cpython/Lib/threading.py
Guido van Rossum d06489945f Get rid of all __private variables and methods in the threading module.
These have mostly just gotten in the way of legitimate unanticipated use.
2007-08-20 19:25:41 +00:00

848 lines
27 KiB
Python

"""Thread module emulating a subset of Java's threading model."""
import sys as _sys
try:
import thread
except ImportError:
del _sys.modules[__name__]
raise
from time import time as _time, sleep as _sleep
from traceback import format_exc as _format_exc
from collections import deque
# Rename some stuff so "from threading import *" is safe
__all__ = ['activeCount', 'Condition', 'currentThread', 'enumerate', 'Event',
'Lock', 'RLock', 'Semaphore', 'BoundedSemaphore', 'Thread',
'Timer', 'setprofile', 'settrace', 'local', 'stack_size']
_start_new_thread = thread.start_new_thread
_allocate_lock = thread.allocate_lock
_get_ident = thread.get_ident
ThreadError = thread.error
del thread
# Debug support (adapted from ihooks.py).
# All the major classes here derive from _Verbose. We force that to
# be a new-style class so that all the major classes here are new-style.
# This helps debugging (type(instance) is more revealing for instances
# of new-style classes).
_VERBOSE = False
if __debug__:
class _Verbose(object):
def __init__(self, verbose=None):
if verbose is None:
verbose = _VERBOSE
self._verbose = verbose
def _note(self, format, *args):
if self._verbose:
format = format % args
format = "%s: %s\n" % (
currentThread().getName(), format)
_sys.stderr.write(format)
else:
# Disable this when using "python -O"
class _Verbose(object):
def __init__(self, verbose=None):
pass
def _note(self, *args):
pass
# Support for profile and trace hooks
_profile_hook = None
_trace_hook = None
def setprofile(func):
global _profile_hook
_profile_hook = func
def settrace(func):
global _trace_hook
_trace_hook = func
# Synchronization classes
Lock = _allocate_lock
def RLock(*args, **kwargs):
return _RLock(*args, **kwargs)
class _RLock(_Verbose):
def __init__(self, verbose=None):
_Verbose.__init__(self, verbose)
self._block = _allocate_lock()
self._owner = None
self._count = 0
def __repr__(self):
owner = self._owner
return "<%s(%s, %d)>" % (
self.__class__.__name__,
owner and owner.getName(),
self._count)
def acquire(self, blocking=1):
me = currentThread()
if self._owner is me:
self._count = self._count + 1
if __debug__:
self._note("%s.acquire(%s): recursive success", self, blocking)
return 1
rc = self._block.acquire(blocking)
if rc:
self._owner = me
self._count = 1
if __debug__:
self._note("%s.acquire(%s): initial success", self, blocking)
else:
if __debug__:
self._note("%s.acquire(%s): failure", self, blocking)
return rc
__enter__ = acquire
def release(self):
if self._owner is not currentThread():
raise RuntimeError("cannot release un-aquired lock")
self._count = count = self._count - 1
if not count:
self._owner = None
self._block.release()
if __debug__:
self._note("%s.release(): final release", self)
else:
if __debug__:
self._note("%s.release(): non-final release", self)
def __exit__(self, t, v, tb):
self.release()
# Internal methods used by condition variables
def _acquire_restore(self, state):
self._block.acquire()
self._count, self._owner = state
if __debug__:
self._note("%s._acquire_restore()", self)
def _release_save(self):
if __debug__:
self._note("%s._release_save()", self)
count = self._count
self._count = 0
owner = self._owner
self._owner = None
self._block.release()
return (count, owner)
def _is_owned(self):
return self._owner is currentThread()
def Condition(*args, **kwargs):
return _Condition(*args, **kwargs)
class _Condition(_Verbose):
def __init__(self, lock=None, verbose=None):
_Verbose.__init__(self, verbose)
if lock is None:
lock = RLock()
self._lock = lock
# Export the lock's acquire() and release() methods
self.acquire = lock.acquire
self.release = lock.release
# If the lock defines _release_save() and/or _acquire_restore(),
# these override the default implementations (which just call
# release() and acquire() on the lock). Ditto for _is_owned().
try:
self._release_save = lock._release_save
except AttributeError:
pass
try:
self._acquire_restore = lock._acquire_restore
except AttributeError:
pass
try:
self._is_owned = lock._is_owned
except AttributeError:
pass
self._waiters = []
def __enter__(self):
return self._lock.__enter__()
def __exit__(self, *args):
return self._lock.__exit__(*args)
def __repr__(self):
return "<Condition(%s, %d)>" % (self._lock, len(self._waiters))
def _release_save(self):
self._lock.release() # No state to save
def _acquire_restore(self, x):
self._lock.acquire() # Ignore saved state
def _is_owned(self):
