mirror of
https://github.com/python/cpython.git
synced 2025-01-06 00:25:19 +08:00
388122d43b
(And similarly for complex numbers.)
1126 lines
31 KiB
C
1126 lines
31 KiB
C
|
|
/* Complex object implementation */
|
|
|
|
/* Borrows heavily from floatobject.c */
|
|
|
|
/* Submitted by Jim Hugunin */
|
|
|
|
#include "Python.h"
|
|
#include "structmember.h"
|
|
|
|
/* elementary operations on complex numbers */
|
|
|
|
static Py_complex c_1 = {1., 0.};
|
|
|
|
Py_complex
|
|
c_sum(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
r.real = a.real + b.real;
|
|
r.imag = a.imag + b.imag;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_diff(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
r.real = a.real - b.real;
|
|
r.imag = a.imag - b.imag;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_neg(Py_complex a)
|
|
{
|
|
Py_complex r;
|
|
r.real = -a.real;
|
|
r.imag = -a.imag;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_prod(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
r.real = a.real*b.real - a.imag*b.imag;
|
|
r.imag = a.real*b.imag + a.imag*b.real;
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_quot(Py_complex a, Py_complex b)
|
|
{
|
|
/******************************************************************
|
|
This was the original algorithm. It's grossly prone to spurious
|
|
overflow and underflow errors. It also merrily divides by 0 despite
|
|
checking for that(!). The code still serves a doc purpose here, as
|
|
the algorithm following is a simple by-cases transformation of this
|
|
one:
|
|
|
|
Py_complex r;
|
|
double d = b.real*b.real + b.imag*b.imag;
|
|
if (d == 0.)
|
|
errno = EDOM;
|
|
r.real = (a.real*b.real + a.imag*b.imag)/d;
|
|
r.imag = (a.imag*b.real - a.real*b.imag)/d;
|
|
return r;
|
|
******************************************************************/
|
|
|
|
/* This algorithm is better, and is pretty obvious: first divide the
|
|
* numerators and denominator by whichever of {b.real, b.imag} has
|
|
* larger magnitude. The earliest reference I found was to CACM
|
|
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
|
|
* University). As usual, though, we're still ignoring all IEEE
|
|
* endcases.
|
|
*/
|
|
Py_complex r; /* the result */
|
|
const double abs_breal = b.real < 0 ? -b.real : b.real;
|
|
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
|
|
|
|
if (abs_breal >= abs_bimag) {
|
|
/* divide tops and bottom by b.real */
|
|
if (abs_breal == 0.0) {
|
|
errno = EDOM;
|
|
r.real = r.imag = 0.0;
|
|
}
|
|
else {
|
|
const double ratio = b.imag / b.real;
|
|
const double denom = b.real + b.imag * ratio;
|
|
r.real = (a.real + a.imag * ratio) / denom;
|
|
r.imag = (a.imag - a.real * ratio) / denom;
|
|
}
|
|
}
|
|
else {
|
|
/* divide tops and bottom by b.imag */
|
|
const double ratio = b.real / b.imag;
|
|
const double denom = b.real * ratio + b.imag;
|
|
assert(b.imag != 0.0);
|
|
r.real = (a.real * ratio + a.imag) / denom;
|
|
r.imag = (a.imag * ratio - a.real) / denom;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
Py_complex
|
|
c_pow(Py_complex a, Py_complex b)
|
|
{
|
|
Py_complex r;
|
|
double vabs,len,at,phase;
|
|
if (b.real == 0. && b.imag == 0.) {
|
|
r.real = 1.;
|
|
r.imag = 0.;
|
|
}
|
|
else if (a.real == 0. && a.imag == 0.) {
|
|
if (b.imag != 0. || b.real < 0.)
