < 0)
|
|
goto done;
|
|
}
|
|
|
|
descr = _PyType_Lookup(tp, name);
|
|
f = NULL;
|
|
if (descr != NULL) {
|
|
f = descr->ob_type->tp_descr_set;
|
|
if (f != NULL && PyDescr_IsData(descr)) {
|
|
res = f(descr, obj, value);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
dictptr = _PyObject_GetDictPtr(obj);
|
|
if (dictptr != NULL) {
|
|
PyObject *dict = *dictptr;
|
|
if (dict == NULL && value != NULL) {
|
|
dict = PyDict_New();
|
|
if (dict == NULL)
|
|
goto done;
|
|
*dictptr = dict;
|
|
}
|
|
if (dict != NULL) {
|
|
if (value == NULL)
|
|
res = PyDict_DelItem(dict, name);
|
|
else
|
|
res = PyDict_SetItem(dict, name, value);
|
|
if (res < 0 && PyErr_ExceptionMatches(PyExc_KeyError))
|
|
PyErr_SetObject(PyExc_AttributeError, name);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (f != NULL) {
|
|
res = f(descr, obj, value);
|
|
goto done;
|
|
}
|
|
|
|
if (descr == NULL) {
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.100s' object has no attribute '%U'",
|
|
tp->tp_name, name);
|
|
goto done;
|
|
}
|
|
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object attribute '%U' is read-only",
|
|
tp->tp_name, name);
|
|
done:
|
|
Py_DECREF(name);
|
|
return res;
|
|
}
|
|
|
|
/* Test a value used as condition, e.g., in a for or if statement.
|
|
Return -1 if an error occurred */
|
|
|
|
int
|
|
PyObject_IsTrue(PyObject *v)
|
|
{
|
|
Py_ssize_t res;
|
|
if (v == Py_True)
|
|
return 1;
|
|
if (v == Py_False)
|
|
return 0;
|
|
if (v == Py_None)
|
|
return 0;
|
|
else if (v->ob_type->tp_as_number != NULL &&
|
|
v->ob_type->tp_as_number->nb_bool != NULL)
|
|
res = (*v->ob_type->tp_as_number->nb_bool)(v);
|
|
else if (v->ob_type->tp_as_mapping != NULL &&
|
|
v->ob_type->tp_as_mapping->mp_length != NULL)
|
|
res = (*v->ob_type->tp_as_mapping->mp_length)(v);
|
|
else if (v->ob_type->tp_as_sequence != NULL &&
|
|
v->ob_type->tp_as_sequence->sq_length != NULL)
|
|
res = (*v->ob_type->tp_as_sequence->sq_length)(v);
|
|
else
|
|
return 1;
|
|
/* if it is negative, it should be either -1 or -2 */
|
|
return (res > 0) ? 1 : Py_SAFE_DOWNCAST(res, Py_ssize_t, int);
|
|
}
|
|
|
|
/* equivalent of 'not v'
|
|
Return -1 if an error occurred */
|
|
|
|
int
|
|
PyObject_Not(PyObject *v)
|
|
{
|
|
int res;
|
|
res = PyObject_IsTrue(v);
|
|
if (res < 0)
|
|
return res;
|
|
return res == 0;
|
|
}
|
|
|
|
/* Test whether an object can be called */
|
|
|
|
int
|
|
PyCallable_Check(PyObject *x)
|
|
{
|
|
if (x == NULL)
|
|
return 0;
|
|
return x->ob_type->tp_call != NULL;
|
|
}
|
|
|
|
/* ------------------------- PyObject_Dir() helpers ------------------------- */
|
|
|
|
/* Helper for PyObject_Dir.
|
|
Merge the __dict__ of aclass into dict, and recursively also all
|
|
the __dict__s of aclass's base classes. The order of merging isn't
|
|
defined, as it's expected that only the final set of dict keys is
|
|
interesting.
|
|
Return 0 on success, -1 on error.
