mirror of
https://github.com/python/cpython.git
synced 2024-12-14 20:34:12 +08:00
e75ff35af2
Extract cross-platform condition variable support into a separate file and provide user-mode non-recursive locks for Windows.
444 lines
10 KiB
C
444 lines
10 KiB
C
|
|
/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
|
|
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
|
|
/* Eliminated some memory leaks, gsw@agere.com */
|
|
|
|
#include <windows.h>
|
|
#include <limits.h>
|
|
#ifdef HAVE_PROCESS_H
|
|
#include <process.h>
|
|
#endif
|
|
|
|
/* options */
|
|
#ifndef _PY_USE_CV_LOCKS
|
|
#define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */
|
|
#endif
|
|
|
|
/* Now, define a non-recursive mutex using either condition variables
|
|
* and critical sections (fast) or using operating system mutexes
|
|
* (slow)
|
|
*/
|
|
|
|
#if _PY_USE_CV_LOCKS
|
|
|
|
#include "condvar.h"
|
|
|
|
typedef struct _NRMUTEX
|
|
{
|
|
PyMUTEX_T cs;
|
|
PyCOND_T cv;
|
|
int locked;
|
|
} NRMUTEX;
|
|
typedef NRMUTEX *PNRMUTEX;
|
|
|
|
PNRMUTEX
|
|
AllocNonRecursiveMutex()
|
|
{
|
|
PNRMUTEX m = (PNRMUTEX)malloc(sizeof(NRMUTEX));
|
|
if (!m)
|
|
return NULL;
|
|
if (PyCOND_INIT(&m->cv))
|
|
goto fail;
|
|
if (PyMUTEX_INIT(&m->cs)) {
|
|
PyCOND_FINI(&m->cv);
|
|
goto fail;
|
|
}
|
|
m->locked = 0;
|
|
return m;
|
|
fail:
|
|
free(m);
|
|
return NULL;
|
|
}
|
|
|
|
VOID
|
|
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
if (mutex) {
|
|
PyCOND_FINI(&mutex->cv);
|
|
PyMUTEX_FINI(&mutex->cs);
|
|
free(mutex);
|
|
}
|
|
}
|
|
|
|
DWORD
|
|
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
|
{
|
|
DWORD result = WAIT_OBJECT_0;
|
|
if (PyMUTEX_LOCK(&mutex->cs))
|
|
return WAIT_FAILED;
|
|
if (milliseconds == INFINITE) {
|
|
while (mutex->locked) {
|
|
if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
|
|
result = WAIT_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
} else if (milliseconds != 0) {
|
|
/* wait at least until the target */
|
|
DWORD now, target = GetTickCount() + milliseconds;
|
|
while (mutex->locked) {
|
|
if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, milliseconds*1000) < 0) {
|
|
result = WAIT_FAILED;
|
|
break;
|
|
}
|
|
now = GetTickCount();
|
|
if (target <= now)
|
|
break;
|
|
milliseconds = target-now;
|
|
}
|
|
}
|
|
if (!mutex->locked) {
|
|
mutex->locked = 1;
|
|
result = WAIT_OBJECT_0;
|
|
} else if (result == WAIT_OBJECT_0)
|
|
result = WAIT_TIMEOUT;
|
|
/* else, it is WAIT_FAILED */
|
|
PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
|
|
return result;
|
|
}
|
|
|
|
BOOL
|
|
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
BOOL result;
|
|
if (PyMUTEX_LOCK(&mutex->cs))
|
|
return FALSE;
|
|
mutex->locked = 0;
|
|
result = PyCOND_SIGNAL(&mutex->cv);
|
|
result &= PyMUTEX_UNLOCK(&mutex->cs);
|
|
return result;
|
|
}
|
|
|
|
#else /* if ! _PY_USE_CV_LOCKS */
|
|
|
|
/* NR-locks based on a kernel mutex */
|
|
#define PNRMUTEX HANDLE
|
|
|
|
PNRMUTEX
|
|
AllocNonRecursiveMutex()
|
|
{
|
|
return CreateSemaphore(NULL, 1, 1, NULL);
|
|
}
|
|
|
|
VOID
|
|
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
/* No in-use check */
|
|
CloseHandle(mutex);
|
|
}
|
|
|
|
DWORD
|
|
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
|
{
|
|
return WaitForSingleObject(mutex, milliseconds);
|
|
}
|
|
|
|
BOOL
|
|
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
return ReleaseSemaphore(mutex, 1, NULL);
|
|
}
|
|
#endif /* _PY_USE_CV_LOCKS */
|
|
|
|
long PyThread_get_thread_ident(void);
|
|
|
|
/*
|
|
* Initialization of the C package, should not be needed.