|
|
errno = EDOM;
|
|
r.real = 0.;
|
|
r.imag = 0.;
|
|
}
|
|
else {
|
|
vabs = hypot(a.real,a.imag);
|
|
len = pow(vabs,b.real);
|
|
at = atan2(a.imag, a.real);
|
|
phase = at*b.real;
|
|
if (b.imag != 0.0) {
|
|
len /= exp(at*b.imag);
|
|
phase += b.imag*log(vabs);
|
|
}
|
|
r.real = len*cos(phase);
|
|
r.imag = len*sin(phase);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static Py_complex
|
|
c_powu(Py_complex x, long n)
|
|
{
|
|
Py_complex r, p;
|
|
long mask = 1;
|
|
r = c_1;
|
|
p = x;
|
|
while (mask > 0 && n >= mask) {
|
|
if (n & mask)
|
|
r = c_prod(r,p);
|
|
mask <<= 1;
|
|
p = c_prod(p,p);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static Py_complex
|
|
c_powi(Py_complex x, long n)
|
|
{
|
|
Py_complex cn;
|
|
|
|
if (n > 100 || n < -100) {
|
|
cn.real = (double) n;
|
|
cn.imag = 0.;
|
|
return c_pow(x,cn);
|
|
}
|
|
else if (n > 0)
|
|
return c_powu(x,n);
|
|
else
|
|
return c_quot(c_1,c_powu(x,-n));
|
|
|
|
}
|
|
|
|
double
|
|
c_abs(Py_complex z)
|
|
{
|
|
/* sets errno = ERANGE on overflow; otherwise errno = 0 */
|
|
double result;
|
|
|
|
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|
/* C99 rules: if either the real or the imaginary part is an
|
|
infinity, return infinity, even if the other part is a
|
|
NaN. */
|
|
if (Py_IS_INFINITY(z.real)) {
|
|
result = fabs(z.real);
|
|
errno = 0;
|
|
return result;
|
|
}
|
|
if (Py_IS_INFINITY(z.imag)) {
|
|
result = fabs(z.imag);
|
|
errno = 0;
|
|
return result;
|
|
}
|
|
/* either the real or imaginary part is a NaN,
|
|
and neither is infinite. Result should be NaN. */
|
|
return Py_NAN;
|
|
}
|
|
result = hypot(z.real, z.imag);
|
|
if (!Py_IS_FINITE(result))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
|
|
{
|
|
PyObject *op;
|
|
|
|
op = type->tp_alloc(type, 0);
|
|
if (op != NULL)
|
|
((PyComplexObject *)op)->cval = cval;
|
|
return op;
|
|
}
|
|
|
|
PyObject *
|
|
PyComplex_FromCComplex(Py_complex cval)
|
|
{
|
|
register PyComplexObject *op;
|
|
|
|
/* Inline PyObject_New */
|
|
op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
|
|
if (op == NULL)
|
|
return PyErr_NoMemory();
|
|
PyObject_INIT(op, &PyComplex_Type);
|
|
op->cval = cval;
|
|
return (PyObject *) op;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
|
|
{
|
|
Py_complex c;
|
|
c.real = real;
|
|
c.imag = imag;
|
|
return complex_subtype_from_c_complex(type, c);
|
|
}
|
|
|
|
PyObject *
|
|
PyComplex_FromDoubles(double real, double imag)
|
|
{
|
|
Py_complex c;
|
|
c.real = real;
|
|
c.imag = imag;
|
|
return PyComplex_FromCComplex(c);
|
|
}
|
|
|
|
double
|
|
PyComplex_RealAsDouble(PyObject *op)
|
|
{
|
|
if (PyComplex_Check(op)) {
|
|
return ((PyComplexObject *)op)->cval.real;
|
|
}
|
|
else {
|
|
return PyFloat_AsDouble(op);
|
|
}
|
|
}
|
|
|
|
double
|
|
PyComplex_ImagAsDouble(PyObject *op)
|
|
{
|
|
if (PyComplex_Check(op)) {
|
|
return ((PyComplexObject *)op)->cval.imag;
|
|
}
|
|
else {
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
try_complex_special_method(PyObject *op) {
|
|
PyObject *f;
|
|
static PyObject *complexstr;
|
|
|
|
f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
|
|
if (f) {
|
|
PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
|
|
Py_DECREF(f);
|
|
return res;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
Py_complex
|
|
PyComplex_AsCComplex(PyObject *op)
|
|
{
|
|
Py_complex cv;
|
|
PyObject *newop = NULL;