|
|
*/
|
|
|
|
static int
|
|
merge_class_dict(PyObject* dict, PyObject* aclass)
|
|
{
|
|
PyObject *classdict;
|
|
PyObject *bases;
|
|
|
|
assert(PyDict_Check(dict));
|
|
assert(aclass);
|
|
|
|
/* Merge in the type's dict (if any). */
|
|
classdict = PyObject_GetAttrString(aclass, "__dict__");
|
|
if (classdict == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
int status = PyDict_Update(dict, classdict);
|
|
Py_DECREF(classdict);
|
|
if (status < 0)
|
|
return -1;
|
|
}
|
|
|
|
/* Recursively merge in the base types' (if any) dicts. */
|
|
bases = PyObject_GetAttrString(aclass, "__bases__");
|
|
if (bases == NULL)
|
|
PyErr_Clear();
|
|
else {
|
|
/* We have no guarantee that bases is a real tuple */
|
|
Py_ssize_t i, n;
|
|
n = PySequence_Size(bases); /* This better be right */
|
|
if (n < 0)
|
|
PyErr_Clear();
|
|
else {
|
|
for (i = 0; i < n; i++) {
|
|
int status;
|
|
PyObject *base = PySequence_GetItem(bases, i);
|
|
if (base == NULL) {
|
|
Py_DECREF(bases);
|
|
return -1;
|
|
}
|
|
status = merge_class_dict(dict, base);
|
|
Py_DECREF(base);
|
|
if (status < 0) {
|
|
Py_DECREF(bases);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
Py_DECREF(bases);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir without arguments: returns the local scope. */
|
|
static PyObject *
|
|
_dir_locals(void)
|
|
{
|
|
PyObject *names;
|
|
PyObject *locals = PyEval_GetLocals();
|
|
|
|
if (locals == NULL) {
|
|
PyErr_SetString(PyExc_SystemError, "frame does not exist");
|
|
return NULL;
|
|
}
|
|
|
|
names = PyMapping_Keys(locals);
|
|
if (!names)
|
|
return NULL;
|
|
if (!PyList_Check(names)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"dir(): expected keys() of locals to be a list, "
|
|
"not '%.200s'", Py_Type(names)->tp_name);
|
|
Py_DECREF(names);
|
|
return NULL;
|
|
}
|
|
/* the locals don't need to be DECREF'd */
|
|
return names;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir of type objects: returns __dict__ and __bases__.
|
|
We deliberately don't suck up its __class__, as methods belonging to the
|
|
metaclass would probably be more confusing than helpful.
|
|
*/
|
|
static PyObject *
|
|
_specialized_dir_type(PyObject *obj)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *dict = PyDict_New();
|
|
|
|
if (dict != NULL && merge_class_dict(dict, obj) == 0)
|
|
result = PyDict_Keys(dict);
|
|
|
|
Py_XDECREF(dict);
|
|
return result;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir of module objects: returns the module's __dict__. */
|
|
static PyObject *
|
|
_specialized_dir_module(PyObject *obj)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *dict = PyObject_GetAttrString(obj, "__dict__");
|
|
|
|
if (dict != NULL) {
|
|
if (PyDict_Check(dict))
|
|
result = PyDict_Keys(dict);
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%.200s.__dict__ is not a dictionary",
|
|
PyModule_GetName(obj));
|
|
}
|
|
}
|
|
|
|
Py_XDECREF(dict);
|
|
return result;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir of generic objects: returns __dict__, __class__,
|
|
and recursively up the __class__.__bases__ chain.
