mirror of
https://github.com/python/cpython.git
synced 2024-12-05 07:43:50 +08:00
135ec7cefb
Fix potential race condition in code patterns: * Replace "Py_DECREF(var); var = new;" with "Py_SETREF(var, new);" * Replace "Py_XDECREF(var); var = new;" with "Py_XSETREF(var, new);" * Replace "Py_CLEAR(var); var = new;" with "Py_XSETREF(var, new);" Other changes: * Replace "old = var; var = new; Py_DECREF(var)" with "Py_SETREF(var, new);" * Replace "old = var; var = new; Py_XDECREF(var)" with "Py_XSETREF(var, new);" * And remove the "old" variable.
2895 lines
77 KiB
C
2895 lines
77 KiB
C
#include "Python.h"
|
|
|
|
#include "pycore_bitutils.h" // _Py_popcount32
|
|
#include "pycore_hamt.h"
|
|
#include "pycore_initconfig.h" // _PyStatus_OK()
|
|
#include "pycore_object.h" // _PyObject_GC_TRACK()
|
|
#include <stddef.h> // offsetof()
|
|
|
|
/*
|
|
This file provides an implementation of an immutable mapping using the
|
|
Hash Array Mapped Trie (or HAMT) datastructure.
|
|
|
|
This design allows to have:
|
|
|
|
1. Efficient copy: immutable mappings can be copied by reference,
|
|
making it an O(1) operation.
|
|
|
|
2. Efficient mutations: due to structural sharing, only a portion of
|
|
the trie needs to be copied when the collection is mutated. The
|
|
cost of set/delete operations is O(log N).
|
|
|
|
3. Efficient lookups: O(log N).
|
|
|
|
(where N is number of key/value items in the immutable mapping.)
|
|
|
|
|
|
HAMT
|
|
====
|
|
|
|
The core idea of HAMT is that the shape of the trie is encoded into the
|
|
hashes of keys.
|
|
|
|
Say we want to store a K/V pair in our mapping. First, we calculate the
|
|
hash of K, let's say it's 19830128, or in binary:
|
|
|
|
0b1001011101001010101110000 = 19830128
|
|
|
|
Now let's partition this bit representation of the hash into blocks of
|
|
5 bits each:
|
|
|
|
0b00_00000_10010_11101_00101_01011_10000 = 19830128
|
|
(6) (5) (4) (3) (2) (1)
|
|
|
|
Each block of 5 bits represents a number between 0 and 31. So if we have
|
|
a tree that consists of nodes, each of which is an array of 32 pointers,
|
|
those 5-bit blocks will encode a position on a single tree level.
|
|
|
|
For example, storing the key K with hash 19830128, results in the following
|
|
tree structure:
|
|
|
|
(array of 32 pointers)
|
|
+---+ -- +----+----+----+ -- +----+
|
|
root node | 0 | .. | 15 | 16 | 17 | .. | 31 | 0b10000 = 16 (1)
|
|
(level 1) +---+ -- +----+----+----+ -- +----+
|
|
|
|
|
+---+ -- +----+----+----+ -- +----+
|
|
a 2nd level node | 0 | .. | 10 | 11 | 12 | .. | 31 | 0b01011 = 11 (2)
|
|
+---+ -- +----+----+----+ -- +----+
|
|
|
|
|
+---+ -- +----+----+----+ -- +----+
|
|
a 3rd level node | 0 | .. | 04 | 05 | 06 | .. | 31 | 0b00101 = 5 (3)
|
|
+---+ -- +----+----+----+ -- +----+
|
|
|
|
|
+---+ -- +----+----+----+----+
|
|
a 4th level node | 0 | .. | 04 | 29 | 30 | 31 | 0b11101 = 29 (4)
|
|
+---+ -- +----+----+----+----+
|
|
|
|
|
+---+ -- +----+----+----+ -- +----+
|
|
a 5th level node | 0 | .. | 17 | 18 | 19 | .. | 31 | 0b10010 = 18 (5)
|
|
+---+ -- +----+----+----+ -- +----+
|
|
|
|
|
+--------------+
|
|
|
|
|
+---+ -- +----+----+----+ -- +----+
|
|
a 6th level node | 0 | .. | 15 | 16 | 17 | .. | 31 | 0b00000 = 0 (6)
|
|
+---+ -- +----+----+----+ -- +----+
|
|
|
|
|
V -- our value (or collision)
|
|
|
|
To rehash: for a K/V pair, the hash of K encodes where in the tree V will
|
|
be stored.
|
|
|
|
To optimize memory footprint and handle hash collisions, our implementation
|
|
uses three different types of nodes:
|
|
|
|
* A Bitmap node;
|
|
* An Array node;
|
|
* A Collision node.
|
|
|
|
Because we implement an immutable dictionary, our nodes are also
|
|
immutable. Therefore, when we need to modify a node, we copy it, and
|
|
do that modification to the copy.
|
|
|
|
|
|
Array Nodes
|
|
-----------
|
|
|
|
These nodes are very simple. Essentially they are arrays of 32 pointers
|
|
we used to illustrate the high-level idea in the previous section.
|
|
|
|
We use Array nodes only when we need to store more than 16 pointers
|
|
in a single node.
|
|
|
|
Array nodes do not store key objects or value objects. They are used
|
|
only as an indirection level - their pointers point to other nodes in
|
|
the tree.
|
|
|
|
|
|
Bitmap Node
|
|
-----------
|
|
|
|
Allocating a new 32-pointers array for every node of our tree would be
|
|
very expensive. Unless we store millions of keys, most of tree nodes would
|
|
be very sparse.
|
|
|
|
When we have less than 16 elements in a node, we don't want to use the
|
|
Array node, that would mean that we waste a lot of memory. Instead,
|
|
we can use bitmap compression and can have just as many pointers
|
|
as we need!
|
|
|
|
Bitmap nodes consist of two fields:
|
|
|
|
1. An array of pointers. If a Bitmap node holds N elements, the
|
|
array will be of N pointers.
|
|
|
|
2. A 32bit integer -- a bitmap field. If an N-th bit is set in the
|
|
bitmap, it means that the node has an N-th element.
|
|
|
|
For example, say we need to store a 3 elements sparse array:
|
|
|
|
+---+ -- +---+ -- +----+ -- +----+
|
|
| 0 | .. | 4 | .. | 11 | .. | 17 |
|
|
+---+ -- +---+ -- +----+ -- +----+
|
|
| | |
|
|
o1 o2 o3
|
|
|
|
We allocate a three-pointer Bitmap node. Its bitmap field will be
|
|
then set to:
|
|
|
|
0b_00100_00010_00000_10000 == (1 << 17) | (1 << 11) | (1 << 4)
|
|
|
|
To check if our Bitmap node has an I-th element we can do:
|
|
|
|
bitmap & (1 << I)
|
|
|
|
|
|
And here's a formula to calculate a position in our pointer array
|
|
which would correspond to an I-th element:
|
|
|
|
popcount(bitmap & ((1 << I) - 1))
|
|
|
|
|
|
Let's break it down:
|
|
|
|
* `popcount` is a function that returns a number of bits set to 1;
|
|
|
|
* `((1 << I) - 1)` is a mask to filter the bitmask to contain bits
|
|
set to the *right* of our bit.
|
|
|
|
|
|
So for our 17, 11, and 4 indexes:
|
|
|
|
* bitmap & ((1 << 17) - 1) == 0b100000010000 => 2 bits are set => index is 2.
|
|
|
|
* bitmap & ((1 << 11) - 1) == 0b10000 => 1 bit is set => index is 1.
|
|
|
|
* bitmap & ((1 << 4) - 1) == 0b0 => 0 bits are set => index is 0.
|
|
|
|
|
|
To conclude: Bitmap nodes are just like Array nodes -- they can store
|
|
a number of pointers, but use bitmap compression to eliminate unused
|
|
pointers.
|
|
|
|
|
|
Bitmap nodes have two pointers for each item:
|
|
|
|
+----+----+----+----+ -- +----+----+
|
|
| k1 | v1 | k2 | v2 | .. | kN | vN |
|
|
+----+----+----+----+ -- +----+----+
|
|
|
|
When kI == NULL, vI points to another tree level.
|
|
|
|
When kI != NULL, the actual key object is stored in kI, and its
|
|
value is stored in vI.
|
|
|
|
|
|
Collision Nodes
|
|
---------------
|
|
|
|
Collision nodes are simple arrays of pointers -- two pointers per
|
|
key/value. When there's a hash collision, say for k1/v1 and k2/v2
|
|
we have `hash(k1)==hash(k2)`. Then our collision node will be:
|
|
|
|
+----+----+----+----+
|
|
| k1 | v1 | k2 | v2 |
|
|
+----+----+----+----+
|
|
|
|
|
|
Tree Structure
|
|
--------------
|
|
|
|
All nodes are PyObjects.
|
|
|
|
The `PyHamtObject` object has a pointer to the root node (h_root),
|
|
and has a length field (h_count).
|
|
|
|
High-level functions accept a PyHamtObject object and dispatch to
|
|
lower-level functions depending on what kind of node h_root points to.
|
|
|
|
|
|
Operations
|
|
==========
|
|
|
|
There are three fundamental operations on an immutable dictionary:
|
|
|
|
1. "o.assoc(k, v)" will return a new immutable dictionary, that will be
|
|
a copy of "o", but with the "k/v" item set.
|
|
|
|
Functions in this file:
|
|
|
|
hamt_node_assoc, hamt_node_bitmap_assoc,
|
|
hamt_node_array_assoc, hamt_node_collision_assoc
|
|
|
|
`hamt_node_assoc` function accepts a node object, and calls
|
|
other functions depending on its actual type.
|
|
|
|
2. "o.find(k)" will lookup key "k" in "o".
|
|
|
|
Functions:
|
|
|
|
hamt_node_find, hamt_node_bitmap_find,
|
|
hamt_node_array_find, hamt_node_collision_find
|
|
|
|
3. "o.without(k)" will return a new immutable dictionary, that will be
|
|
a copy of "o", buth without the "k" key.
|
|
|
|
Functions:
|
|
|
|
hamt_node_without, hamt_node_bitmap_without,
|
|
hamt_node_array_without, hamt_node_collision_without
|
|
|
|
|
|
Further Reading
|
|
===============
|
|
|
|
1. http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice.html
|
|
|
|
2. http://blog.higher-order.net/2010/08/16/assoc-and-clojures-persistenthashmap-part-ii.html
|
|
|
|
3. Clojure's PersistentHashMap implementation:
|
|
https://github.com/clojure/clojure/blob/master/src/jvm/clojure/lang/PersistentHashMap.java
|
|
|
|
|
|
Debug
|
|
=====
|
|
|
|
The HAMT datatype is accessible for testing purposes under the
|
|
`_testcapi` module:
|
|
|
|
>>> from _testcapi import hamt
|
|
>>> h = hamt()
|
|
>>> h2 = h.set('a', 2)
|
|
>>> h3 = h2.set('b', 3)
|
|
>>> list(h3)
|
|
['a', 'b']
|
|
|
|
When CPython is built in debug mode, a '__dump__()' method is available
|
|
to introspect the tree:
|
|
|
|
>>> print(h3.__dump__())
|
|
HAMT(len=2):
|
|
BitmapNode(size=4 count=2 bitmap=0b110 id=0x10eb9d9e8):
|
|
'a': 2
|
|
'b': 3
|
|
*/
|
|
|
|
|
|
#define IS_ARRAY_NODE(node) Py_IS_TYPE(node, &_PyHamt_ArrayNode_Type)
|
|
#define IS_BITMAP_NODE(node) Py_IS_TYPE(node, &_PyHamt_BitmapNode_Type)
|
|
#define IS_COLLISION_NODE(node) Py_IS_TYPE(node, &_PyHamt_CollisionNode_Type)
|
|
|
|
|
|
/* Return type for 'find' (lookup a key) functions.
|
|
|
|
* F_ERROR - an error occurred;
|
|
* F_NOT_FOUND - the key was not found;
|
|
* F_FOUND - the key was found.
|
|
*/
|
|
typedef enum {F_ERROR, F_NOT_FOUND, F_FOUND} hamt_find_t;
|
|
|
|
|
|
/* Return type for 'without' (delete a key) functions.