|
|
*/
|
|
static void
|
|
PyThread__init_thread(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Thread support.
|
|
*/
|
|
|
|
typedef struct {
|
|
void (*func)(void*);
|
|
void *arg;
|
|
} callobj;
|
|
|
|
/* thunker to call adapt between the function type used by the system's
|
|
thread start function and the internally used one. */
|
|
#if defined(MS_WINCE)
|
|
static DWORD WINAPI
|
|
#else
|
|
static unsigned __stdcall
|
|
#endif
|
|
bootstrap(void *call)
|
|
{
|
|
callobj *obj = (callobj*)call;
|
|
void (*func)(void*) = obj->func;
|
|
void *arg = obj->arg;
|
|
HeapFree(GetProcessHeap(), 0, obj);
|
|
func(arg);
|
|
return 0;
|
|
}
|
|
|
|
long
|
|
PyThread_start_new_thread(void (*func)(void *), void *arg)
|
|
{
|
|
HANDLE hThread;
|
|
unsigned threadID;
|
|
callobj *obj;
|
|
|
|
dprintf(("%ld: PyThread_start_new_thread called\n",
|
|
PyThread_get_thread_ident()));
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
|
|
if (!obj)
|
|
return -1;
|
|
obj->func = func;
|
|
obj->arg = arg;
|
|
#if defined(MS_WINCE)
|
|
hThread = CreateThread(NULL,
|
|
Py_SAFE_DOWNCAST(_pythread_stacksize, Py_ssize_t, SIZE_T),
|
|
bootstrap, obj, 0, &threadID);
|
|
#else
|
|
hThread = (HANDLE)_beginthreadex(0,
|
|
Py_SAFE_DOWNCAST(_pythread_stacksize,
|
|
Py_ssize_t, unsigned int),
|
|
bootstrap, obj,
|
|
0, &threadID);
|
|
#endif
|
|
if (hThread == 0) {
|
|
#if defined(MS_WINCE)
|
|
/* Save error in variable, to prevent PyThread_get_thread_ident
|
|
from clobbering it. */
|
|
unsigned e = GetLastError();
|
|
dprintf(("%ld: PyThread_start_new_thread failed, win32 error code %u\n",
|
|
PyThread_get_thread_ident(), e));
|
|
#else
|
|
/* I've seen errno == EAGAIN here, which means "there are
|
|
* too many threads".
|
|
*/
|
|
int e = errno;
|
|
dprintf(("%ld: PyThread_start_new_thread failed, errno %d\n",
|
|
PyThread_get_thread_ident(), e));
|
|
#endif
|
|
threadID = (unsigned)-1;
|
|
HeapFree(GetProcessHeap(), 0, obj);
|
|
}
|
|
else {
|
|
dprintf(("%ld: PyThread_start_new_thread succeeded: %p\n",
|
|
PyThread_get_thread_ident(), (void*)hThread));
|
|
CloseHandle(hThread);
|
|
}
|
|
return (long) threadID;
|
|
}
|
|
|
|
/*
|
|
* Return the thread Id instead of an handle. The Id is said to uniquely identify the
|
|
* thread in the system
|
|
*/
|
|
long
|
|
PyThread_get_thread_ident(void)
|
|
{
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
return GetCurrentThreadId();
|
|
}
|
|
|
|
void
|
|
PyThread_exit_thread(void)
|
|
{
|
|
dprintf(("%ld: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
|
|
if (!initialized)
|
|
exit(0);
|
|
#if defined(MS_WINCE)
|
|
ExitThread(0);
|
|
#else
|
|
_endthreadex(0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Lock support. It has too be implemented as semaphores.
|
|
* I [Dag] tried to implement it with mutex but I could find a way to
|
|
* tell whether a thread already own the lock or not.
|
|
*/
|
|
PyThread_type_lock
|
|
PyThread_allocate_lock(void)
|
|
{
|
|
PNRMUTEX aLock;
|
|
|
|
dprintf(("PyThread_allocate_lock called\n"));
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
aLock = AllocNonRecursiveMutex() ;
|
|
|
|
dprintf(("%ld: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));
|
|
|
|
return (PyThread_type_lock) aLock;
|
|
}
|
|
|
|
void
|
|
PyThread_free_lock(PyThread_type_lock aLock)
|
|
{
|
|
dprintf(("%ld: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
|
|
|
|
FreeNonRecursiveMutex(aLock) ;
|
|
}
|
|
|
|
/*
|
|
* Return 1 on success if the lock was acquired
|
|
*
|
|
* and 0 if the lock was not acquired. This means a 0 is returned
|
|
* if the lock has already been acquired by this thread!