|
|
*/
|
|
static PyObject *
|
|
_generic_dir(PyObject *obj)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *dict = NULL;
|
|
PyObject *itsclass = NULL;
|
|
|
|
/* Get __dict__ (which may or may not be a real dict...) */
|
|
dict = PyObject_GetAttrString(obj, "__dict__");
|
|
if (dict == NULL) {
|
|
PyErr_Clear();
|
|
dict = PyDict_New();
|
|
}
|
|
else if (!PyDict_Check(dict)) {
|
|
Py_DECREF(dict);
|
|
dict = PyDict_New();
|
|
}
|
|
else {
|
|
/* Copy __dict__ to avoid mutating it. */
|
|
PyObject *temp = PyDict_Copy(dict);
|
|
Py_DECREF(dict);
|
|
dict = temp;
|
|
}
|
|
|
|
if (dict == NULL)
|
|
goto error;
|
|
|
|
/* Merge in attrs reachable from its class. */
|
|
itsclass = PyObject_GetAttrString(obj, "__class__");
|
|
if (itsclass == NULL)
|
|
/* XXX(tomer): Perhaps fall back to obj->ob_type if no
|
|
__class__ exists? */
|
|
PyErr_Clear();
|
|
else {
|
|
if (merge_class_dict(dict, itsclass) != 0)
|
|
goto error;
|
|
}
|
|
|
|
result = PyDict_Keys(dict);
|
|
/* fall through */
|
|
error:
|
|
Py_XDECREF(itsclass);
|
|
Py_XDECREF(dict);
|
|
return result;
|
|
}
|
|
|
|
/* Helper for PyObject_Dir: object introspection.
|
|
This calls one of the above specialized versions if no __dir__ method
|
|
exists. */
|
|
static PyObject *
|
|
_dir_object(PyObject *obj)
|
|
{
|
|
PyObject * result = NULL;
|
|
PyObject * dirfunc = PyObject_GetAttrString((PyObject*)obj->ob_type,
|
|
"__dir__");
|
|
|
|
assert(obj);
|
|
if (dirfunc == NULL) {
|
|
/* use default implementation */
|
|
PyErr_Clear();
|
|
if (PyModule_Check(obj))
|
|
result = _specialized_dir_module(obj);
|
|
else if (PyType_Check(obj))
|
|
result = _specialized_dir_type(obj);
|
|
else
|
|
result = _generic_dir(obj);
|
|
}
|
|
else {
|
|
/* use __dir__ */
|
|
result = PyObject_CallFunctionObjArgs(dirfunc, obj, NULL);
|
|
Py_DECREF(dirfunc);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
/* result must be a list */
|
|
/* XXX(gbrandl): could also check if all items are strings */
|
|
if (!PyList_Check(result)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"__dir__() must return a list, not %.200s",
|
|
Py_Type(result)->tp_name);
|
|
Py_DECREF(result);
|
|
result = NULL;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Implementation of dir() -- if obj is NULL, returns the names in the current
|
|
(local) scope. Otherwise, performs introspection of the object: returns a
|
|
sorted list of attribute names (supposedly) accessible from the object
|
|
*/
|
|
PyObject *
|
|
PyObject_Dir(PyObject *obj)
|
|
{
|
|
PyObject * result;
|
|
|
|
if (obj == NULL)
|
|
/* no object -- introspect the locals */
|
|
result = _dir_locals();
|
|
else
|
|
/* object -- introspect the object */
|
|
result = _dir_object(obj);
|
|
|
|
assert(result == NULL || PyList_Check(result));
|
|
|
|
if (result != NULL && PyList_Sort(result) != 0) {
|
|
/* sorting the list failed */
|
|
Py_DECREF(result);
|
|
result = NULL;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
NoObject is usable as a non-NULL undefined value, used by the macro None.
|
|
There is (and should be!) no way to create other objects of this type,
|
|
so there is exactly one (which is indestructible, by the way).
|
|
(XXX This type and the type of NotImplemented below should be unified.)
|
|
*/
|
|
|
|
/* ARGSUSED */
|
|
static PyObject *
|
|
none_repr(PyObject *op)
|
|
{
|
|
return PyUnicode_FromString("None");
|
|
}
|
|
|
|
/* ARGUSED */
|
|
static void
|
|
none_dealloc(PyObject* ignore)
|
|
{
|
|
/* This should never get called, but we also don't want to SEGV if
|
|
* we accidently decref None out of existance.