|
|
|
|
* W_ERROR - an error occurred;
|
|
* W_NOT_FOUND - the key was not found: there's nothing to delete;
|
|
* W_EMPTY - the key was found: the node/tree would be empty
|
|
if the key is deleted;
|
|
* W_NEWNODE - the key was found: a new node/tree is returned
|
|
without that key.
|
|
*/
|
|
typedef enum {W_ERROR, W_NOT_FOUND, W_EMPTY, W_NEWNODE} hamt_without_t;
|
|
|
|
|
|
/* Low-level iterator protocol type.
|
|
|
|
* I_ITEM - a new item has been yielded;
|
|
* I_END - the whole tree was visited (similar to StopIteration).
|
|
*/
|
|
typedef enum {I_ITEM, I_END} hamt_iter_t;
|
|
|
|
|
|
#define HAMT_ARRAY_NODE_SIZE 32
|
|
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyHamtNode *a_array[HAMT_ARRAY_NODE_SIZE];
|
|
Py_ssize_t a_count;
|
|
} PyHamtNode_Array;
|
|
|
|
|
|
typedef struct {
|
|
PyObject_VAR_HEAD
|
|
int32_t c_hash;
|
|
PyObject *c_array[1];
|
|
} PyHamtNode_Collision;
|
|
|
|
|
|
static PyHamtObject *
|
|
hamt_alloc(void);
|
|
|
|
static PyHamtNode *
|
|
hamt_node_assoc(PyHamtNode *node,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject *val, int* added_leaf);
|
|
|
|
static hamt_without_t
|
|
hamt_node_without(PyHamtNode *node,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key,
|
|
PyHamtNode **new_node);
|
|
|
|
static hamt_find_t
|
|
hamt_node_find(PyHamtNode *node,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject **val);
|
|
|
|
#ifdef Py_DEBUG
|
|
static int
|
|
hamt_node_dump(PyHamtNode *node,
|
|
_PyUnicodeWriter *writer, int level);
|
|
#endif
|
|
|
|
static PyHamtNode *
|
|
hamt_node_array_new(Py_ssize_t);
|
|
|
|
static PyHamtNode *
|
|
hamt_node_collision_new(int32_t hash, Py_ssize_t size);
|
|
|
|
static inline Py_ssize_t
|
|
hamt_node_collision_count(PyHamtNode_Collision *node);
|
|
|
|
|
|
#ifdef Py_DEBUG
|
|
static void
|
|
_hamt_node_array_validate(void *obj_raw)
|
|
{
|
|
PyObject *obj = _PyObject_CAST(obj_raw);
|
|
assert(IS_ARRAY_NODE(obj));
|
|
PyHamtNode_Array *node = (PyHamtNode_Array*)obj;
|
|
Py_ssize_t i = 0, count = 0;
|
|
for (; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
if (node->a_array[i] != NULL) {
|
|
count++;
|
|
}
|
|
}
|
|
assert(count == node->a_count);
|
|
}
|
|
|
|
#define VALIDATE_ARRAY_NODE(NODE) \
|
|
do { _hamt_node_array_validate(NODE); } while (0);
|
|
#else
|
|
#define VALIDATE_ARRAY_NODE(NODE)
|
|
#endif
|
|
|
|
|
|
/* Returns -1 on error */
|
|
static inline int32_t
|
|
hamt_hash(PyObject *o)
|
|
{
|
|
Py_hash_t hash = PyObject_Hash(o);
|
|
|
|
#if SIZEOF_PY_HASH_T <= 4
|
|
return hash;
|
|
#else
|
|
if (hash == -1) {
|
|
/* exception */
|
|
return -1;
|
|
}
|
|
|
|
/* While it's somewhat suboptimal to reduce Python's 64 bit hash to
|
|
32 bits via XOR, it seems that the resulting hash function
|
|
is good enough (this is also how Long type is hashed in Java.)
|
|
Storing 10, 100, 1000 Python strings results in a relatively
|
|
shallow and uniform tree structure.
|
|
|
|
Also it's worth noting that it would be possible to adapt the tree
|
|
structure to 64 bit hashes, but that would increase memory pressure
|
|
and provide little to no performance benefits for collections with
|
|
fewer than billions of key/value pairs.
|
|
|
|
Important: do not change this hash reducing function. There are many
|
|
tests that need an exact tree shape to cover all code paths and
|
|
we do that by specifying concrete values for test data's `__hash__`.
|
|
If this function is changed most of the regression tests would
|
|
become useless.
|
|
*/
|
|
int32_t xored = (int32_t)(hash & 0xffffffffl) ^ (int32_t)(hash >> 32);
|
|
return xored == -1 ? -2 : xored;
|
|
#endif
|
|
}
|
|
|
|
static inline uint32_t
|
|
hamt_mask(int32_t hash, uint32_t shift)
|
|
{
|
|
return (((uint32_t)hash >> shift) & 0x01f);
|
|
}
|
|
|
|
static inline uint32_t
|
|
hamt_bitpos(int32_t hash, uint32_t shift)
|
|
{
|
|
return (uint32_t)1 << hamt_mask(hash, shift);
|
|
}
|
|
|
|
static inline uint32_t
|
|
hamt_bitindex(uint32_t bitmap, uint32_t bit)
|
|
{
|
|
return (uint32_t)_Py_popcount32(bitmap & (bit - 1));
|
|
}
|
|
|
|
|
|
/////////////////////////////////// Dump Helpers
|
|
#ifdef Py_DEBUG
|
|
|
|
static int
|
|
_hamt_dump_ident(_PyUnicodeWriter *writer, int level)
|
|
{
|
|
/* Write `' ' * level` to the `writer` */
|
|
PyObject *str = NULL;
|
|
PyObject *num = NULL;
|
|
PyObject *res = NULL;
|
|
int ret = -1;
|
|
|
|
str = PyUnicode_FromString(" ");
|
|
if (str == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
num = PyLong_FromLong((long)level);
|
|
if (num == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
res = PyNumber_Multiply(str, num);
|
|
if (res == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
ret = _PyUnicodeWriter_WriteStr(writer, res);
|
|
|
|
error:
|
|
Py_XDECREF(res);
|
|
Py_XDECREF(str);
|
|
Py_XDECREF(num);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
_hamt_dump_format(_PyUnicodeWriter *writer, const char *format, ...)
|
|
{
|
|
/* A convenient helper combining _PyUnicodeWriter_WriteStr and
|
|
PyUnicode_FromFormatV.
|
|
*/
|
|
PyObject* msg;
|
|
int ret;
|
|
|
|
va_list vargs;
|
|
va_start(vargs, format);
|
|
msg = PyUnicode_FromFormatV(format, vargs);
|
|
va_end(vargs);
|
|
|
|
if (msg == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
ret = _PyUnicodeWriter_WriteStr(writer, msg);
|
|
Py_DECREF(msg);
|
|
return ret;
|
|
}
|
|
|
|
#endif /* Py_DEBUG */
|
|
/////////////////////////////////// Bitmap Node
|
|
|
|
|
|
static PyHamtNode *
|
|
hamt_node_bitmap_new(Py_ssize_t size)
|
|
{
|
|
/* Create a new bitmap node of size 'size' */
|
|
|
|
PyHamtNode_Bitmap *node;
|
|
Py_ssize_t i;
|
|
|
|
if (size == 0) {
|
|
/* Since bitmap nodes are immutable, we can cache the instance
|
|
for size=0 and reuse it whenever we need an empty bitmap node.
|
|
*/
|
|
return (PyHamtNode *)Py_NewRef(&_Py_SINGLETON(hamt_bitmap_node_empty));
|
|
}
|
|
|
|
assert(size >= 0);
|
|
assert(size % 2 == 0);
|
|
|
|
/* No freelist; allocate a new bitmap node */
|
|
node = PyObject_GC_NewVar(
|
|
PyHamtNode_Bitmap, &_PyHamt_BitmapNode_Type, size);
|
|
if (node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
Py_SET_SIZE(node, size);
|
|
|
|
for (i = 0; i < size; i++) {
|
|
node->b_array[i] = NULL;
|
|
}
|
|
|
|
node->b_bitmap = 0;
|
|
|
|
_PyObject_GC_TRACK(node);
|
|
|
|
return (PyHamtNode *)node;
|
|
}
|
|
|
|
static inline Py_ssize_t
|
|
hamt_node_bitmap_count(PyHamtNode_Bitmap *node)
|
|
{
|
|
return Py_SIZE(node) / 2;
|
|
}
|
|
|
|
static PyHamtNode_Bitmap *
|
|
hamt_node_bitmap_clone(PyHamtNode_Bitmap *node)
|
|
{
|
|
/* Clone a bitmap node; return a new one with the same child notes. */
|
|
|
|
PyHamtNode_Bitmap *clone;
|
|
Py_ssize_t i;
|
|
|
|
clone = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(Py_SIZE(node));
|
|
if (clone == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < Py_SIZE(node); i++) {
|
|
clone->b_array[i] = Py_XNewRef(node->b_array[i]);
|
|
}
|
|
|
|
clone->b_bitmap = node->b_bitmap;
|
|
return clone;
|
|
}
|
|
|
|
static PyHamtNode_Bitmap *
|
|
hamt_node_bitmap_clone_without(PyHamtNode_Bitmap *o, uint32_t bit)
|
|
{
|
|
assert(bit & o->b_bitmap);
|
|
assert(hamt_node_bitmap_count(o) > 1);
|
|
|
|
PyHamtNode_Bitmap *new = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(
|
|
Py_SIZE(o) - 2);
|
|
if (new == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
uint32_t idx = hamt_bitindex(o->b_bitmap, bit);
|
|
uint32_t key_idx = 2 * idx;
|
|
uint32_t val_idx = key_idx + 1;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < key_idx; i++) {
|
|
new->b_array[i] = Py_XNewRef(o->b_array[i]);
|
|
}
|
|
|
|
assert(Py_SIZE(o) >= 0 && Py_SIZE(o) <= 32);
|
|
for (i = val_idx + 1; i < (uint32_t)Py_SIZE(o); i++) {
|
|
new->b_array[i - 2] = Py_XNewRef(o->b_array[i]);
|
|
}
|
|
|
|
new->b_bitmap = o->b_bitmap & ~bit;
|
|
return new;
|
|
}
|
|
|
|
static PyHamtNode *
|
|
hamt_node_new_bitmap_or_collision(uint32_t shift,
|
|
PyObject *key1, PyObject *val1,
|
|
int32_t key2_hash,
|
|
PyObject *key2, PyObject *val2)
|
|
{
|
|
/* Helper method. Creates a new node for key1/val and key2/val2
|
|
pairs.
|
|
|
|
If key1 hash is equal to the hash of key2, a Collision node
|
|
will be created. If they are not equal, a Bitmap node is
|
|
created.
|
|
*/
|
|
|
|
int32_t key1_hash = hamt_hash(key1);
|
|
if (key1_hash == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
if (key1_hash == key2_hash) {
|
|
PyHamtNode_Collision *n;
|
|
n = (PyHamtNode_Collision *)hamt_node_collision_new(key1_hash, 4);
|
|
if (n == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
n->c_array[0] = Py_NewRef(key1);
|
|
n->c_array[1] = Py_NewRef(val1);
|
|
|
|
n->c_array[2] = Py_NewRef(key2);
|
|
n->c_array[3] = Py_NewRef(val2);
|
|
|
|
return (PyHamtNode *)n;
|
|
}
|
|
else {
|
|
int added_leaf = 0;
|
|
PyHamtNode *n = hamt_node_bitmap_new(0);
|
|
if (n == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyHamtNode *n2 = hamt_node_assoc(
|
|
n, shift, key1_hash, key1, val1, &added_leaf);
|
|
Py_DECREF(n);
|
|
if (n2 == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
n = hamt_node_assoc(n2, shift, key2_hash, key2, val2, &added_leaf);
|
|
Py_DECREF(n2);
|
|
if (n == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return n;
|
|
}
|
|
}
|
|
|
|
static PyHamtNode *
|
|
hamt_node_bitmap_assoc(PyHamtNode_Bitmap *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject *val, int* added_leaf)
|
|
{
|
|
/* assoc operation for bitmap nodes.