# Return True if lock is owned by currentThread.
# This method is called only if __lock doesn't have _is_owned().
if self._lock.acquire(0):
self._lock.release()
return False
else:
return True
def wait(self, timeout=None):
if not self._is_owned():
raise RuntimeError("cannot wait on un-aquired lock")
waiter = _allocate_lock()
waiter.acquire()
self._waiters.append(waiter)
saved_state = self._release_save()
try: # restore state no matter what (e.g., KeyboardInterrupt)
if timeout is None:
waiter.acquire()
if __debug__:
self._note("%s.wait(): got it", self)
else:
# Balancing act: We can't afford a pure busy loop, so we
# have to sleep; but if we sleep the whole timeout time,
# we'll be unresponsive. The scheme here sleeps very
# little at first, longer as time goes on, but never longer
# than 20 times per second (or the timeout time remaining).
endtime = _time() + timeout
delay = 0.0005 # 500 us -> initial delay of 1 ms
while True:
gotit = waiter.acquire(0)
if gotit:
break
remaining = endtime - _time()
if remaining <= 0:
break
delay = min(delay * 2, remaining, .05)
_sleep(delay)
if not gotit:
if __debug__:
self._note("%s.wait(%s): timed out", self, timeout)
try:
self._waiters.remove(waiter)
except ValueError:
pass
else:
if __debug__:
self._note("%s.wait(%s): got it", self, timeout)
finally:
self._acquire_restore(saved_state)
def notify(self, n=1):
if not self._is_owned():
raise RuntimeError("cannot notify on un-aquired lock")
__waiters = self._waiters
waiters = __waiters[:n]
if not waiters:
if __debug__:
self._note("%s.notify(): no waiters", self)
return
self._note("%s.notify(): notifying %d waiter%s", self, n,
n!=1 and "s" or "")
for waiter in waiters:
waiter.release()
try:
__waiters.remove(waiter)
except ValueError:
pass
def notifyAll(self):
self.notify(len(self._waiters))
def Semaphore(*args, **kwargs):
return _Semaphore(*args, **kwargs)
class _Semaphore(_Verbose):
# After Tim Peters' semaphore class, but not quite the same (no maximum)
def __init__(self, value=1, verbose=None):
if value < 0:
raise ValueError("semaphore initial value must be >= 0")
_Verbose.__init__(self, verbose)
self._cond = Condition(Lock())
self._value = value
def acquire(self, blocking=1):
rc = False
self._cond.acquire()
while self._value == 0:
if not blocking:
break
if __debug__:
self._note("%s.acquire(%s): blocked waiting, value=%s",
self, blocking, self._value)
self._cond.wait()
else:
self._value = self._value - 1
if __debug__:
self._note("%s.acquire: success, value=%s",
self, self._value)
rc = True
self._cond.release()
return rc
__enter__ = acquire
def release(self):
self._cond.acquire()
self._value = self._value + 1
if __debug__:
self._note("%s.release: success, value=%s",
self, self._value)
self._cond.notify()
self._cond.release()
def __exit__(self, t, v, tb):
self.release()
def BoundedSemaphore(*args, **kwargs):
return _BoundedSemaphore(*args, **kwargs)
class _BoundedSemaphore(_Semaphore):
"""Semaphore that checks that # releases is <= # acquires"""
def __init__(self, value=1, verbose=None):
_Semaphore.__init__(self, value, verbose)
self._initial_value = value
def release(self):
if self._value >= self._initial_value:
raise ValueError, "Semaphore released too many times"
return _Semaphore.release(self)
def Event(*args, **kwargs):
return _Event(*args, **kwargs)
class _Event(_Verbose):
# After Tim Peters' event class (without is_posted())
def __init__(self, verbose=None):
_Verbose.__init__(self, verbose)
self._cond = Condition(Lock())
self._flag = False
def isSet(self):
return self._flag
def set(self):
self._cond.acquire()
try:
self._flag = True
self._cond.notifyAll()
finally:
self._cond.release()
def clear(self):
self._cond.acquire()
try:
self._flag = False
finally:
self._cond.release()
def wait(self, timeout=None):
self._cond.acquire()
try:
if not self._flag:
self._cond.wait(timeout)
finally:
self._cond.release()
# Helper to generate new thread names
_counter = 0
def _newname(template="Thread-%d"):
global _counter
_counter = _counter + 1
return template % _counter
# Active thread administration
_active_limbo_lock = _allocate_lock()
_active = {} # maps thread id to Thread object
_limbo = {}
# Main class for threads
class Thread(_Verbose):