|
|
|
|
assert(op);
|
|
/* If op is already of type PyComplex_Type, return its value */
|
|
if (PyComplex_Check(op)) {
|
|
return ((PyComplexObject *)op)->cval;
|
|
}
|
|
/* If not, use op's __complex__ method, if it exists */
|
|
|
|
/* return -1 on failure */
|
|
cv.real = -1.;
|
|
cv.imag = 0.;
|
|
|
|
newop = try_complex_special_method(op);
|
|
|
|
if (newop) {
|
|
if (!PyComplex_Check(newop)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"__complex__ should return a complex object");
|
|
Py_DECREF(newop);
|
|
return cv;
|
|
}
|
|
cv = ((PyComplexObject *)newop)->cval;
|
|
Py_DECREF(newop);
|
|
return cv;
|
|
}
|
|
else if (PyErr_Occurred()) {
|
|
return cv;
|
|
}
|
|
/* If neither of the above works, interpret op as a float giving the
|
|
real part of the result, and fill in the imaginary part as 0. */
|
|
else {
|
|
/* PyFloat_AsDouble will return -1 on failure */
|
|
cv.real = PyFloat_AsDouble(op);
|
|
return cv;
|
|
}
|
|
}
|
|
|
|
static void
|
|
complex_dealloc(PyObject *op)
|
|
{
|
|
op->ob_type->tp_free(op);
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
complex_format(PyComplexObject *v, int precision, char format_code)
|
|
{
|
|
PyObject *result = NULL;
|
|
Py_ssize_t len;
|
|
|
|
/* If these are non-NULL, they'll need to be freed. */
|
|
char *pre = NULL;
|
|
char *im = NULL;
|
|
char *buf = NULL;
|
|
|
|
/* These do not need to be freed. re is either an alias
|
|
for pre or a pointer to a constant. lead and tail
|
|
are pointers to constants. */
|
|
char *re = NULL;
|
|
char *lead = "";
|
|
char *tail = "";
|
|
|
|
if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
|
|
re = "";
|
|
im = PyOS_double_to_string(v->cval.imag, format_code,
|
|
precision, 0, NULL);
|
|
if (!im) {
|
|
PyErr_NoMemory();
|
|
goto done;
|
|
}
|
|
} else {
|
|
/* Format imaginary part with sign, real part without */
|
|
pre = PyOS_double_to_string(v->cval.real, format_code,
|
|
precision, 0, NULL);
|
|
if (!pre) {
|
|
PyErr_NoMemory();
|
|
goto done;
|
|
}
|
|
re = pre;
|
|
|
|
im = PyOS_double_to_string(v->cval.imag, format_code,
|
|
precision, Py_DTSF_SIGN, NULL);
|
|
if (!im) {
|
|
PyErr_NoMemory();
|
|
goto done;
|
|
}
|
|
lead = "(";
|
|
tail = ")";
|
|
}
|
|
/* Alloc the final buffer. Add one for the "j" in the format string,
|
|
and one for the trailing zero. */
|
|
len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
|
|
buf = PyMem_Malloc(len);
|
|
if (!buf) {
|
|
PyErr_NoMemory();
|
|
goto done;
|
|
}
|
|
PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
|
|
result = PyUnicode_FromString(buf);
|
|
done:
|
|
PyMem_Free(im);
|
|
PyMem_Free(pre);
|
|
PyMem_Free(buf);
|
|
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_repr(PyComplexObject *v)
|
|
{
|
|
return complex_format(v, 0, 'r');
|
|
}
|
|
|
|
static long
|
|
complex_hash(PyComplexObject *v)
|
|
{
|
|
unsigned long hashreal, hashimag, combined;
|
|
hashreal = (unsigned long)_Py_HashDouble(v->cval.real);
|
|
if (hashreal == (unsigned long)-1)
|
|
return -1;
|
|
hashimag = (unsigned long)_Py_HashDouble(v->cval.imag);
|
|
if (hashimag == (unsigned long)-1)
|
|
return -1;
|
|
/* Note: if the imaginary part is 0, hashimag is 0 now,
|
|
* so the following returns hashreal unchanged. This is
|
|
* important because numbers of different types that
|
|
* compare equal must have the same hash value, so that
|
|
* hash(x + 0*j) must equal hash(x).