|
|
|
|
Return: a new node, or self if key/val already is in the
|
|
collection.
|
|
|
|
'added_leaf' is later used in '_PyHamt_Assoc' to determine if
|
|
`hamt.set(key, val)` increased the size of the collection.
|
|
*/
|
|
|
|
uint32_t bit = hamt_bitpos(hash, shift);
|
|
uint32_t idx = hamt_bitindex(self->b_bitmap, bit);
|
|
|
|
/* Bitmap node layout:
|
|
|
|
+------+------+------+------+ --- +------+------+
|
|
| key1 | val1 | key2 | val2 | ... | keyN | valN |
|
|
+------+------+------+------+ --- +------+------+
|
|
where `N < Py_SIZE(node)`.
|
|
|
|
The `node->b_bitmap` field is a bitmap. For a given
|
|
`(shift, hash)` pair we can determine:
|
|
|
|
- If this node has the corresponding key/val slots.
|
|
- The index of key/val slots.
|
|
*/
|
|
|
|
if (self->b_bitmap & bit) {
|
|
/* The key is set in this node */
|
|
|
|
uint32_t key_idx = 2 * idx;
|
|
uint32_t val_idx = key_idx + 1;
|
|
|
|
assert(val_idx < (size_t)Py_SIZE(self));
|
|
|
|
PyObject *key_or_null = self->b_array[key_idx];
|
|
PyObject *val_or_node = self->b_array[val_idx];
|
|
|
|
if (key_or_null == NULL) {
|
|
/* key is NULL. This means that we have a few keys
|
|
that have the same (hash, shift) pair. */
|
|
|
|
assert(val_or_node != NULL);
|
|
|
|
PyHamtNode *sub_node = hamt_node_assoc(
|
|
(PyHamtNode *)val_or_node,
|
|
shift + 5, hash, key, val, added_leaf);
|
|
if (sub_node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (val_or_node == (PyObject *)sub_node) {
|
|
Py_DECREF(sub_node);
|
|
return (PyHamtNode *)Py_NewRef(self);
|
|
}
|
|
|
|
PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
Py_SETREF(ret->b_array[val_idx], (PyObject*)sub_node);
|
|
return (PyHamtNode *)ret;
|
|
}
|
|
|
|
assert(key != NULL);
|
|
/* key is not NULL. This means that we have only one other
|
|
key in this collection that matches our hash for this shift. */
|
|
|
|
int comp_err = PyObject_RichCompareBool(key, key_or_null, Py_EQ);
|
|
if (comp_err < 0) { /* exception in __eq__ */
|
|
return NULL;
|
|
}
|
|
if (comp_err == 1) { /* key == key_or_null */
|
|
if (val == val_or_node) {
|
|
/* we already have the same key/val pair; return self. */
|
|
return (PyHamtNode *)Py_NewRef(self);
|
|
}
|
|
|
|
/* We're setting a new value for the key we had before.
|
|
Make a new bitmap node with a replaced value, and return it. */
|
|
PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
Py_SETREF(ret->b_array[val_idx], Py_NewRef(val));
|
|
return (PyHamtNode *)ret;
|
|
}
|
|
|
|
/* It's a new key, and it has the same index as *one* another key.
|
|
We have a collision. We need to create a new node which will
|
|
combine the existing key and the key we're adding.
|
|
|
|
`hamt_node_new_bitmap_or_collision` will either create a new
|
|
Collision node if the keys have identical hashes, or
|
|
a new Bitmap node.
|
|
*/
|
|
PyHamtNode *sub_node = hamt_node_new_bitmap_or_collision(
|
|
shift + 5,
|
|
key_or_null, val_or_node, /* existing key/val */
|
|
hash,
|
|
key, val /* new key/val */
|
|
);
|
|
if (sub_node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyHamtNode_Bitmap *ret = hamt_node_bitmap_clone(self);
|
|
if (ret == NULL) {
|
|
Py_DECREF(sub_node);
|
|
return NULL;
|
|
}
|
|
Py_SETREF(ret->b_array[key_idx], NULL);
|
|
Py_SETREF(ret->b_array[val_idx], (PyObject *)sub_node);
|
|
|
|
*added_leaf = 1;
|
|
return (PyHamtNode *)ret;
|
|
}
|
|
else {
|
|
/* There was no key before with the same (shift,hash). */
|
|
|
|
uint32_t n = (uint32_t)_Py_popcount32(self->b_bitmap);
|
|
|
|
if (n >= 16) {
|
|
/* When we have a situation where we want to store more
|
|
than 16 nodes at one level of the tree, we no longer
|
|
want to use the Bitmap node with bitmap encoding.
|
|
|
|
Instead we start using an Array node, which has
|
|
simpler (faster) implementation at the expense of
|
|
having preallocated 32 pointers for its keys/values
|
|
pairs.
|
|
|
|
Small hamt objects (<30 keys) usually don't have any
|
|
Array nodes at all. Between ~30 and ~400 keys hamt
|
|
objects usually have one Array node, and usually it's
|
|
a root node.
|
|
*/
|
|
|
|
uint32_t jdx = hamt_mask(hash, shift);
|
|
/* 'jdx' is the index of where the new key should be added
|
|
in the new Array node we're about to create. */
|
|
|
|
PyHamtNode *empty = NULL;
|
|
PyHamtNode_Array *new_node = NULL;
|
|
PyHamtNode *res = NULL;
|
|
|
|
/* Create a new Array node. */
|
|
new_node = (PyHamtNode_Array *)hamt_node_array_new(n + 1);
|
|
if (new_node == NULL) {
|
|
goto fin;
|
|
}
|
|
|
|
/* Create an empty bitmap node for the next
|
|
hamt_node_assoc call. */
|
|
empty = hamt_node_bitmap_new(0);
|
|
if (empty == NULL) {
|
|
goto fin;
|
|
}
|
|
|
|
/* Make a new bitmap node for the key/val we're adding.
|
|
Set that bitmap node to new-array-node[jdx]. */
|
|
new_node->a_array[jdx] = hamt_node_assoc(
|
|
empty, shift + 5, hash, key, val, added_leaf);
|
|
if (new_node->a_array[jdx] == NULL) {
|
|
goto fin;
|
|
}
|
|
|
|
/* Copy existing key/value pairs from the current Bitmap
|
|
node to the new Array node we've just created. */
|
|
Py_ssize_t i, j;
|
|
for (i = 0, j = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
if (((self->b_bitmap >> i) & 1) != 0) {
|
|
/* Ensure we don't accidentally override `jdx` element
|
|
we set few lines above.
|
|
*/
|
|
assert(new_node->a_array[i] == NULL);
|
|
|
|
if (self->b_array[j] == NULL) {
|
|
new_node->a_array[i] =
|
|
(PyHamtNode *)Py_NewRef(self->b_array[j + 1]);
|
|
}
|
|
else {
|
|
int32_t rehash = hamt_hash(self->b_array[j]);
|
|
if (rehash == -1) {
|
|
goto fin;
|
|
}
|
|
|
|
new_node->a_array[i] = hamt_node_assoc(
|
|
empty, shift + 5,
|
|
rehash,
|
|
self->b_array[j],
|
|
self->b_array[j + 1],
|
|
added_leaf);
|
|
|
|
if (new_node->a_array[i] == NULL) {
|
|
goto fin;
|
|
}
|
|
}
|
|
j += 2;
|
|
}
|
|
}
|
|
|
|
VALIDATE_ARRAY_NODE(new_node)
|
|
|
|
/* That's it! */
|
|
res = (PyHamtNode *)new_node;
|
|
|
|
fin:
|
|
Py_XDECREF(empty);
|
|
if (res == NULL) {
|
|
Py_XDECREF(new_node);
|
|
}
|
|
return res;
|
|
}
|
|
else {
|
|
/* We have less than 16 keys at this level; let's just
|
|
create a new bitmap node out of this node with the
|
|
new key/val pair added. */
|
|
|
|
uint32_t key_idx = 2 * idx;
|
|
uint32_t val_idx = key_idx + 1;
|
|
uint32_t i;
|
|
|
|
*added_leaf = 1;
|
|
|
|
/* Allocate new Bitmap node which can have one more key/val
|
|
pair in addition to what we have already. */
|
|
PyHamtNode_Bitmap *new_node =
|
|
(PyHamtNode_Bitmap *)hamt_node_bitmap_new(2 * (n + 1));
|
|
if (new_node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Copy all keys/values that will be before the new key/value
|
|
we are adding. */
|
|
for (i = 0; i < key_idx; i++) {
|
|
new_node->b_array[i] = Py_XNewRef(self->b_array[i]);
|
|
}
|
|
|
|
/* Set the new key/value to the new Bitmap node. */
|
|
new_node->b_array[key_idx] = Py_NewRef(key);
|
|
new_node->b_array[val_idx] = Py_NewRef(val);
|
|
|
|
/* Copy all keys/values that will be after the new key/value
|
|
we are adding. */
|
|
assert(Py_SIZE(self) >= 0 && Py_SIZE(self) <= 32);
|
|
for (i = key_idx; i < (uint32_t)Py_SIZE(self); i++) {
|
|
new_node->b_array[i + 2] = Py_XNewRef(self->b_array[i]);
|
|
}
|
|
|
|
new_node->b_bitmap = self->b_bitmap | bit;
|
|
return (PyHamtNode *)new_node;
|
|
}
|
|
}
|
|
}
|
|
|
|
static hamt_without_t
|
|
hamt_node_bitmap_without(PyHamtNode_Bitmap *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key,
|
|
PyHamtNode **new_node)
|
|
{
|
|
uint32_t bit = hamt_bitpos(hash, shift);
|
|
if ((self->b_bitmap & bit) == 0) {
|
|
return W_NOT_FOUND;
|
|
}
|
|
|
|
uint32_t idx = hamt_bitindex(self->b_bitmap, bit);
|
|
|
|
uint32_t key_idx = 2 * idx;
|
|
uint32_t val_idx = key_idx + 1;
|
|
|
|
PyObject *key_or_null = self->b_array[key_idx];
|
|
PyObject *val_or_node = self->b_array[val_idx];
|
|
|
|
if (key_or_null == NULL) {
|
|
/* key == NULL means that 'value' is another tree node. */
|
|
|
|
PyHamtNode *sub_node = NULL;
|
|
|
|
hamt_without_t res = hamt_node_without(
|
|
(PyHamtNode *)val_or_node,
|
|
shift + 5, hash, key, &sub_node);
|
|
|
|
switch (res) {
|
|
case W_EMPTY:
|
|
/* It's impossible for us to receive a W_EMPTY here:
|
|
|
|
- Array nodes are converted to Bitmap nodes when
|
|
we delete 16th item from them;
|
|
|
|
- Collision nodes are converted to Bitmap when
|
|
there is one item in them;
|
|
|
|
- Bitmap node's without() inlines single-item
|
|
sub-nodes.
|
|
|
|
So in no situation we can have a single-item
|
|
Bitmap child of another Bitmap node.
|
|
*/
|
|
Py_UNREACHABLE();
|
|
|
|
case W_NEWNODE: {
|
|
assert(sub_node != NULL);
|
|
|
|
if (IS_BITMAP_NODE(sub_node)) {
|
|
PyHamtNode_Bitmap *sub_tree = (PyHamtNode_Bitmap *)sub_node;
|
|
if (hamt_node_bitmap_count(sub_tree) == 1 &&
|
|
sub_tree->b_array[0] != NULL)
|
|
{
|
|
/* A bitmap node with one key/value pair. Just
|
|
merge it into this node.
|
|
|
|
Note that we don't inline Bitmap nodes that
|
|
have a NULL key -- those nodes point to another
|
|
tree level, and we cannot simply move tree levels
|
|
up or down.