__initialized = False
# Need to store a reference to sys.exc_info for printing
# out exceptions when a thread tries to use a global var. during interp.
# shutdown and thus raises an exception about trying to perform some
# operation on/with a NoneType
__exc_info = _sys.exc_info
def __init__(self, group=None, target=None, name=None,
args=(), kwargs=None, verbose=None):
assert group is None, "group argument must be None for now"
_Verbose.__init__(self, verbose)
if kwargs is None:
kwargs = {}
self._target = target
self._name = str(name or _newname())
self._args = args
self._kwargs = kwargs
self._daemonic = self._set_daemon()
self._started = False
self._stopped = False
self._block = Condition(Lock())
self._initialized = True
# sys.stderr is not stored in the class like
# sys.exc_info since it can be changed between instances
self._stderr = _sys.stderr
def _set_daemon(self):
# Overridden in _MainThread and _DummyThread
return currentThread().isDaemon()
def __repr__(self):
assert self._initialized, "Thread.__init__() was not called"
status = "initial"
if self._started:
status = "started"
if self._stopped:
status = "stopped"
if self._daemonic:
status = status + " daemon"
return "<%s(%s, %s)>" % (self.__class__.__name__, self._name, status)
def start(self):
if not self._initialized:
raise RuntimeError("thread.__init__() not called")
if self._started:
raise RuntimeError("thread already started")
if __debug__:
self._note("%s.start(): starting thread", self)
_active_limbo_lock.acquire()
_limbo[self] = self
_active_limbo_lock.release()
_start_new_thread(self._bootstrap, ())
self._started = True
_sleep(0.000001) # 1 usec, to let the thread run (Solaris hack)
def run(self):
if self._target:
self._target(*self._args, **self._kwargs)
def _bootstrap(self):
# Wrapper around the real bootstrap code that ignores
# exceptions during interpreter cleanup. Those typically
# happen when a daemon thread wakes up at an unfortunate
# moment, finds the world around it destroyed, and raises some
# random exception *** while trying to report the exception in
# __bootstrap_inner() below ***. Those random exceptions
# don't help anybody, and they confuse users, so we suppress
# them. We suppress them only when it appears that the world
# indeed has already been destroyed, so that exceptions in
# __bootstrap_inner() during normal business hours are properly
# reported. Also, we only suppress them for daemonic threads;
# if a non-daemonic encounters this, something else is wrong.
try:
self._bootstrap_inner()
except:
if self._daemonic and _sys is None:
return
raise
def _bootstrap_inner(self):
try:
self._started = True
_active_limbo_lock.acquire()
_active[_get_ident()] = self
del _limbo[self]
_active_limbo_lock.release()
if __debug__:
self._note("%s.__bootstrap(): thread started", self)
if _trace_hook:
self._note("%s.__bootstrap(): registering trace hook", self)
_sys.settrace(_trace_hook)
if _profile_hook:
self._note("%s.__bootstrap(): registering profile hook", self)
_sys.setprofile(_profile_hook)
try:
self.run()
except SystemExit:
if __debug__:
self._note("%s.__bootstrap(): raised SystemExit", self)
except:
if __debug__:
self._note("%s.__bootstrap(): unhandled exception", self)