|
|
*/
|
|
Py_FatalError("deallocating None");
|
|
}
|
|
|
|
|
|
static PyTypeObject PyNone_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"NoneType",
|
|
0,
|
|
0,
|
|
none_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/
|
|
none_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
};
|
|
|
|
PyObject _Py_NoneStruct = {
|
|
_PyObject_EXTRA_INIT
|
|
1, &PyNone_Type
|
|
};
|
|
|
|
/* NotImplemented is an object that can be used to signal that an
|
|
operation is not implemented for the given type combination. */
|
|
|
|
static PyObject *
|
|
NotImplemented_repr(PyObject *op)
|
|
{
|
|
return PyUnicode_FromString("NotImplemented");
|
|
}
|
|
|
|
static PyTypeObject PyNotImplemented_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"NotImplementedType",
|
|
0,
|
|
0,
|
|
none_dealloc, /*tp_dealloc*/ /*never called*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_compare*/
|
|
NotImplemented_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash */
|
|
};
|
|
|
|
PyObject _Py_NotImplementedStruct = {
|
|
_PyObject_EXTRA_INIT
|
|
1, &PyNotImplemented_Type
|
|
};
|
|
|
|
void
|
|
_Py_ReadyTypes(void)
|
|
{
|
|
if (PyType_Ready(&PyType_Type) < 0)
|
|
Py_FatalError("Can't initialize 'type'");
|
|
|
|
if (PyType_Ready(&_PyWeakref_RefType) < 0)
|
|
Py_FatalError("Can't initialize 'weakref'");
|
|
|
|
if (PyType_Ready(&PyBool_Type) < 0)
|
|
Py_FatalError("Can't initialize 'bool'");
|
|
|
|
if (PyType_Ready(&PyBytes_Type) < 0)
|
|
Py_FatalError("Can't initialize 'bytes'");
|
|
|
|
if (PyType_Ready(&PyString_Type) < 0)
|
|
Py_FatalError("Can't initialize 'str'");
|
|
|
|
if (PyType_Ready(&PyList_Type) < 0)
|
|
Py_FatalError("Can't initialize 'list'");
|
|
|
|
if (PyType_Ready(&PyNone_Type) < 0)
|
|
Py_FatalError("Can't initialize type(None)");
|
|
|
|
if (PyType_Ready(Py_Ellipsis->ob_type) < 0)
|
|
Py_FatalError("Can't initialize type(Ellipsis)");
|
|
|
|
if (PyType_Ready(&PyNotImplemented_Type) < 0)
|
|
Py_FatalError("Can't initialize type(NotImplemented)");
|
|
|
|
if (PyType_Ready(&PyCode_Type) < 0)
|
|
Py_FatalError("Can't initialize 'code'");
|
|
|
|
if (PyType_Ready(&PyStdPrinter_Type) < 0)
|
|
Py_FatalError("Can't initialize StdPrinter");
|
|
}
|
|
|
|
|
|
#ifdef Py_TRACE_REFS
|
|
|
|
void
|
|
_Py_NewReference(PyObject *op)
|
|
{
|
|
_Py_INC_REFTOTAL;
|
|
op->ob_refcnt = 1;
|
|
_Py_AddToAllObjects(op, 1);
|
|
_Py_INC_TPALLOCS(op);
|
|
}
|
|
|
|
void
|
|
_Py_ForgetReference(register PyObject *op)
|
|
{
|
|
#ifdef SLOW_UNREF_CHECK
|
|
register PyObject *p;
|
|
#endif
|
|
if (op->ob_refcnt < 0)
|
|
Py_FatalError("UNREF negative refcnt");
|
|
if (op == &refchain ||
|
|
op->_ob_prev->_ob_next != op || op->_ob_next->_ob_prev != op) {
|
|
fprintf(stderr, "* ob\n");
|
|
_PyObject_Dump(op);
|
|
fprintf(stderr, "* op->_ob_prev->_ob_next\n");
|
|
_PyObject_Dump(op->_ob_prev->_ob_next);
|
|
fprintf(stderr, "* op->_ob_next->_ob_prev\n");
|
|
_PyObject_Dump(op->_ob_next->_ob_prev);
|
|
Py_FatalError("UNREF invalid object");
|
|
}
|
|
#ifdef SLOW_UNREF_CHECK
|
|
for (p = refchain._ob_next; p != &refchain; p = p->_ob_next) {
|
|
if (p == op)
|
|
break;
|
|
}
|
|
if (p == &refchain) /* Not found */
|
|
Py_FatalError("UNREF unknown object");
|
|
#endif
|
|
op->_ob_next->_ob_prev = op->_ob_prev;
|
|
op->_ob_prev->_ob_next = op->_ob_next;
|
|
op->_ob_next = op->_ob_prev = NULL;
|
|
_Py_INC_TPFREES(op);
|
|
}
|
|
|
|
void
|
|
_Py_Dealloc(PyObject *op)
|
|
{
|
|
destructor dealloc = Py_Type(op)->tp_dealloc;
|
|
_Py_ForgetReference(op);
|
|
(*dealloc)(op);
|
|
}
|
|
|
|
/* Print all live objects. Because PyObject_Print is called, the
|
|
* interpreter must be in a healthy state.