|
|
*/
|
|
|
|
PyHamtNode_Bitmap *clone = hamt_node_bitmap_clone(self);
|
|
if (clone == NULL) {
|
|
Py_DECREF(sub_node);
|
|
return W_ERROR;
|
|
}
|
|
|
|
PyObject *key = sub_tree->b_array[0];
|
|
PyObject *val = sub_tree->b_array[1];
|
|
|
|
Py_XSETREF(clone->b_array[key_idx], Py_NewRef(key));
|
|
Py_SETREF(clone->b_array[val_idx], Py_NewRef(val));
|
|
|
|
Py_DECREF(sub_tree);
|
|
|
|
*new_node = (PyHamtNode *)clone;
|
|
return W_NEWNODE;
|
|
}
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
/* Ensure that Collision.without implementation
|
|
converts to Bitmap nodes itself.
|
|
*/
|
|
if (IS_COLLISION_NODE(sub_node)) {
|
|
assert(hamt_node_collision_count(
|
|
(PyHamtNode_Collision*)sub_node) > 1);
|
|
}
|
|
#endif
|
|
|
|
PyHamtNode_Bitmap *clone = hamt_node_bitmap_clone(self);
|
|
if (clone == NULL) {
|
|
return W_ERROR;
|
|
}
|
|
|
|
Py_SETREF(clone->b_array[val_idx],
|
|
(PyObject *)sub_node); /* borrow */
|
|
|
|
*new_node = (PyHamtNode *)clone;
|
|
return W_NEWNODE;
|
|
}
|
|
|
|
case W_ERROR:
|
|
case W_NOT_FOUND:
|
|
assert(sub_node == NULL);
|
|
return res;
|
|
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
else {
|
|
/* We have a regular key/value pair */
|
|
|
|
int cmp = PyObject_RichCompareBool(key_or_null, key, Py_EQ);
|
|
if (cmp < 0) {
|
|
return W_ERROR;
|
|
}
|
|
if (cmp == 0) {
|
|
return W_NOT_FOUND;
|
|
}
|
|
|
|
if (hamt_node_bitmap_count(self) == 1) {
|
|
return W_EMPTY;
|
|
}
|
|
|
|
*new_node = (PyHamtNode *)
|
|
hamt_node_bitmap_clone_without(self, bit);
|
|
if (*new_node == NULL) {
|
|
return W_ERROR;
|
|
}
|
|
|
|
return W_NEWNODE;
|
|
}
|
|
}
|
|
|
|
static hamt_find_t
|
|
hamt_node_bitmap_find(PyHamtNode_Bitmap *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject **val)
|
|
{
|
|
/* Lookup a key in a Bitmap node. */
|
|
|
|
uint32_t bit = hamt_bitpos(hash, shift);
|
|
uint32_t idx;
|
|
uint32_t key_idx;
|
|
uint32_t val_idx;
|
|
PyObject *key_or_null;
|
|
PyObject *val_or_node;
|
|
int comp_err;
|
|
|
|
if ((self->b_bitmap & bit) == 0) {
|
|
return F_NOT_FOUND;
|
|
}
|
|
|
|
idx = hamt_bitindex(self->b_bitmap, bit);
|
|
key_idx = idx * 2;
|
|
val_idx = key_idx + 1;
|
|
|
|
assert(val_idx < (size_t)Py_SIZE(self));
|
|
|
|
key_or_null = self->b_array[key_idx];
|
|
val_or_node = self->b_array[val_idx];
|
|
|
|
if (key_or_null == NULL) {
|
|
/* There are a few keys that have the same hash at the current shift
|
|
that match our key. Dispatch the lookup further down the tree. */
|
|
assert(val_or_node != NULL);
|
|
return hamt_node_find((PyHamtNode *)val_or_node,
|
|
shift + 5, hash, key, val);
|
|
}
|
|
|
|
/* We have only one key -- a potential match. Let's compare if the
|
|
key we are looking at is equal to the key we are looking for. */
|
|
assert(key != NULL);
|
|
comp_err = PyObject_RichCompareBool(key, key_or_null, Py_EQ);
|
|
if (comp_err < 0) { /* exception in __eq__ */
|
|
return F_ERROR;
|
|
}
|
|
if (comp_err == 1) { /* key == key_or_null */
|
|
*val = val_or_node;
|
|
return F_FOUND;
|
|
}
|
|
|
|
return F_NOT_FOUND;
|
|
}
|
|
|
|
static int
|
|
hamt_node_bitmap_traverse(PyHamtNode_Bitmap *self, visitproc visit, void *arg)
|
|
{
|
|
/* Bitmap's tp_traverse */
|
|
|
|
Py_ssize_t i;
|
|
|
|
for (i = Py_SIZE(self); --i >= 0; ) {
|
|
Py_VISIT(self->b_array[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hamt_node_bitmap_dealloc(PyHamtNode_Bitmap *self)
|
|
{
|
|
/* Bitmap's tp_dealloc */
|
|
|
|
Py_ssize_t len = Py_SIZE(self);
|
|
Py_ssize_t i;
|
|
|
|
if (Py_SIZE(self) == 0) {
|
|
/* The empty node is statically allocated. */
|
|
assert(self == &_Py_SINGLETON(hamt_bitmap_node_empty));
|
|
#ifdef Py_DEBUG
|
|
_Py_FatalRefcountError("deallocating the empty hamt node bitmap singleton");
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
PyObject_GC_UnTrack(self);
|
|
Py_TRASHCAN_BEGIN(self, hamt_node_bitmap_dealloc)
|
|
|
|
if (len > 0) {
|
|
i = len;
|
|
while (--i >= 0) {
|
|
Py_XDECREF(self->b_array[i]);
|
|
}
|
|
}
|
|
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
Py_TRASHCAN_END
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
static int
|
|
hamt_node_bitmap_dump(PyHamtNode_Bitmap *node,
|
|
_PyUnicodeWriter *writer, int level)
|
|
{
|
|
/* Debug build: __dump__() method implementation for Bitmap nodes. */
|
|
|
|
Py_ssize_t i;
|
|
PyObject *tmp1;
|
|
PyObject *tmp2;
|
|
|
|
if (_hamt_dump_ident(writer, level + 1)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "BitmapNode(size=%zd count=%zd ",
|
|
Py_SIZE(node), Py_SIZE(node) / 2))
|
|
{
|
|
goto error;
|
|
}
|
|
|
|
tmp1 = PyLong_FromUnsignedLong(node->b_bitmap);
|
|
if (tmp1 == NULL) {
|
|
goto error;
|
|
}
|
|
tmp2 = _PyLong_Format(tmp1, 2);
|
|
Py_DECREF(tmp1);
|
|
if (tmp2 == NULL) {
|
|
goto error;
|
|
}
|
|
if (_hamt_dump_format(writer, "bitmap=%S id=%p):\n", tmp2, node)) {
|
|
Py_DECREF(tmp2);
|
|
goto error;
|
|
}
|
|
Py_DECREF(tmp2);
|
|
|
|
for (i = 0; i < Py_SIZE(node); i += 2) {
|
|
PyObject *key_or_null = node->b_array[i];
|
|
PyObject *val_or_node = node->b_array[i + 1];
|
|
|
|
if (_hamt_dump_ident(writer, level + 2)) {
|
|
goto error;
|
|
}
|
|
|
|
if (key_or_null == NULL) {
|
|
if (_hamt_dump_format(writer, "NULL:\n")) {
|
|
goto error;
|
|
}
|
|
|
|
if (hamt_node_dump((PyHamtNode *)val_or_node,
|
|
writer, level + 2))
|
|
{
|
|
goto error;
|
|
}
|
|
}
|
|
else {
|
|
if (_hamt_dump_format(writer, "%R: %R", key_or_null,
|
|
val_or_node))
|
|
{
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "\n")) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
return -1;
|
|
}
|
|
#endif /* Py_DEBUG */
|
|
|
|
|
|
/////////////////////////////////// Collision Node
|
|
|
|
|
|
static PyHamtNode *
|
|
hamt_node_collision_new(int32_t hash, Py_ssize_t size)
|
|
{
|
|
/* Create a new Collision node. */
|
|
|
|
PyHamtNode_Collision *node;
|
|
Py_ssize_t i;
|
|
|
|
assert(size >= 4);
|
|
assert(size % 2 == 0);
|
|
|
|
node = PyObject_GC_NewVar(
|
|
PyHamtNode_Collision, &_PyHamt_CollisionNode_Type, size);
|
|
if (node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < size; i++) {
|
|
node->c_array[i] = NULL;
|
|
}
|
|
|
|
Py_SET_SIZE(node, size);
|
|
node->c_hash = hash;
|
|
|
|
_PyObject_GC_TRACK(node);
|
|
|
|
return (PyHamtNode *)node;
|
|
}
|
|
|
|
static hamt_find_t
|
|
hamt_node_collision_find_index(PyHamtNode_Collision *self, PyObject *key,
|
|
Py_ssize_t *idx)
|
|
{
|
|
/* Lookup `key` in the Collision node `self`. Set the index of the
|
|
found key to 'idx'. */
|
|
|
|
Py_ssize_t i;
|
|
PyObject *el;
|
|
|
|
for (i = 0; i < Py_SIZE(self); i += 2) {
|
|
el = self->c_array[i];
|
|
|
|
assert(el != NULL);
|
|
int cmp = PyObject_RichCompareBool(key, el, Py_EQ);
|
|
if (cmp < 0) {
|
|
return F_ERROR;
|
|
}
|
|
if (cmp == 1) {
|
|
*idx = i;
|
|
return F_FOUND;
|
|
}
|
|
}
|
|
|
|
return F_NOT_FOUND;
|
|
}
|
|
|
|
static PyHamtNode *
|
|
hamt_node_collision_assoc(PyHamtNode_Collision *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject *val, int* added_leaf)
|
|
{
|
|
/* Set a new key to this level (currently a Collision node)
|
|
of the tree. */
|
|
|
|
if (hash == self->c_hash) {
|
|
/* The hash of the 'key' we are adding matches the hash of
|
|
other keys in this Collision node. */
|
|
|
|
Py_ssize_t key_idx = -1;
|
|
hamt_find_t found;
|
|
PyHamtNode_Collision *new_node;
|
|
Py_ssize_t i;
|
|
|
|
/* Let's try to lookup the new 'key', maybe we already have it. */
|
|
found = hamt_node_collision_find_index(self, key, &key_idx);
|
|
switch (found) {
|
|
case F_ERROR:
|
|
/* Exception. */
|
|
return NULL;
|
|
|
|
case F_NOT_FOUND:
|
|
/* This is a totally new key. Clone the current node,
|
|
add a new key/value to the cloned node. */
|
|
|
|
new_node = (PyHamtNode_Collision *)hamt_node_collision_new(
|
|
self->c_hash, Py_SIZE(self) + 2);
|
|
if (new_node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < Py_SIZE(self); i++) {
|
|
new_node->c_array[i] = Py_NewRef(self->c_array[i]);
|
|
}
|
|
|
|
new_node->c_array[i] = Py_NewRef(key);
|
|
new_node->c_array[i + 1] = Py_NewRef(val);
|
|
|
|
*added_leaf = 1;
|
|
return (PyHamtNode *)new_node;
|
|
|
|
case F_FOUND:
|
|
/* There's a key which is equal to the key we are adding. */
|
|
|
|
assert(key_idx >= 0);
|
|
assert(key_idx < Py_SIZE(self));
|
|
Py_ssize_t val_idx = key_idx + 1;
|
|
|
|
if (self->c_array[val_idx] == val) {
|
|
/* We're setting a key/value pair that's already set. */
|
|
return (PyHamtNode *)Py_NewRef(self);
|
|
}
|
|
|
|
/* We need to replace old value for the key
|
|
with a new value. Create a new Collision node.*/
|
|
new_node = (PyHamtNode_Collision *)hamt_node_collision_new(
|
|
self->c_hash, Py_SIZE(self));
|
|
if (new_node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Copy all elements of the old node to the new one. */
|
|
for (i = 0; i < Py_SIZE(self); i++) {
|
|
new_node->c_array[i] = Py_NewRef(self->c_array[i]);
|
|
}
|
|
|
|
/* Replace the old value with the new value for the our key. */
|
|
Py_SETREF(new_node->c_array[val_idx], Py_NewRef(val));
|
|
|
|
return (PyHamtNode *)new_node;
|
|
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
else {
|
|
/* The hash of the new key is different from the hash that
|
|
all keys of this Collision node have.