|
|
*/
|
|
combined = hashreal + _PyHASH_IMAG * hashimag;
|
|
if (combined == (unsigned long)-1)
|
|
combined = (unsigned long)-2;
|
|
return (long)combined;
|
|
}
|
|
|
|
/* This macro may return! */
|
|
#define TO_COMPLEX(obj, c) \
|
|
if (PyComplex_Check(obj)) \
|
|
c = ((PyComplexObject *)(obj))->cval; \
|
|
else if (to_complex(&(obj), &(c)) < 0) \
|
|
return (obj)
|
|
|
|
static int
|
|
to_complex(PyObject **pobj, Py_complex *pc)
|
|
{
|
|
PyObject *obj = *pobj;
|
|
|
|
pc->real = pc->imag = 0.0;
|
|
if (PyLong_Check(obj)) {
|
|
pc->real = PyLong_AsDouble(obj);
|
|
if (pc->real == -1.0 && PyErr_Occurred()) {
|
|
*pobj = NULL;
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
if (PyFloat_Check(obj)) {
|
|
pc->real = PyFloat_AsDouble(obj);
|
|
return 0;
|
|
}
|
|
Py_INCREF(Py_NotImplemented);
|
|
*pobj = Py_NotImplemented;
|
|
return -1;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
complex_add(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex result;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_add", return 0)
|
|
result = c_sum(a, b);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyComplex_FromCComplex(result);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_sub(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex result;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_sub", return 0)
|
|
result = c_diff(a, b);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyComplex_FromCComplex(result);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_mul(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex result;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_mul", return 0)
|
|
result = c_prod(a, b);
|
|
PyFPE_END_PROTECT(result)
|
|
return PyComplex_FromCComplex(result);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_div(PyObject *v, PyObject *w)
|
|
{
|
|
Py_complex quot;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
PyFPE_START_PROTECT("complex_div", return 0)
|
|
errno = 0;
|
|
quot = c_quot(a, b);
|
|
PyFPE_END_PROTECT(quot)
|
|
if (errno == EDOM) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
|
|
return NULL;
|
|
}
|
|
return PyComplex_FromCComplex(quot);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_remainder(PyObject *v, PyObject *w)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't mod complex numbers.");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
complex_divmod(PyObject *v, PyObject *w)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't take floor or mod of complex number.");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_pow(PyObject *v, PyObject *w, PyObject *z)
|
|
{
|
|
Py_complex p;
|
|
Py_complex exponent;
|
|
long int_exponent;
|
|
Py_complex a, b;
|
|
TO_COMPLEX(v, a);
|
|
TO_COMPLEX(w, b);
|
|
|
|
if (z != Py_None) {
|
|
PyErr_SetString(PyExc_ValueError, "complex modulo");
|
|
return NULL;
|
|
}
|
|
PyFPE_START_PROTECT("complex_pow", return 0)
|
|
errno = 0;
|
|
exponent = b;
|
|
int_exponent = (long)exponent.real;
|
|
if (exponent.imag == 0. && exponent.real == int_exponent)
|
|
p = c_powi(a, int_exponent);
|
|
else
|
|
p = c_pow(a, exponent);
|
|
|
|
PyFPE_END_PROTECT(p)
|
|
Py_ADJUST_ERANGE2(p.real, p.imag);
|
|
if (errno == EDOM) {
|
|
PyErr_SetString(PyExc_ZeroDivisionError,
|
|
"0.0 to a negative or complex power");
|
|
return NULL;
|
|
}
|
|
else if (errno == ERANGE) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"complex exponentiation");
|
|
return NULL;
|
|
}
|
|