# If sys.stderr is no more (most likely from interpreter
# shutdown) use self._stderr. Otherwise still use sys (as in
# _sys) in case sys.stderr was redefined since the creation of
# self.
if _sys:
_sys.stderr.write("Exception in thread %s:\n%s\n" %
(self.getName(), _format_exc()))
else:
# Do the best job possible w/o a huge amt. of code to
# approximate a traceback (code ideas from
# Lib/traceback.py)
exc_type, exc_value, exc_tb = self._exc_info()
try:
print((
"Exception in thread " + self.getName() +
" (most likely raised during interpreter shutdown):"), file=self._stderr)
print((
"Traceback (most recent call last):"), file=self._stderr)
while exc_tb:
print((
' File "%s", line %s, in %s' %
(exc_tb.tb_frame.f_code.co_filename,
exc_tb.tb_lineno,
exc_tb.tb_frame.f_code.co_name)), file=self._stderr)
exc_tb = exc_tb.tb_next
print(("%s: %s" % (exc_type, exc_value)), file=self._stderr)
# Make sure that exc_tb gets deleted since it is a memory
# hog; deleting everything else is just for thoroughness
finally:
del exc_type, exc_value, exc_tb
else:
if __debug__:
self._note("%s.__bootstrap(): normal return", self)
finally:
self._stop()
try:
self._delete()
except:
pass
def _stop(self):
self._block.acquire()
self._stopped = True
self._block.notifyAll()
self._block.release()
def _delete(self):
"Remove current thread from the dict of currently running threads."
# Notes about running with dummy_thread:
#
# Must take care to not raise an exception if dummy_thread is being
# used (and thus this module is being used as an instance of
# dummy_threading). dummy_thread.get_ident() always returns -1 since
# there is only one thread if dummy_thread is being used. Thus
# len(_active) is always <= 1 here, and any Thread instance created
# overwrites the (if any) thread currently registered in _active.
#
# An instance of _MainThread is always created by 'threading'. This
# gets overwritten the instant an instance of Thread is created; both
# threads return -1 from dummy_thread.get_ident() and thus have the
# same key in the dict. So when the _MainThread instance created by
# 'threading' tries to clean itself up when atexit calls this method
# it gets a KeyError if another Thread instance was created.
#
# This all means that KeyError from trying to delete something from
# _active if dummy_threading is being used is a red herring. But
# since it isn't if dummy_threading is *not* being used then don't
# hide the exception.
_active_limbo_lock.acquire()
try:
try:
del _active[_get_ident()]
except KeyError:
if 'dummy_threading' not in _sys.modules:
raise
finally:
_active_limbo_lock.release()
def join(self, timeout=None):
if not self._initialized:
raise RuntimeError("Thread.__init__() not called")
if not self._started:
raise RuntimeError("cannot join thread before it is started")
if self is currentThread():
raise RuntimeError("cannot join current thread")
if __debug__:
if not self._stopped:
self._note("%s.join(): waiting until thread stops", self)
self._block.acquire()
try:
if timeout is None:
while not self._stopped:
self._block.wait()
if __debug__:
self._note("%s.join(): thread stopped", self)
else:
deadline = _time() + timeout
while not self._stopped:
delay = deadline - _time()
if delay <= 0:
if __debug__:
self._note("%s.join(): timed out", self)
break
self._block.wait(delay)
else:
if __debug__:
self._note("%s.join(): thread stopped", self)
finally:
self._block.release()
def getName(self):
assert self._initialized, "Thread.__init__() not called"
return self._name
def setName(self, name):
assert self._initialized, "Thread.__init__() not called"
self._name = str(name)
def isAlive(self):
assert self._initialized, "Thread.__init__() not called"
return self._started and not self._stopped
def isDaemon(self):
assert self._initialized, "Thread.__init__() not called"
return self._daemonic
def setDaemon(self, daemonic):
if not self._initialized:
raise RuntimeError("Thread.__init__() not called")
if self._started:
raise RuntimeError("cannot set daemon status of active thread");
self._daemonic = daemonic
# The timer class was contributed by Itamar Shtull-Trauring
def Timer(*args, **kwargs):
return _Timer(*args, **kwargs)
class _Timer(Thread):
"""Call a function after a specified number of seconds:
t = Timer(30.0, f, args=[], kwargs={})
t.start()
t.cancel() # stop the timer's action if it's still waiting
"""
def __init__(self, interval, function, args=[], kwargs={}):
Thread.__init__(self)
self.interval = interval
self.function = function
self.args = args
self.kwargs = kwargs
self.finished = Event()
def cancel(self):
"""Stop the timer if it hasn't finished yet"""
self.finished.set()
def run(self):
self.finished.wait(self.interval)
if not self.finished.isSet():
self.function(*self.args, **self.kwargs)
self.finished.set()
# Special thread class to represent the main thread
# This is garbage collected through an exit handler
class _MainThread(Thread):
def __init__(self):
Thread.__init__(self, name="MainThread")
self._started = True
_active_limbo_lock.acquire()
_active[_get_ident()] = self
_active_limbo_lock.release()
def _set_daemon(self):
return False
def _exitfunc(self):
self._stop()
t = _pickSomeNonDaemonThread()
if t:
if __debug__:
self._note("%s: waiting for other threads", self)
while t:
t.join()
t = _pickSomeNonDaemonThread()
if __debug__:
self._note("%s: exiting", self)
self._delete()
def _pickSomeNonDaemonThread():
for t in enumerate():
if not t.isDaemon() and t.isAlive():