|
|
|
|
Create a Bitmap node inplace with two children:
|
|
key/value pair that we're adding, and the Collision node
|
|
we're replacing on this tree level.
|
|
*/
|
|
|
|
PyHamtNode_Bitmap *new_node;
|
|
PyHamtNode *assoc_res;
|
|
|
|
new_node = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(2);
|
|
if (new_node == NULL) {
|
|
return NULL;
|
|
}
|
|
new_node->b_bitmap = hamt_bitpos(self->c_hash, shift);
|
|
new_node->b_array[1] = Py_NewRef(self);
|
|
|
|
assoc_res = hamt_node_bitmap_assoc(
|
|
new_node, shift, hash, key, val, added_leaf);
|
|
Py_DECREF(new_node);
|
|
return assoc_res;
|
|
}
|
|
}
|
|
|
|
static inline Py_ssize_t
|
|
hamt_node_collision_count(PyHamtNode_Collision *node)
|
|
{
|
|
return Py_SIZE(node) / 2;
|
|
}
|
|
|
|
static hamt_without_t
|
|
hamt_node_collision_without(PyHamtNode_Collision *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key,
|
|
PyHamtNode **new_node)
|
|
{
|
|
if (hash != self->c_hash) {
|
|
return W_NOT_FOUND;
|
|
}
|
|
|
|
Py_ssize_t key_idx = -1;
|
|
hamt_find_t found = hamt_node_collision_find_index(self, key, &key_idx);
|
|
|
|
switch (found) {
|
|
case F_ERROR:
|
|
return W_ERROR;
|
|
|
|
case F_NOT_FOUND:
|
|
return W_NOT_FOUND;
|
|
|
|
case F_FOUND:
|
|
assert(key_idx >= 0);
|
|
assert(key_idx < Py_SIZE(self));
|
|
|
|
Py_ssize_t new_count = hamt_node_collision_count(self) - 1;
|
|
|
|
if (new_count == 0) {
|
|
/* The node has only one key/value pair and it's for the
|
|
key we're trying to delete. So a new node will be empty
|
|
after the removal.
|
|
*/
|
|
return W_EMPTY;
|
|
}
|
|
|
|
if (new_count == 1) {
|
|
/* The node has two keys, and after deletion the
|
|
new Collision node would have one. Collision nodes
|
|
with one key shouldn't exist, so convert it to a
|
|
Bitmap node.
|
|
*/
|
|
PyHamtNode_Bitmap *node = (PyHamtNode_Bitmap *)
|
|
hamt_node_bitmap_new(2);
|
|
if (node == NULL) {
|
|
return W_ERROR;
|
|
}
|
|
|
|
if (key_idx == 0) {
|
|
node->b_array[0] = Py_NewRef(self->c_array[2]);
|
|
node->b_array[1] = Py_NewRef(self->c_array[3]);
|
|
}
|
|
else {
|
|
assert(key_idx == 2);
|
|
node->b_array[0] = Py_NewRef(self->c_array[0]);
|
|
node->b_array[1] = Py_NewRef(self->c_array[1]);
|
|
}
|
|
|
|
node->b_bitmap = hamt_bitpos(hash, shift);
|
|
|
|
*new_node = (PyHamtNode *)node;
|
|
return W_NEWNODE;
|
|
}
|
|
|
|
/* Allocate a new Collision node with capacity for one
|
|
less key/value pair */
|
|
PyHamtNode_Collision *new = (PyHamtNode_Collision *)
|
|
hamt_node_collision_new(
|
|
self->c_hash, Py_SIZE(self) - 2);
|
|
if (new == NULL) {
|
|
return W_ERROR;
|
|
}
|
|
|
|
/* Copy all other keys from `self` to `new` */
|
|
Py_ssize_t i;
|
|
for (i = 0; i < key_idx; i++) {
|
|
new->c_array[i] = Py_NewRef(self->c_array[i]);
|
|
}
|
|
for (i = key_idx + 2; i < Py_SIZE(self); i++) {
|
|
new->c_array[i - 2] = Py_NewRef(self->c_array[i]);
|
|
}
|
|
|
|
*new_node = (PyHamtNode*)new;
|
|
return W_NEWNODE;
|
|
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static hamt_find_t
|
|
hamt_node_collision_find(PyHamtNode_Collision *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject **val)
|
|
{
|
|
/* Lookup `key` in the Collision node `self`. Set the value
|
|
for the found key to 'val'. */
|
|
|
|
Py_ssize_t idx = -1;
|
|
hamt_find_t res;
|
|
|
|
res = hamt_node_collision_find_index(self, key, &idx);
|
|
if (res == F_ERROR || res == F_NOT_FOUND) {
|
|
return res;
|
|
}
|
|
|
|
assert(idx >= 0);
|
|
assert(idx + 1 < Py_SIZE(self));
|
|
|
|
*val = self->c_array[idx + 1];
|
|
assert(*val != NULL);
|
|
|
|
return F_FOUND;
|
|
}
|
|
|
|
|
|
static int
|
|
hamt_node_collision_traverse(PyHamtNode_Collision *self,
|
|
visitproc visit, void *arg)
|
|
{
|
|
/* Collision's tp_traverse */
|
|
|
|
Py_ssize_t i;
|
|
|
|
for (i = Py_SIZE(self); --i >= 0; ) {
|
|
Py_VISIT(self->c_array[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hamt_node_collision_dealloc(PyHamtNode_Collision *self)
|
|
{
|
|
/* Collision's tp_dealloc */
|
|
|
|
Py_ssize_t len = Py_SIZE(self);
|
|
|
|
PyObject_GC_UnTrack(self);
|
|
Py_TRASHCAN_BEGIN(self, hamt_node_collision_dealloc)
|
|
|
|
if (len > 0) {
|
|
|
|
while (--len >= 0) {
|
|
Py_XDECREF(self->c_array[len]);
|
|
}
|
|
}
|
|
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
Py_TRASHCAN_END
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
static int
|
|
hamt_node_collision_dump(PyHamtNode_Collision *node,
|
|
_PyUnicodeWriter *writer, int level)
|
|
{
|
|
/* Debug build: __dump__() method implementation for Collision nodes. */
|
|
|
|
Py_ssize_t i;
|
|
|
|
if (_hamt_dump_ident(writer, level + 1)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "CollisionNode(size=%zd id=%p):\n",
|
|
Py_SIZE(node), node))
|
|
{
|
|
goto error;
|
|
}
|
|
|
|
for (i = 0; i < Py_SIZE(node); i += 2) {
|
|
PyObject *key = node->c_array[i];
|
|
PyObject *val = node->c_array[i + 1];
|
|
|
|
if (_hamt_dump_ident(writer, level + 2)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "%R: %R\n", key, val)) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
return -1;
|
|
}
|
|
#endif /* Py_DEBUG */
|
|
|
|
|
|
/////////////////////////////////// Array Node
|
|
|
|
|
|
static PyHamtNode *
|
|
hamt_node_array_new(Py_ssize_t count)
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
PyHamtNode_Array *node = PyObject_GC_New(
|
|
PyHamtNode_Array, &_PyHamt_ArrayNode_Type);
|
|
if (node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
node->a_array[i] = NULL;
|
|
}
|
|
|
|
node->a_count = count;
|
|
|
|
_PyObject_GC_TRACK(node);
|
|
return (PyHamtNode *)node;
|
|
}
|
|
|
|
static PyHamtNode_Array *
|
|
hamt_node_array_clone(PyHamtNode_Array *node)
|
|
{
|
|
PyHamtNode_Array *clone;
|
|
Py_ssize_t i;
|
|
|
|
VALIDATE_ARRAY_NODE(node)
|
|
|
|
/* Create a new Array node. */
|
|
clone = (PyHamtNode_Array *)hamt_node_array_new(node->a_count);
|
|
if (clone == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Copy all elements from the current Array node to the new one. */
|
|
for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
clone->a_array[i] = (PyHamtNode*)Py_XNewRef(node->a_array[i]);
|
|
}
|
|
|
|
VALIDATE_ARRAY_NODE(clone)
|
|
return clone;
|
|
}
|
|
|
|
static PyHamtNode *
|
|
hamt_node_array_assoc(PyHamtNode_Array *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject *val, int* added_leaf)
|
|
{
|
|
/* Set a new key to this level (currently a Collision node)
|
|
of the tree.
|
|
|
|
Array nodes don't store values, they can only point to
|
|
other nodes. They are simple arrays of 32 BaseNode pointers/
|
|
*/
|
|
|
|
uint32_t idx = hamt_mask(hash, shift);
|
|
PyHamtNode *node = self->a_array[idx];
|
|
PyHamtNode *child_node;
|
|
PyHamtNode_Array *new_node;
|
|
Py_ssize_t i;
|
|
|
|
if (node == NULL) {
|
|
/* There's no child node for the given hash. Create a new
|
|
Bitmap node for this key. */
|
|
|
|
PyHamtNode_Bitmap *empty = NULL;
|
|
|
|
/* Get an empty Bitmap node to work with. */
|
|
empty = (PyHamtNode_Bitmap *)hamt_node_bitmap_new(0);
|
|
if (empty == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Set key/val to the newly created empty Bitmap, thus
|
|
creating a new Bitmap node with our key/value pair. */
|
|
child_node = hamt_node_bitmap_assoc(
|
|
empty,
|
|
shift + 5, hash, key, val, added_leaf);
|
|
Py_DECREF(empty);
|
|
if (child_node == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Create a new Array node. */
|
|
new_node = (PyHamtNode_Array *)hamt_node_array_new(self->a_count + 1);
|
|
if (new_node == NULL) {
|
|
Py_DECREF(child_node);
|
|
return NULL;
|
|
}
|
|
|
|
/* Copy all elements from the current Array node to the
|
|
new one. */
|
|
for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
new_node->a_array[i] = (PyHamtNode*)Py_XNewRef(self->a_array[i]);
|
|
}
|
|
|
|
assert(new_node->a_array[idx] == NULL);
|
|
new_node->a_array[idx] = child_node; /* borrow */
|
|
VALIDATE_ARRAY_NODE(new_node)
|
|
}
|
|
else {
|
|
/* There's a child node for the given hash.
|
|
Set the key to it./ */
|
|
child_node = hamt_node_assoc(
|
|
node, shift + 5, hash, key, val, added_leaf);
|
|
if (child_node == NULL) {
|
|
return NULL;
|
|
}
|
|
else if (child_node == (PyHamtNode *)self) {
|
|
Py_DECREF(child_node);
|
|
return (PyHamtNode *)self;
|
|
}
|
|
|
|
new_node = hamt_node_array_clone(self);
|
|
if (new_node == NULL) {
|
|
Py_DECREF(child_node);
|
|
return NULL;
|
|
}
|
|
|
|
Py_SETREF(new_node->a_array[idx], child_node); /* borrow */
|
|
VALIDATE_ARRAY_NODE(new_node)
|
|
}
|
|
|
|
return (PyHamtNode *)new_node;
|
|
}
|
|
|
|
static hamt_without_t
|
|
hamt_node_array_without(PyHamtNode_Array *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key,
|
|
PyHamtNode **new_node)
|
|
{
|
|
uint32_t idx = hamt_mask(hash, shift);
|
|
PyHamtNode *node = self->a_array[idx];
|
|
|
|
if (node == NULL) {
|
|
return W_NOT_FOUND;
|
|
}
|
|
|
|
PyHamtNode *sub_node = NULL;
|
|
hamt_without_t res = hamt_node_without(
|
|
(PyHamtNode *)node,
|
|
shift + 5, hash, key, &sub_node);
|
|
|
|
switch (res) {
|
|
case W_NOT_FOUND:
|
|
case W_ERROR:
|
|
assert(sub_node == NULL);
|
|
return res;
|
|
|
|
case W_NEWNODE: {
|
|
/* We need to replace a node at the `idx` index.
|
|
Clone this node and replace.