|
|
*/
|
|
PyLockStatus
|
|
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
|
|
PY_TIMEOUT_T microseconds, int intr_flag)
|
|
{
|
|
/* Fow now, intr_flag does nothing on Windows, and lock acquires are
|
|
* uninterruptible. */
|
|
PyLockStatus success;
|
|
PY_TIMEOUT_T milliseconds;
|
|
|
|
if (microseconds >= 0) {
|
|
milliseconds = microseconds / 1000;
|
|
if (microseconds % 1000 > 0)
|
|
++milliseconds;
|
|
if ((DWORD) milliseconds != milliseconds)
|
|
Py_FatalError("Timeout too large for a DWORD, "
|
|
"please check PY_TIMEOUT_MAX");
|
|
}
|
|
else
|
|
milliseconds = INFINITE;
|
|
|
|
dprintf(("%ld: PyThread_acquire_lock_timed(%p, %lld) called\n",
|
|
PyThread_get_thread_ident(), aLock, microseconds));
|
|
|
|
if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock,
|
|
(DWORD)milliseconds) == WAIT_OBJECT_0) {
|
|
success = PY_LOCK_ACQUIRED;
|
|
}
|
|
else {
|
|
success = PY_LOCK_FAILURE;
|
|
}
|
|
|
|
dprintf(("%ld: PyThread_acquire_lock(%p, %lld) -> %d\n",
|
|
PyThread_get_thread_ident(), aLock, microseconds, success));
|
|
|
|
return success;
|
|
}
|
|
int
|
|
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
|
|
{
|
|
return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
|
|
}
|
|
|
|
void
|
|
PyThread_release_lock(PyThread_type_lock aLock)
|
|
{
|
|
dprintf(("%ld: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
|
|
|
|
if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
|
|
dprintf(("%ld: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError()));
|
|
}
|
|
|
|
/* minimum/maximum thread stack sizes supported */
|
|
#define THREAD_MIN_STACKSIZE 0x8000 /* 32kB */
|
|
#define THREAD_MAX_STACKSIZE 0x10000000 /* 256MB */
|
|
|
|
/* set the thread stack size.
|
|
* Return 0 if size is valid, -1 otherwise.
|
|
*/
|
|
static int
|
|
_pythread_nt_set_stacksize(size_t size)
|
|
{
|
|
/* set to default */
|
|
if (size == 0) {
|
|
_pythread_stacksize = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* valid range? */
|
|
if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
|
|
_pythread_stacksize = size;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)
|
|
|
|
|
|
/* use native Windows TLS functions */
|
|
#define Py_HAVE_NATIVE_TLS
|
|
|
|
#ifdef Py_HAVE_NATIVE_TLS
|
|
int
|
|
PyThread_create_key(void)
|
|
{
|
|
DWORD result= TlsAlloc();
|
|
if (result == TLS_OUT_OF_INDEXES)
|
|
return -1;
|
|
return (int)result;
|
|
}
|
|
|
|
void
|
|
PyThread_delete_key(int key)
|
|
{
|
|
TlsFree(key);
|
|
}
|
|
|
|
/* We must be careful to emulate the strange semantics implemented in thread.c,
|
|
* where the value is only set if it hasn't been set before.
|
|
*/
|
|
int
|
|
PyThread_set_key_value(int key, void *value)
|
|
{
|
|
BOOL ok;
|
|
void *oldvalue;
|
|
|
|
assert(value != NULL);
|
|
oldvalue = TlsGetValue(key);
|
|
if (oldvalue != NULL)
|
|
/* ignore value if already set */
|
|
return 0;
|
|
ok = TlsSetValue(key, value);
|
|
if (!ok)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
void *
|
|
PyThread_get_key_value(int key)
|
|
{
|
|
/* because TLS is used in the Py_END_ALLOW_THREAD macro,
|
|
* it is necessary to preserve the windows error state, because
|
|
* it is assumed to be preserved across the call to the macro.
|
|
* Ideally, the macro should be fixed, but it is simpler to
|
|
* do it here.
|
|
*/
|
|
DWORD error = GetLastError();
|
|
void *result = TlsGetValue(key);
|
|
SetLastError(error);
|
|
return result;
|
|
}
|
|
|
|
void
|
|
PyThread_delete_key_value(int key)
|
|
{
|
|
/* NULL is used as "key missing", and it is also the default
|
|
* given by TlsGetValue() if nothing has been set yet.
|
|
*/
|
|
TlsSetValue(key, NULL);
|
|
}
|
|
|
|
/* reinitialization of TLS is not necessary after fork when using
|
|
* the native TLS functions. And forking isn't supported on Windows either.
|
|
*/
|
|
void
|
|
PyThread_ReInitTLS(void)
|
|
{}
|
|
|
|
#endif
|