return t
return None
# Dummy thread class to represent threads not started here.
# These aren't garbage collected when they die, nor can they be waited for.
# If they invoke anything in threading.py that calls currentThread(), they
# leave an entry in the _active dict forever after.
# Their purpose is to return *something* from currentThread().
# They are marked as daemon threads so we won't wait for them
# when we exit (conform previous semantics).
class _DummyThread(Thread):
def __init__(self):
Thread.__init__(self, name=_newname("Dummy-%d"))
# Thread.__block consumes an OS-level locking primitive, which
# can never be used by a _DummyThread. Since a _DummyThread
# instance is immortal, that's bad, so release this resource.
del self._block
self._started = True
_active_limbo_lock.acquire()
_active[_get_ident()] = self
_active_limbo_lock.release()
def _set_daemon(self):
return True
def join(self, timeout=None):
assert False, "cannot join a dummy thread"
# Global API functions
def currentThread():
try:
return _active[_get_ident()]
except KeyError:
##print "currentThread(): no current thread for", _get_ident()
return _DummyThread()
def activeCount():
_active_limbo_lock.acquire()
count = len(_active) + len(_limbo)
_active_limbo_lock.release()
return count
def enumerate():
_active_limbo_lock.acquire()
active = list(_active.values()) + list(_limbo.values())
_active_limbo_lock.release()
return active
from thread import stack_size
# Create the main thread object,
# and make it available for the interpreter
# (Py_Main) as threading._shutdown.
_shutdown = _MainThread()._exitfunc
# get thread-local implementation, either from the thread
# module, or from the python fallback
try:
from thread import _local as local
except ImportError:
from _threading_local import local
# Self-test code
def _test():
class BoundedQueue(_Verbose):
def __init__(self, limit):
_Verbose.__init__(self)
self.mon = RLock()
self.rc = Condition(self.mon)
self.wc = Condition(self.mon)
self.limit = limit
self.queue = deque()
def put(self, item):
self.mon.acquire()
while len(self.queue) >= self.limit:
self._note("put(%s): queue full", item)
self.wc.wait()
self.queue.append(item)
self._note("put(%s): appended, length now %d",
item, len(self.queue))
self.rc.notify()
self.mon.release()
def get(self):
self.mon.acquire()
while not self.queue:
self._note("get(): queue empty")
self.rc.wait()
item = self.queue.popleft()
self._note("get(): got %s, %d left", item, len(self.queue))
self.wc.notify()
self.mon.release()
return item
class ProducerThread(Thread):
def __init__(self, queue, quota):
Thread.__init__(self, name="Producer")
self.queue = queue
self.quota = quota
def run(self):
from random import random
counter = 0
while counter < self.quota:
counter = counter + 1
self.queue.put("%s.%d" % (self.getName(), counter))
_sleep(random() * 0.00001)
class ConsumerThread(Thread):
def __init__(self, queue, count):
Thread.__init__(self, name="Consumer")
self.queue = queue
self.count = count
def run(self):
while self.count > 0:
item = self.queue.get()
print(item)
self.count = self.count - 1
NP = 3
QL = 4
NI = 5
Q = BoundedQueue(QL)
P = []
for i in range(NP):
t = ProducerThread(Q, NI)
t.setName("Producer-%d" % (i+1))
P.append(t)
C = ConsumerThread(Q, NI*NP)
for t in P:
t.start()
_sleep(0.000001)
C.start()
for t in P:
t.join()
C.join()
if __name__ == '__main__':
_test()