|
|
*/
|
|
assert(sub_node != NULL);
|
|
|
|
PyHamtNode_Array *clone = hamt_node_array_clone(self);
|
|
if (clone == NULL) {
|
|
Py_DECREF(sub_node);
|
|
return W_ERROR;
|
|
}
|
|
|
|
Py_SETREF(clone->a_array[idx], sub_node); /* borrow */
|
|
*new_node = (PyHamtNode*)clone; /* borrow */
|
|
return W_NEWNODE;
|
|
}
|
|
|
|
case W_EMPTY: {
|
|
assert(sub_node == NULL);
|
|
/* We need to remove a node at the `idx` index.
|
|
Calculate the size of the replacement Array node.
|
|
*/
|
|
Py_ssize_t new_count = self->a_count - 1;
|
|
|
|
if (new_count == 0) {
|
|
return W_EMPTY;
|
|
}
|
|
|
|
if (new_count >= 16) {
|
|
/* We convert Bitmap nodes to Array nodes, when a
|
|
Bitmap node needs to store more than 15 key/value
|
|
pairs. So we will create a new Array node if we
|
|
the number of key/values after deletion is still
|
|
greater than 15.
|
|
*/
|
|
|
|
PyHamtNode_Array *new = hamt_node_array_clone(self);
|
|
if (new == NULL) {
|
|
return W_ERROR;
|
|
}
|
|
new->a_count = new_count;
|
|
Py_CLEAR(new->a_array[idx]);
|
|
|
|
*new_node = (PyHamtNode*)new; /* borrow */
|
|
return W_NEWNODE;
|
|
}
|
|
|
|
/* New Array node would have less than 16 key/value
|
|
pairs. We need to create a replacement Bitmap node. */
|
|
|
|
Py_ssize_t bitmap_size = new_count * 2;
|
|
uint32_t bitmap = 0;
|
|
|
|
PyHamtNode_Bitmap *new = (PyHamtNode_Bitmap *)
|
|
hamt_node_bitmap_new(bitmap_size);
|
|
if (new == NULL) {
|
|
return W_ERROR;
|
|
}
|
|
|
|
Py_ssize_t new_i = 0;
|
|
for (uint32_t i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
if (i == idx) {
|
|
/* Skip the node we are deleting. */
|
|
continue;
|
|
}
|
|
|
|
PyHamtNode *node = self->a_array[i];
|
|
if (node == NULL) {
|
|
/* Skip any missing nodes. */
|
|
continue;
|
|
}
|
|
|
|
bitmap |= 1U << i;
|
|
|
|
if (IS_BITMAP_NODE(node)) {
|
|
PyHamtNode_Bitmap *child = (PyHamtNode_Bitmap *)node;
|
|
|
|
if (hamt_node_bitmap_count(child) == 1 &&
|
|
child->b_array[0] != NULL)
|
|
{
|
|
/* node is a Bitmap with one key/value pair, just
|
|
merge it into the new Bitmap node we're building.
|
|
|
|
Note that we don't inline Bitmap nodes that
|
|
have a NULL key -- those nodes point to another
|
|
tree level, and we cannot simply move tree levels
|
|
up or down.
|
|
*/
|
|
PyObject *key = child->b_array[0];
|
|
PyObject *val = child->b_array[1];
|
|
|
|
new->b_array[new_i] = Py_NewRef(key);
|
|
new->b_array[new_i + 1] = Py_NewRef(val);
|
|
}
|
|
else {
|
|
new->b_array[new_i] = NULL;
|
|
new->b_array[new_i + 1] = Py_NewRef(node);
|
|
}
|
|
}
|
|
else {
|
|
|
|
#ifdef Py_DEBUG
|
|
if (IS_COLLISION_NODE(node)) {
|
|
Py_ssize_t child_count = hamt_node_collision_count(
|
|
(PyHamtNode_Collision*)node);
|
|
assert(child_count > 1);
|
|
}
|
|
else if (IS_ARRAY_NODE(node)) {
|
|
assert(((PyHamtNode_Array*)node)->a_count >= 16);
|
|
}
|
|
#endif
|
|
|
|
/* Just copy the node into our new Bitmap */
|
|
new->b_array[new_i] = NULL;
|
|
new->b_array[new_i + 1] = Py_NewRef(node);
|
|
}
|
|
|
|
new_i += 2;
|
|
}
|
|
|
|
new->b_bitmap = bitmap;
|
|
*new_node = (PyHamtNode*)new; /* borrow */
|
|
return W_NEWNODE;
|
|
}
|
|
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static hamt_find_t
|
|
hamt_node_array_find(PyHamtNode_Array *self,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject **val)
|
|
{
|
|
/* Lookup `key` in the Array node `self`. Set the value
|
|
for the found key to 'val'. */
|
|
|
|
uint32_t idx = hamt_mask(hash, shift);
|
|
PyHamtNode *node;
|
|
|
|
node = self->a_array[idx];
|
|
if (node == NULL) {
|
|
return F_NOT_FOUND;
|
|
}
|
|
|
|
/* Dispatch to the generic hamt_node_find */
|
|
return hamt_node_find(node, shift + 5, hash, key, val);
|
|
}
|
|
|
|
static int
|
|
hamt_node_array_traverse(PyHamtNode_Array *self,
|
|
visitproc visit, void *arg)
|
|
{
|
|
/* Array's tp_traverse */
|
|
|
|
Py_ssize_t i;
|
|
|
|
for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
Py_VISIT(self->a_array[i]);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hamt_node_array_dealloc(PyHamtNode_Array *self)
|
|
{
|
|
/* Array's tp_dealloc */
|
|
|
|
Py_ssize_t i;
|
|
|
|
PyObject_GC_UnTrack(self);
|
|
Py_TRASHCAN_BEGIN(self, hamt_node_array_dealloc)
|
|
|
|
for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
Py_XDECREF(self->a_array[i]);
|
|
}
|
|
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
Py_TRASHCAN_END
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
static int
|
|
hamt_node_array_dump(PyHamtNode_Array *node,
|
|
_PyUnicodeWriter *writer, int level)
|
|
{
|
|
/* Debug build: __dump__() method implementation for Array nodes. */
|
|
|
|
Py_ssize_t i;
|
|
|
|
if (_hamt_dump_ident(writer, level + 1)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "ArrayNode(id=%p):\n", node)) {
|
|
goto error;
|
|
}
|
|
|
|
for (i = 0; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
if (node->a_array[i] == NULL) {
|
|
continue;
|
|
}
|
|
|
|
if (_hamt_dump_ident(writer, level + 2)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "%zd::\n", i)) {
|
|
goto error;
|
|
}
|
|
|
|
if (hamt_node_dump(node->a_array[i], writer, level + 1)) {
|
|
goto error;
|
|
}
|
|
|
|
if (_hamt_dump_format(writer, "\n")) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
return -1;
|
|
}
|
|
#endif /* Py_DEBUG */
|
|
|
|
|
|
/////////////////////////////////// Node Dispatch
|
|
|
|
|
|
static PyHamtNode *
|
|
hamt_node_assoc(PyHamtNode *node,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject *val, int* added_leaf)
|
|
{
|
|
/* Set key/value to the 'node' starting with the given shift/hash.
|
|
Return a new node, or the same node if key/value already
|
|
set.
|
|
|
|
added_leaf will be set to 1 if key/value wasn't in the
|
|
tree before.
|
|
|
|
This method automatically dispatches to the suitable
|
|
hamt_node_{nodetype}_assoc method.
|
|
*/
|
|
|
|
if (IS_BITMAP_NODE(node)) {
|
|
return hamt_node_bitmap_assoc(
|
|
(PyHamtNode_Bitmap *)node,
|
|
shift, hash, key, val, added_leaf);
|
|
}
|
|
else if (IS_ARRAY_NODE(node)) {
|
|
return hamt_node_array_assoc(
|
|
(PyHamtNode_Array *)node,
|
|
shift, hash, key, val, added_leaf);
|
|
}
|
|
else {
|
|
assert(IS_COLLISION_NODE(node));
|
|
return hamt_node_collision_assoc(
|
|
(PyHamtNode_Collision *)node,
|
|
shift, hash, key, val, added_leaf);
|
|
}
|
|
}
|
|
|
|
static hamt_without_t
|
|
hamt_node_without(PyHamtNode *node,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key,
|
|
PyHamtNode **new_node)
|
|
{
|
|
if (IS_BITMAP_NODE(node)) {
|
|
return hamt_node_bitmap_without(
|
|
(PyHamtNode_Bitmap *)node,
|
|
shift, hash, key,
|
|
new_node);
|
|
}
|
|
else if (IS_ARRAY_NODE(node)) {
|
|
return hamt_node_array_without(
|
|
(PyHamtNode_Array *)node,
|
|
shift, hash, key,
|
|
new_node);
|
|
}
|
|
else {
|
|
assert(IS_COLLISION_NODE(node));
|
|
return hamt_node_collision_without(
|
|
(PyHamtNode_Collision *)node,
|
|
shift, hash, key,
|
|
new_node);
|
|
}
|
|
}
|
|
|
|
static hamt_find_t
|
|
hamt_node_find(PyHamtNode *node,
|
|
uint32_t shift, int32_t hash,
|
|
PyObject *key, PyObject **val)
|
|
{
|
|
/* Find the key in the node starting with the given shift/hash.
|
|
|
|
If a value is found, the result will be set to F_FOUND, and
|
|
*val will point to the found value object.
|
|
|
|
If a value wasn't found, the result will be set to F_NOT_FOUND.
|
|
|
|
If an exception occurs during the call, the result will be F_ERROR.
|
|
|
|
This method automatically dispatches to the suitable
|
|
hamt_node_{nodetype}_find method.
|
|
*/
|
|
|
|
if (IS_BITMAP_NODE(node)) {
|
|
return hamt_node_bitmap_find(
|
|
(PyHamtNode_Bitmap *)node,
|
|
shift, hash, key, val);
|
|
|
|
}
|
|
else if (IS_ARRAY_NODE(node)) {
|
|
return hamt_node_array_find(
|
|
(PyHamtNode_Array *)node,
|
|
shift, hash, key, val);
|
|
}
|
|
else {
|
|
assert(IS_COLLISION_NODE(node));
|
|
return hamt_node_collision_find(
|
|
(PyHamtNode_Collision *)node,
|
|
shift, hash, key, val);
|
|
}
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
static int
|
|
hamt_node_dump(PyHamtNode *node,
|
|
_PyUnicodeWriter *writer, int level)
|
|
{
|
|
/* Debug build: __dump__() method implementation for a node.
|
|
|
|
This method automatically dispatches to the suitable
|
|
hamt_node_{nodetype})_dump method.