|
|
*/
|
|
void
|
|
_Py_PrintReferences(FILE *fp)
|
|
{
|
|
PyObject *op;
|
|
fprintf(fp, "Remaining objects:\n");
|
|
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next) {
|
|
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] ", op, op->ob_refcnt);
|
|
if (PyObject_Print(op, fp, 0) != 0)
|
|
PyErr_Clear();
|
|
putc('\n', fp);
|
|
}
|
|
}
|
|
|
|
/* Print the addresses of all live objects. Unlike _Py_PrintReferences, this
|
|
* doesn't make any calls to the Python C API, so is always safe to call.
|
|
*/
|
|
void
|
|
_Py_PrintReferenceAddresses(FILE *fp)
|
|
{
|
|
PyObject *op;
|
|
fprintf(fp, "Remaining object addresses:\n");
|
|
for (op = refchain._ob_next; op != &refchain; op = op->_ob_next)
|
|
fprintf(fp, "%p [%" PY_FORMAT_SIZE_T "d] %s\n", op,
|
|
op->ob_refcnt, Py_Type(op)->tp_name);
|
|
}
|
|
|
|
PyObject *
|
|
_Py_GetObjects(PyObject *self, PyObject *args)
|
|
{
|
|
int i, n;
|
|
PyObject *t = NULL;
|
|
PyObject *res, *op;
|
|
|
|
if (!PyArg_ParseTuple(args, "i|O", &n, &t))
|
|
return NULL;
|
|
op = refchain._ob_next;
|
|
res = PyList_New(0);
|
|
if (res == NULL)
|
|
return NULL;
|
|
for (i = 0; (n == 0 || i < n) && op != &refchain; i++) {
|
|
while (op == self || op == args || op == res || op == t ||
|
|
(t != NULL && Py_Type(op) != (PyTypeObject *) t)) {
|
|
op = op->_ob_next;
|
|
if (op == &refchain)
|
|
return res;
|
|
}
|
|
if (PyList_Append(res, op) < 0) {
|
|
Py_DECREF(res);
|
|
return NULL;
|
|
}
|
|
op = op->_ob_next;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/* Hack to force loading of cobject.o */
|
|
PyTypeObject *_Py_cobject_hack = &PyCObject_Type;
|
|
|
|
|
|
/* Hack to force loading of abstract.o */
|
|
Py_ssize_t (*_Py_abstract_hack)(PyObject *) = PyObject_Size;
|
|
|
|
|
|
/* Python's malloc wrappers (see pymem.h) */
|
|
|
|
void *
|
|
PyMem_Malloc(size_t nbytes)
|
|
{
|
|
return PyMem_MALLOC(nbytes);
|
|
}
|
|
|
|
void *
|
|
PyMem_Realloc(void *p, size_t nbytes)
|
|
{
|
|
return PyMem_REALLOC(p, nbytes);
|
|
}
|
|
|
|
void
|
|
PyMem_Free(void *p)
|
|
{
|
|
PyMem_FREE(p);
|
|
}
|
|
|
|
|
|
/* These methods are used to control infinite recursion in repr, str, print,
|
|
etc. Container objects that may recursively contain themselves,
|
|
e.g. builtin dictionaries and lists, should used Py_ReprEnter() and
|
|
Py_ReprLeave() to avoid infinite recursion.