return PyComplex_FromCComplex(p);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_int_div(PyObject *v, PyObject *w)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't take floor of complex number.");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_neg(PyComplexObject *v)
|
|
{
|
|
Py_complex neg;
|
|
neg.real = -v->cval.real;
|
|
neg.imag = -v->cval.imag;
|
|
return PyComplex_FromCComplex(neg);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_pos(PyComplexObject *v)
|
|
{
|
|
if (PyComplex_CheckExact(v)) {
|
|
Py_INCREF(v);
|
|
return (PyObject *)v;
|
|
}
|
|
else
|
|
return PyComplex_FromCComplex(v->cval);
|
|
}
|
|
|
|
static PyObject *
|
|
complex_abs(PyComplexObject *v)
|
|
{
|
|
double result;
|
|
|
|
PyFPE_START_PROTECT("complex_abs", return 0)
|
|
result = c_abs(v->cval);
|
|
PyFPE_END_PROTECT(result)
|
|
|
|
if (errno == ERANGE) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"absolute value too large");
|
|
return NULL;
|
|
}
|
|
return PyFloat_FromDouble(result);
|
|
}
|
|
|
|
static int
|
|
complex_bool(PyComplexObject *v)
|
|
{
|
|
return v->cval.real != 0.0 || v->cval.imag != 0.0;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
PyObject *res;
|
|
Py_complex i;
|
|
int equal;
|
|
|
|
if (op != Py_EQ && op != Py_NE) {
|
|
goto Unimplemented;
|
|
}
|
|
|
|
assert(PyComplex_Check(v));
|
|
TO_COMPLEX(v, i);
|
|
|
|
if (PyLong_Check(w)) {
|
|
/* Check for 0.0 imaginary part first to avoid the rich
|
|
* comparison when possible.
|
|
*/
|
|
if (i.imag == 0.0) {
|
|
PyObject *j, *sub_res;
|
|
j = PyFloat_FromDouble(i.real);
|
|
if (j == NULL)
|
|
return NULL;
|
|
|
|
sub_res = PyObject_RichCompare(j, w, op);
|
|
Py_DECREF(j);
|
|
return sub_res;
|
|
}
|
|
else {
|
|
equal = 0;
|
|
}
|
|
}
|
|
else if (PyFloat_Check(w)) {
|
|
equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
|
|
}
|
|
else if (PyComplex_Check(w)) {
|
|
Py_complex j;
|
|
|
|
TO_COMPLEX(w, j);
|
|
equal = (i.real == j.real && i.imag == j.imag);
|
|
}
|
|
else {
|
|
goto Unimplemented;
|
|
}
|
|
|
|
if (equal == (op == Py_EQ))
|
|
res = Py_True;
|
|
else
|
|
res = Py_False;
|
|
|
|
Py_INCREF(res);
|
|
return res;
|
|
|
|
Unimplemented:
|
|
Py_INCREF(Py_NotImplemented);
|
|
return Py_NotImplemented;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_int(PyObject *v)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't convert complex to int");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_float(PyObject *v)
|
|
{
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't convert complex to float");
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_conjugate(PyObject *self)
|
|
{
|
|
Py_complex c;
|
|
c = ((PyComplexObject *)self)->cval;
|
|
c.imag = -c.imag;
|
|
return PyComplex_FromCComplex(c);
|
|
}
|
|
|
|
PyDoc_STRVAR(complex_conjugate_doc,
|
|
"complex.conjugate() -> complex\n"
|
|
"\n"
|
|
"Returns the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
|
|
|
|
static PyObject *
|
|
complex_getnewargs(PyComplexObject *v)
|
|
{
|
|
Py_complex c = v->cval;
|
|
return Py_BuildValue("(dd)", c.real, c.imag);
|
|
}
|
|
|
|
PyDoc_STRVAR(complex__format__doc,
|
|
"complex.__format__() -> str\n"
|
|
"\n"
|
|
"Converts to a string according to format_spec.");
|
|
|
|
static PyObject *
|
|
complex__format__(PyObject* self, PyObject* args)
|
|
{
|
|
PyObject *format_spec;
|
|
|
|
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
|
|
return NULL;
|
|
return _PyComplex_FormatAdvanced(self,
|
|
PyUnicode_AS_UNICODE(format_spec),
|
|
PyUnicode_GET_SIZE(format_spec));
|
|
}
|
|
|
|
#if 0
|
|
static PyObject *
|
|
complex_is_finite(PyObject *self)
|
|