|
|
*/
|
|
|
|
if (IS_BITMAP_NODE(node)) {
|
|
return hamt_node_bitmap_dump(
|
|
(PyHamtNode_Bitmap *)node, writer, level);
|
|
}
|
|
else if (IS_ARRAY_NODE(node)) {
|
|
return hamt_node_array_dump(
|
|
(PyHamtNode_Array *)node, writer, level);
|
|
}
|
|
else {
|
|
assert(IS_COLLISION_NODE(node));
|
|
return hamt_node_collision_dump(
|
|
(PyHamtNode_Collision *)node, writer, level);
|
|
}
|
|
}
|
|
#endif /* Py_DEBUG */
|
|
|
|
|
|
/////////////////////////////////// Iterators: Machinery
|
|
|
|
|
|
static hamt_iter_t
|
|
hamt_iterator_next(PyHamtIteratorState *iter, PyObject **key, PyObject **val);
|
|
|
|
|
|
static void
|
|
hamt_iterator_init(PyHamtIteratorState *iter, PyHamtNode *root)
|
|
{
|
|
for (uint32_t i = 0; i < _Py_HAMT_MAX_TREE_DEPTH; i++) {
|
|
iter->i_nodes[i] = NULL;
|
|
iter->i_pos[i] = 0;
|
|
}
|
|
|
|
iter->i_level = 0;
|
|
|
|
/* Note: we don't incref/decref nodes in i_nodes. */
|
|
iter->i_nodes[0] = root;
|
|
}
|
|
|
|
static hamt_iter_t
|
|
hamt_iterator_bitmap_next(PyHamtIteratorState *iter,
|
|
PyObject **key, PyObject **val)
|
|
{
|
|
int8_t level = iter->i_level;
|
|
|
|
PyHamtNode_Bitmap *node = (PyHamtNode_Bitmap *)(iter->i_nodes[level]);
|
|
Py_ssize_t pos = iter->i_pos[level];
|
|
|
|
if (pos + 1 >= Py_SIZE(node)) {
|
|
#ifdef Py_DEBUG
|
|
assert(iter->i_level >= 0);
|
|
iter->i_nodes[iter->i_level] = NULL;
|
|
#endif
|
|
iter->i_level--;
|
|
return hamt_iterator_next(iter, key, val);
|
|
}
|
|
|
|
if (node->b_array[pos] == NULL) {
|
|
iter->i_pos[level] = pos + 2;
|
|
|
|
int8_t next_level = level + 1;
|
|
assert(next_level < _Py_HAMT_MAX_TREE_DEPTH);
|
|
iter->i_level = next_level;
|
|
iter->i_pos[next_level] = 0;
|
|
iter->i_nodes[next_level] = (PyHamtNode *)
|
|
node->b_array[pos + 1];
|
|
|
|
return hamt_iterator_next(iter, key, val);
|
|
}
|
|
|
|
*key = node->b_array[pos];
|
|
*val = node->b_array[pos + 1];
|
|
iter->i_pos[level] = pos + 2;
|
|
return I_ITEM;
|
|
}
|
|
|
|
static hamt_iter_t
|
|
hamt_iterator_collision_next(PyHamtIteratorState *iter,
|
|
PyObject **key, PyObject **val)
|
|
{
|
|
int8_t level = iter->i_level;
|
|
|
|
PyHamtNode_Collision *node = (PyHamtNode_Collision *)(iter->i_nodes[level]);
|
|
Py_ssize_t pos = iter->i_pos[level];
|
|
|
|
if (pos + 1 >= Py_SIZE(node)) {
|
|
#ifdef Py_DEBUG
|
|
assert(iter->i_level >= 0);
|
|
iter->i_nodes[iter->i_level] = NULL;
|
|
#endif
|
|
iter->i_level--;
|
|
return hamt_iterator_next(iter, key, val);
|
|
}
|
|
|
|
*key = node->c_array[pos];
|
|
*val = node->c_array[pos + 1];
|
|
iter->i_pos[level] = pos + 2;
|
|
return I_ITEM;
|
|
}
|
|
|
|
static hamt_iter_t
|
|
hamt_iterator_array_next(PyHamtIteratorState *iter,
|
|
PyObject **key, PyObject **val)
|
|
{
|
|
int8_t level = iter->i_level;
|
|
|
|
PyHamtNode_Array *node = (PyHamtNode_Array *)(iter->i_nodes[level]);
|
|
Py_ssize_t pos = iter->i_pos[level];
|
|
|
|
if (pos >= HAMT_ARRAY_NODE_SIZE) {
|
|
#ifdef Py_DEBUG
|
|
assert(iter->i_level >= 0);
|
|
iter->i_nodes[iter->i_level] = NULL;
|
|
#endif
|
|
iter->i_level--;
|
|
return hamt_iterator_next(iter, key, val);
|
|
}
|
|
|
|
for (Py_ssize_t i = pos; i < HAMT_ARRAY_NODE_SIZE; i++) {
|
|
if (node->a_array[i] != NULL) {
|
|
iter->i_pos[level] = i + 1;
|
|
|
|
int8_t next_level = level + 1;
|
|
assert(next_level < _Py_HAMT_MAX_TREE_DEPTH);
|
|
iter->i_pos[next_level] = 0;
|
|
iter->i_nodes[next_level] = node->a_array[i];
|
|
iter->i_level = next_level;
|
|
|
|
return hamt_iterator_next(iter, key, val);
|
|
}
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
assert(iter->i_level >= 0);
|
|
iter->i_nodes[iter->i_level] = NULL;
|
|
#endif
|
|
|
|
iter->i_level--;
|
|
return hamt_iterator_next(iter, key, val);
|
|
}
|
|
|
|
static hamt_iter_t
|
|
hamt_iterator_next(PyHamtIteratorState *iter, PyObject **key, PyObject **val)
|
|
{
|
|
if (iter->i_level < 0) {
|
|
return I_END;
|
|
}
|
|
|
|
assert(iter->i_level < _Py_HAMT_MAX_TREE_DEPTH);
|
|
|
|
PyHamtNode *current = iter->i_nodes[iter->i_level];
|
|
|
|
if (IS_BITMAP_NODE(current)) {
|
|
return hamt_iterator_bitmap_next(iter, key, val);
|
|
}
|
|
else if (IS_ARRAY_NODE(current)) {
|
|
return hamt_iterator_array_next(iter, key, val);
|
|
}
|
|
else {
|
|
assert(IS_COLLISION_NODE(current));
|
|
return hamt_iterator_collision_next(iter, key, val);
|
|
}
|
|
}
|
|
|
|
|
|
/////////////////////////////////// HAMT high-level functions
|
|
|
|
|
|
PyHamtObject *
|
|
_PyHamt_Assoc(PyHamtObject *o, PyObject *key, PyObject *val)
|
|
{
|
|
int32_t key_hash;
|
|
int added_leaf = 0;
|
|
PyHamtNode *new_root;
|
|
PyHamtObject *new_o;
|
|
|
|
key_hash = hamt_hash(key);
|
|
if (key_hash == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
new_root = hamt_node_assoc(
|
|
(PyHamtNode *)(o->h_root),
|
|
0, key_hash, key, val, &added_leaf);
|
|
if (new_root == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (new_root == o->h_root) {
|
|
Py_DECREF(new_root);
|
|
return (PyHamtObject*)Py_NewRef(o);
|
|
}
|
|
|
|
new_o = hamt_alloc();
|
|
if (new_o == NULL) {
|
|
Py_DECREF(new_root);
|
|
return NULL;
|
|
}
|
|
|
|
new_o->h_root = new_root; /* borrow */
|
|
new_o->h_count = added_leaf ? o->h_count + 1 : o->h_count;
|
|
|
|
return new_o;
|
|
}
|
|
|
|
PyHamtObject *
|
|
_PyHamt_Without(PyHamtObject *o, PyObject *key)
|
|
{
|
|
int32_t key_hash = hamt_hash(key);
|
|
if (key_hash == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
PyHamtNode *new_root = NULL;
|
|
|
|
hamt_without_t res = hamt_node_without(
|
|
(PyHamtNode *)(o->h_root),
|
|
0, key_hash, key,
|
|
&new_root);
|
|
|
|
switch (res) {
|
|
case W_ERROR:
|
|
return NULL;
|
|
case W_EMPTY:
|
|
return _PyHamt_New();
|
|
case W_NOT_FOUND:
|
|
return (PyHamtObject*)Py_NewRef(o);
|
|
case W_NEWNODE: {
|
|
assert(new_root != NULL);
|
|
|
|
PyHamtObject *new_o = hamt_alloc();
|
|
if (new_o == NULL) {
|
|
Py_DECREF(new_root);
|
|
return NULL;
|
|
}
|
|
|
|
new_o->h_root = new_root; /* borrow */
|
|
new_o->h_count = o->h_count - 1;
|
|
assert(new_o->h_count >= 0);
|
|
return new_o;
|
|
}
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static hamt_find_t
|
|
hamt_find(PyHamtObject *o, PyObject *key, PyObject **val)
|
|
{
|
|
if (o->h_count == 0) {
|
|
return F_NOT_FOUND;
|
|
}
|
|
|
|
int32_t key_hash = hamt_hash(key);
|
|
if (key_hash == -1) {
|
|
return F_ERROR;
|
|
}
|
|
|
|
return hamt_node_find(o->h_root, 0, key_hash, key, val);
|
|
}
|
|
|
|
|
|
int
|
|
_PyHamt_Find(PyHamtObject *o, PyObject *key, PyObject **val)
|
|
{
|
|
hamt_find_t res = hamt_find(o, key, val);
|
|
switch (res) {
|
|
case F_ERROR:
|
|
return -1;
|
|
case F_NOT_FOUND:
|
|
return 0;
|
|
case F_FOUND:
|
|
return 1;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
_PyHamt_Eq(PyHamtObject *v, PyHamtObject *w)
|
|
{
|
|
if (v == w) {
|
|
return 1;
|
|
}
|
|
|
|
if (v->h_count != w->h_count) {
|
|
return 0;
|
|
}
|
|
|
|
PyHamtIteratorState iter;
|
|
hamt_iter_t iter_res;
|
|
hamt_find_t find_res;
|
|
PyObject *v_key;
|
|
PyObject *v_val;
|
|
PyObject *w_val;
|
|
|
|
hamt_iterator_init(&iter, v->h_root);
|
|
|
|
do {
|
|
iter_res = hamt_iterator_next(&iter, &v_key, &v_val);
|
|
if (iter_res == I_ITEM) {
|
|
find_res = hamt_find(w, v_key, &w_val);
|
|
switch (find_res) {
|
|
case F_ERROR:
|
|
return -1;
|
|
|
|
case F_NOT_FOUND:
|
|
return 0;
|
|
|
|
case F_FOUND: {
|
|
int cmp = PyObject_RichCompareBool(v_val, w_val, Py_EQ);
|
|
if (cmp < 0) {
|
|
return -1;
|
|
}
|
|
if (cmp == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} while (iter_res != I_END);
|
|
|
|
return 1;
|
|
}
|
|
|
|
Py_ssize_t
|
|
_PyHamt_Len(PyHamtObject *o)
|
|
{
|
|
return o->h_count;
|
|
}
|
|
|
|
static PyHamtObject *
|
|
hamt_alloc(void)
|
|
{
|
|
PyHamtObject *o;
|
|
o = PyObject_GC_New(PyHamtObject, &_PyHamt_Type);
|
|
if (o == NULL) {
|
|
return NULL;
|
|
}
|
|
o->h_count = 0;
|
|
o->h_root = NULL;
|
|
o->h_weakreflist = NULL;
|
|
PyObject_GC_Track(o);
|
|
return o;
|
|
}
|
|
|
|
#define _empty_hamt \
|
|
(&_Py_INTERP_SINGLETON(_PyInterpreterState_Get(), hamt_empty))
|
|
|
|
PyHamtObject *
|
|
_PyHamt_New(void)
|
|
{
|
|
/* HAMT is an immutable object so we can easily cache an
|
|
empty instance. */
|
|
return (PyHamtObject*)Py_NewRef(_empty_hamt);
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
static PyObject *
|
|
hamt_dump(PyHamtObject *self)
|
|
{
|
|
_PyUnicodeWriter writer;
|
|
|
|
_PyUnicodeWriter_Init(&writer);
|
|
|
|
if (_hamt_dump_format(&writer, "HAMT(len=%zd):\n", self->h_count)) {
|
|
goto error;
|
|
}
|
|
|
|
if (hamt_node_dump(self->h_root, &writer, 0)) {
|
|
goto error;
|
|
}
|
|
|
|
return _PyUnicodeWriter_Finish(&writer);
|
|
|
|
error:
|
|
_PyUnicodeWriter_Dealloc(&writer);
|
|
return NULL;
|
|
}
|
|
#endif /* Py_DEBUG */
|
|
|
|
|
|
/////////////////////////////////// Iterators: Shared Iterator Implementation
|
|
|
|
|
|
static int
|
|
hamt_baseiter_tp_clear(PyHamtIterator *it)
|
|
{
|
|
Py_CLEAR(it->hi_obj);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hamt_baseiter_tp_dealloc(PyHamtIterator *it)
|
|
{
|
|
PyObject_GC_UnTrack(it);
|
|
(void)hamt_baseiter_tp_clear(it);
|
|
PyObject_GC_Del(it);
|
|
}
|
|
|
|
static int
|
|
hamt_baseiter_tp_traverse(PyHamtIterator *it, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(it->hi_obj);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_baseiter_tp_iternext(PyHamtIterator *it)
|
|
{
|
|
PyObject *key;
|
|
PyObject *val;
|
|
hamt_iter_t res = hamt_iterator_next(&it->hi_iter, &key, &val);
|
|
|
|
switch (res) {
|
|
case I_END:
|
|
PyErr_SetNone(PyExc_StopIteration);
|
|
return NULL;
|
|
|
|
case I_ITEM: {
|
|
return (*(it->hi_yield))(key, val);
|
|
}
|
|
|
|
default: {
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