|
|
|
|
Py_ReprEnter() returns 0 the first time it is called for a particular
|
|
object and 1 every time thereafter. It returns -1 if an exception
|
|
occurred. Py_ReprLeave() has no return value.
|
|
|
|
See dictobject.c and listobject.c for examples of use.
|
|
*/
|
|
|
|
#define KEY "Py_Repr"
|
|
|
|
int
|
|
Py_ReprEnter(PyObject *obj)
|
|
{
|
|
PyObject *dict;
|
|
PyObject *list;
|
|
Py_ssize_t i;
|
|
|
|
dict = PyThreadState_GetDict();
|
|
if (dict == NULL)
|
|
return 0;
|
|
list = PyDict_GetItemString(dict, KEY);
|
|
if (list == NULL) {
|
|
list = PyList_New(0);
|
|
if (list == NULL)
|
|
return -1;
|
|
if (PyDict_SetItemString(dict, KEY, list) < 0)
|
|
return -1;
|
|
Py_DECREF(list);
|
|
}
|
|
i = PyList_GET_SIZE(list);
|
|
while (--i >= 0) {
|
|
if (PyList_GET_ITEM(list, i) == obj)
|
|
return 1;
|
|
}
|
|
PyList_Append(list, obj);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
Py_ReprLeave(PyObject *obj)
|
|
{
|
|
PyObject *dict;
|
|
PyObject *list;
|
|
Py_ssize_t i;
|
|
|
|
dict = PyThreadState_GetDict();
|
|
if (dict == NULL)
|
|
return;
|
|
list = PyDict_GetItemString(dict, KEY);
|
|
if (list == NULL || !PyList_Check(list))
|
|
return;
|
|
i = PyList_GET_SIZE(list);
|
|
/* Count backwards because we always expect obj to be list[-1] */
|
|
while (--i >= 0) {
|
|
if (PyList_GET_ITEM(list, i) == obj) {
|
|
PyList_SetSlice(list, i, i + 1, NULL);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Trashcan support. */
|
|
|
|
/* Current call-stack depth of tp_dealloc calls. */
|
|
int _PyTrash_delete_nesting = 0;
|
|
|
|
/* List of objects that still need to be cleaned up, singly linked via their
|
|
* gc headers' gc_prev pointers.
|
|
*/
|
|
PyObject *_PyTrash_delete_later = NULL;
|
|
|
|
/* Add op to the _PyTrash_delete_later list. Called when the current
|
|
* call-stack depth gets large. op must be a currently untracked gc'ed
|
|
* object, with refcount 0. Py_DECREF must already have been called on it.
|
|
*/
|
|
void
|
|
_PyTrash_deposit_object(PyObject *op)
|
|
{
|
|
assert(PyObject_IS_GC(op));
|
|
assert(_Py_AS_GC(op)->gc.gc_refs == _PyGC_REFS_UNTRACKED);
|
|
assert(op->ob_refcnt == 0);
|
|
_Py_AS_GC(op)->gc.gc_prev = (PyGC_Head *)_PyTrash_delete_later;
|
|
_PyTrash_delete_later = op;
|
|
}
|
|
|
|
/* Dealloccate all the objects in the _PyTrash_delete_later list. Called when
|
|
* the call-stack unwinds again.
|
|
*/
|
|
void
|
|
_PyTrash_destroy_chain(void)
|
|
{
|
|
while (_PyTrash_delete_later) {
|
|
PyObject *op = _PyTrash_delete_later;
|
|
destructor dealloc = Py_Type(op)->tp_dealloc;
|
|
|
|
_PyTrash_delete_later =
|
|
(PyObject*) _Py_AS_GC(op)->gc.gc_prev;
|
|
|
|
/* Call the deallocator directly. This used to try to
|
|
* fool Py_DECREF into calling it indirectly, but
|
|
* Py_DECREF was already called on this object, and in
|
|
* assorted non-release builds calling Py_DECREF again ends
|
|
* up distorting allocation statistics.
|
|
*/
|
|
assert(op->ob_refcnt == 0);
|
|
++_PyTrash_delete_nesting;
|
|
(*dealloc)(op);
|
|
--_PyTrash_delete_nesting;
|
|
}
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|