{
|
|
Py_complex c;
|
|
c = ((PyComplexObject *)self)->cval;
|
|
return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
|
|
Py_IS_FINITE(c.imag)));
|
|
}
|
|
|
|
PyDoc_STRVAR(complex_is_finite_doc,
|
|
"complex.is_finite() -> bool\n"
|
|
"\n"
|
|
"Returns True if the real and the imaginary part is finite.");
|
|
#endif
|
|
|
|
static PyMethodDef complex_methods[] = {
|
|
{"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
|
|
complex_conjugate_doc},
|
|
#if 0
|
|
{"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
|
|
complex_is_finite_doc},
|
|
#endif
|
|
{"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
|
|
{"__format__", (PyCFunction)complex__format__,
|
|
METH_VARARGS, complex__format__doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyMemberDef complex_members[] = {
|
|
{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
|
|
"the real part of a complex number"},
|
|
{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
|
|
"the imaginary part of a complex number"},
|
|
{0},
|
|
};
|
|
|
|
static PyObject *
|
|
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
|
|
{
|
|
const char *s, *start;
|
|
char *end;
|
|
double x=0.0, y=0.0, z;
|
|
int got_bracket=0;
|
|
char *s_buffer = NULL;
|
|
Py_ssize_t len;
|
|
|
|
if (PyUnicode_Check(v)) {
|
|
s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v) + 1);
|
|
if (s_buffer == NULL)
|
|
return PyErr_NoMemory();
|
|
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
|
|
PyUnicode_GET_SIZE(v),
|
|
s_buffer,
|
|
NULL))
|
|
goto error;
|
|
s = s_buffer;
|
|
len = strlen(s);
|
|
}
|
|
else if (PyObject_AsCharBuffer(v, &s, &len)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() arg is not a string");
|
|
return NULL;
|
|
}
|
|
|
|
/* position on first nonblank */
|
|
start = s;
|
|
while (Py_ISSPACE(*s))
|
|
s++;
|
|
if (*s == '(') {
|
|
/* Skip over possible bracket from repr(). */
|
|
got_bracket = 1;
|
|
s++;
|
|
while (Py_ISSPACE(*s))
|
|
s++;
|
|
}
|
|
|
|
/* a valid complex string usually takes one of the three forms:
|
|
|
|
<float> - real part only
|
|
<float>j - imaginary part only
|
|
<float><signed-float>j - real and imaginary parts
|
|
|
|
where <float> represents any numeric string that's accepted by the
|
|
float constructor (including 'nan', 'inf', 'infinity', etc.), and
|
|
<signed-float> is any string of the form <float> whose first
|
|
character is '+' or '-'.
|
|
|
|
For backwards compatibility, the extra forms
|
|
|
|
<float><sign>j
|
|
<sign>j
|
|
j
|
|
|
|
are also accepted, though support for these forms may be removed from
|
|
a future version of Python.
|
|
*/
|
|
|
|
/* first look for forms starting with <float> */
|
|
z = PyOS_string_to_double(s, &end, NULL);
|
|
if (z == -1.0 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_ValueError))
|
|
PyErr_Clear();
|
|
else
|
|
goto error;
|
|
}
|
|
if (end != s) {
|
|
/* all 4 forms starting with <float> land here */
|
|
s = end;
|
|
if (*s == '+' || *s == '-') {
|
|
/* <float><signed-float>j | <float><sign>j */
|
|
x = z;
|
|
y = PyOS_string_to_double(s, &end, NULL);
|
|
if (y == -1.0 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_ValueError))
|
|
PyErr_Clear();
|
|
else
|
|
goto error;
|
|
}
|
|
if (end != s)
|
|
/* <float><signed-float>j */
|
|
s = end;
|
|
else {
|
|
/* <float><sign>j */
|
|
y = *s == '+' ? 1.0 : -1.0;
|
|
s++;
|
|
}
|
|
if (!(*s == 'j' || *s == 'J'))
|
|
goto parse_error;
|
|
s++;
|
|
}
|
|
else if (*s == 'j' || *s == 'J') {
|
|
/* <float>j */
|
|
s++;
|
|
y = z;
|
|
}
|
|
else
|
|
/* <float> */