static Py_ssize_t
|
|
hamt_baseiter_tp_len(PyHamtIterator *it)
|
|
{
|
|
return it->hi_obj->h_count;
|
|
}
|
|
|
|
static PyMappingMethods PyHamtIterator_as_mapping = {
|
|
(lenfunc)hamt_baseiter_tp_len,
|
|
};
|
|
|
|
static PyObject *
|
|
hamt_baseiter_new(PyTypeObject *type, binaryfunc yield, PyHamtObject *o)
|
|
{
|
|
PyHamtIterator *it = PyObject_GC_New(PyHamtIterator, type);
|
|
if (it == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
it->hi_obj = (PyHamtObject*)Py_NewRef(o);
|
|
it->hi_yield = yield;
|
|
|
|
hamt_iterator_init(&it->hi_iter, o->h_root);
|
|
|
|
return (PyObject*)it;
|
|
}
|
|
|
|
#define ITERATOR_TYPE_SHARED_SLOTS \
|
|
.tp_basicsize = sizeof(PyHamtIterator), \
|
|
.tp_itemsize = 0, \
|
|
.tp_as_mapping = &PyHamtIterator_as_mapping, \
|
|
.tp_dealloc = (destructor)hamt_baseiter_tp_dealloc, \
|
|
.tp_getattro = PyObject_GenericGetAttr, \
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, \
|
|
.tp_traverse = (traverseproc)hamt_baseiter_tp_traverse, \
|
|
.tp_clear = (inquiry)hamt_baseiter_tp_clear, \
|
|
.tp_iter = PyObject_SelfIter, \
|
|
.tp_iternext = (iternextfunc)hamt_baseiter_tp_iternext,
|
|
|
|
|
|
/////////////////////////////////// _PyHamtItems_Type
|
|
|
|
|
|
PyTypeObject _PyHamtItems_Type = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"items",
|
|
ITERATOR_TYPE_SHARED_SLOTS
|
|
};
|
|
|
|
static PyObject *
|
|
hamt_iter_yield_items(PyObject *key, PyObject *val)
|
|
{
|
|
return PyTuple_Pack(2, key, val);
|
|
}
|
|
|
|
PyObject *
|
|
_PyHamt_NewIterItems(PyHamtObject *o)
|
|
{
|
|
return hamt_baseiter_new(
|
|
&_PyHamtItems_Type, hamt_iter_yield_items, o);
|
|
}
|
|
|
|
|
|
/////////////////////////////////// _PyHamtKeys_Type
|
|
|
|
|
|
PyTypeObject _PyHamtKeys_Type = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"keys",
|
|
ITERATOR_TYPE_SHARED_SLOTS
|
|
};
|
|
|
|
static PyObject *
|
|
hamt_iter_yield_keys(PyObject *key, PyObject *val)
|
|
{
|
|
return Py_NewRef(key);
|
|
}
|
|
|
|
PyObject *
|
|
_PyHamt_NewIterKeys(PyHamtObject *o)
|
|
{
|
|
return hamt_baseiter_new(
|
|
&_PyHamtKeys_Type, hamt_iter_yield_keys, o);
|
|
}
|
|
|
|
|
|
/////////////////////////////////// _PyHamtValues_Type
|
|
|
|
|
|
PyTypeObject _PyHamtValues_Type = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"values",
|
|
ITERATOR_TYPE_SHARED_SLOTS
|
|
};
|
|
|
|
static PyObject *
|
|
hamt_iter_yield_values(PyObject *key, PyObject *val)
|
|
{
|
|
return Py_NewRef(val);
|
|
}
|
|
|
|
PyObject *
|
|
_PyHamt_NewIterValues(PyHamtObject *o)
|
|
{
|
|
return hamt_baseiter_new(
|
|
&_PyHamtValues_Type, hamt_iter_yield_values, o);
|
|
}
|
|
|
|
|
|
/////////////////////////////////// _PyHamt_Type
|
|
|
|
|
|
#ifdef Py_DEBUG
|
|
static PyObject *
|
|
hamt_dump(PyHamtObject *self);
|
|
#endif
|
|
|
|
|
|
static PyObject *
|
|
hamt_tp_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
return (PyObject*)_PyHamt_New();
|
|
}
|
|
|
|
static int
|
|
hamt_tp_clear(PyHamtObject *self)
|
|
{
|
|
Py_CLEAR(self->h_root);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
hamt_tp_traverse(PyHamtObject *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(self->h_root);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hamt_tp_dealloc(PyHamtObject *self)
|
|
{
|
|
if (self == _empty_hamt) {
|
|
/* The empty one is statically allocated. */
|
|
#ifdef Py_DEBUG
|
|
_Py_FatalRefcountError("deallocating the empty hamt singleton");
|
|
#else
|
|
return;
|
|
#endif
|
|
}
|
|
|
|
PyObject_GC_UnTrack(self);
|
|
if (self->h_weakreflist != NULL) {
|
|
PyObject_ClearWeakRefs((PyObject*)self);
|
|
}
|
|
(void)hamt_tp_clear(self);
|
|
Py_TYPE(self)->tp_free(self);
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
hamt_tp_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
if (!PyHamt_Check(v) || !PyHamt_Check(w) || (op != Py_EQ && op != Py_NE)) {
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
|
|
int res = _PyHamt_Eq((PyHamtObject *)v, (PyHamtObject *)w);
|
|
if (res < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (op == Py_NE) {
|
|
res = !res;
|
|
}
|
|
|
|
if (res) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
static int
|
|
hamt_tp_contains(PyHamtObject *self, PyObject *key)
|
|
{
|
|
PyObject *val;
|
|
return _PyHamt_Find(self, key, &val);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_tp_subscript(PyHamtObject *self, PyObject *key)
|
|
{
|
|
PyObject *val;
|
|
hamt_find_t res = hamt_find(self, key, &val);
|
|
switch (res) {
|
|
case F_ERROR:
|
|
return NULL;
|
|
case F_FOUND:
|
|
return Py_NewRef(val);
|
|
case F_NOT_FOUND:
|
|
PyErr_SetObject(PyExc_KeyError, key);
|
|
return NULL;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static Py_ssize_t
|
|
hamt_tp_len(PyHamtObject *self)
|
|
{
|
|
return _PyHamt_Len(self);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_tp_iter(PyHamtObject *self)
|
|
{
|
|
return _PyHamt_NewIterKeys(self);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_py_set(PyHamtObject *self, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *val;
|
|
|
|
if (!PyArg_UnpackTuple(args, "set", 2, 2, &key, &val)) {
|
|
return NULL;
|
|
}
|
|
|
|
return (PyObject *)_PyHamt_Assoc(self, key, val);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_py_get(PyHamtObject *self, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *def = NULL;
|
|
|
|
if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &def)) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *val = NULL;
|
|
hamt_find_t res = hamt_find(self, key, &val);
|
|
switch (res) {
|
|
case F_ERROR:
|
|
return NULL;
|
|
case F_FOUND:
|
|
return Py_NewRef(val);
|
|
case F_NOT_FOUND:
|
|
if (def == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return Py_NewRef(def);
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_py_delete(PyHamtObject *self, PyObject *key)
|
|
{
|
|
return (PyObject *)_PyHamt_Without(self, key);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_py_items(PyHamtObject *self, PyObject *args)
|
|
{
|
|
return _PyHamt_NewIterItems(self);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_py_values(PyHamtObject *self, PyObject *args)
|
|
{
|
|
return _PyHamt_NewIterValues(self);
|
|
}
|
|
|
|
static PyObject *
|
|
hamt_py_keys(PyHamtObject *self, PyObject *Py_UNUSED(args))
|
|
{
|
|
return _PyHamt_NewIterKeys(self);
|
|
}
|
|
|
|
#ifdef Py_DEBUG
|
|
static PyObject *
|
|
hamt_py_dump(PyHamtObject *self, PyObject *Py_UNUSED(args))
|
|
{
|
|
return hamt_dump(self);
|
|
}
|
|
#endif
|
|
|
|
|
|
static PyMethodDef PyHamt_methods[] = {
|
|
{"set", _PyCFunction_CAST(hamt_py_set), METH_VARARGS, NULL},
|
|
{"get", _PyCFunction_CAST(hamt_py_get), METH_VARARGS, NULL},
|
|
{"delete", _PyCFunction_CAST(hamt_py_delete), METH_O, NULL},
|
|
{"items", _PyCFunction_CAST(hamt_py_items), METH_NOARGS, NULL},
|
|
{"keys", _PyCFunction_CAST(hamt_py_keys), METH_NOARGS, NULL},
|
|
{"values", _PyCFunction_CAST(hamt_py_values), METH_NOARGS, NULL},
|
|
#ifdef Py_DEBUG
|
|
{"__dump__", _PyCFunction_CAST(hamt_py_dump), METH_NOARGS, NULL},
|
|
#endif
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static PySequenceMethods PyHamt_as_sequence = {
|
|
0, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)hamt_tp_contains, /* sq_contains */
|
|
0, /* sq_inplace_concat */
|
|
0, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static PyMappingMethods PyHamt_as_mapping = {
|
|
(lenfunc)hamt_tp_len, /* mp_length */
|
|
(binaryfunc)hamt_tp_subscript, /* mp_subscript */
|
|
};
|
|
|
|
PyTypeObject _PyHamt_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"hamt",
|
|
sizeof(PyHamtObject),
|
|
.tp_methods = PyHamt_methods,
|
|
.tp_as_mapping = &PyHamt_as_mapping,
|
|
.tp_as_sequence = &PyHamt_as_sequence,
|
|
.tp_iter = (getiterfunc)hamt_tp_iter,
|
|
.tp_dealloc = (destructor)hamt_tp_dealloc,
|
|
.tp_getattro = PyObject_GenericGetAttr,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_richcompare = hamt_tp_richcompare,
|
|
.tp_traverse = (traverseproc)hamt_tp_traverse,
|
|
.tp_clear = (inquiry)hamt_tp_clear,
|
|
.tp_new = hamt_tp_new,
|
|
.tp_weaklistoffset = offsetof(PyHamtObject, h_weakreflist),
|
|
.tp_hash = PyObject_HashNotImplemented,
|
|
};
|
|
|
|
|
|
/////////////////////////////////// Tree Node Types
|
|
|
|
|
|
PyTypeObject _PyHamt_ArrayNode_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"hamt_array_node",
|
|
sizeof(PyHamtNode_Array),
|
|
0,
|
|
.tp_dealloc = (destructor)hamt_node_array_dealloc,
|
|
.tp_getattro = PyObject_GenericGetAttr,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_traverse = (traverseproc)hamt_node_array_traverse,
|
|
.tp_free = PyObject_GC_Del,
|
|
.tp_hash = PyObject_HashNotImplemented,
|
|
};
|
|
|
|
PyTypeObject _PyHamt_BitmapNode_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"hamt_bitmap_node",
|
|
sizeof(PyHamtNode_Bitmap) - sizeof(PyObject *),
|
|
sizeof(PyObject *),
|
|
.tp_dealloc = (destructor)hamt_node_bitmap_dealloc,
|
|
.tp_getattro = PyObject_GenericGetAttr,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_traverse = (traverseproc)hamt_node_bitmap_traverse,
|
|
.tp_free = PyObject_GC_Del,
|
|
.tp_hash = PyObject_HashNotImplemented,
|
|
};
|
|
|
|
PyTypeObject _PyHamt_CollisionNode_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"hamt_collision_node",
|
|
sizeof(PyHamtNode_Collision) - sizeof(PyObject *),
|
|
sizeof(PyObject *),
|
|
.tp_dealloc = (destructor)hamt_node_collision_dealloc,
|
|
.tp_getattro = PyObject_GenericGetAttr,
|
|
.tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,
|
|
.tp_traverse = (traverseproc)hamt_node_collision_traverse,
|
|
.tp_free = PyObject_GC_Del,
|
|
.tp_hash = PyObject_HashNotImplemented,
|
|
};
|