|
|
x = z;
|
|
}
|
|
else {
|
|
/* not starting with <float>; must be <sign>j or j */
|
|
if (*s == '+' || *s == '-') {
|
|
/* <sign>j */
|
|
y = *s == '+' ? 1.0 : -1.0;
|
|
s++;
|
|
}
|
|
else
|
|
/* j */
|
|
y = 1.0;
|
|
if (!(*s == 'j' || *s == 'J'))
|
|
goto parse_error;
|
|
s++;
|
|
}
|
|
|
|
/* trailing whitespace and closing bracket */
|
|
while (Py_ISSPACE(*s))
|
|
s++;
|
|
if (got_bracket) {
|
|
/* if there was an opening parenthesis, then the corresponding
|
|
closing parenthesis should be right here */
|
|
if (*s != ')')
|
|
goto parse_error;
|
|
s++;
|
|
while (Py_ISSPACE(*s))
|
|
s++;
|
|
}
|
|
|
|
/* we should now be at the end of the string */
|
|
if (s-start != len)
|
|
goto parse_error;
|
|
|
|
if (s_buffer)
|
|
PyMem_FREE(s_buffer);
|
|
return complex_subtype_from_doubles(type, x, y);
|
|
|
|
parse_error:
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"complex() arg is a malformed string");
|
|
error:
|
|
if (s_buffer)
|
|
PyMem_FREE(s_buffer);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *r, *i, *tmp;
|
|
PyNumberMethods *nbr, *nbi = NULL;
|
|
Py_complex cr, ci;
|
|
int own_r = 0;
|
|
int cr_is_complex = 0;
|
|
int ci_is_complex = 0;
|
|
static char *kwlist[] = {"real", "imag", 0};
|
|
|
|
r = Py_False;
|
|
i = NULL;
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
|
|
&r, &i))
|
|
return NULL;
|
|
|
|
/* Special-case for a single argument when type(arg) is complex. */
|
|
if (PyComplex_CheckExact(r) && i == NULL &&
|
|
type == &PyComplex_Type) {
|
|
/* Note that we can't know whether it's safe to return
|
|
a complex *subclass* instance as-is, hence the restriction
|
|
to exact complexes here. If either the input or the
|
|
output is a complex subclass, it will be handled below
|
|
as a non-orthogonal vector. */
|
|
Py_INCREF(r);
|
|
return r;
|
|
}
|
|
if (PyUnicode_Check(r)) {
|
|
if (i != NULL) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() can't take second arg"
|
|
" if first is a string");
|
|
return NULL;
|
|
}
|
|
return complex_subtype_from_string(type, r);
|
|
}
|
|
if (i != NULL && PyUnicode_Check(i)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() second arg can't be a string");
|
|
return NULL;
|
|
}
|
|
|
|
tmp = try_complex_special_method(r);
|
|
if (tmp) {
|
|
r = tmp;
|
|
own_r = 1;
|
|
}
|
|
else if (PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
|
|
nbr = r->ob_type->tp_as_number;
|
|
if (i != NULL)
|
|
nbi = i->ob_type->tp_as_number;
|
|
if (nbr == NULL || nbr->nb_float == NULL ||
|
|
((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"complex() argument must be a string or a number");
|
|
if (own_r) {
|
|
Py_DECREF(r);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* If we get this far, then the "real" and "imag" parts should
|
|
both be treated as numbers, and the constructor should return a
|
|
complex number equal to (real + imag*1j).
|
|
|
|
Note that we do NOT assume the input to already be in canonical
|
|
form; the "real" and "imag" parts might themselves be complex
|
|
numbers, which slightly complicates the code below. */
|
|
if (PyComplex_Check(r)) {
|
|
/* Note that if r is of a complex subtype, we're only
|
|
retaining its real & imag parts here, and the return
|
|
value is (properly) of the builtin complex type. */
|
|
cr = ((PyComplexObject*)r)->cval;
|
|
cr_is_complex = 1;
|
|
if (own_r) {
|
|
Py_DECREF(r);
|
|
}
|
|
}
|
|
else {
|
|
/* The "real" part really is entirely real, and contributes
|
|
nothing in the imaginary direction.
|
|
Just treat it as a double. */
|
|
tmp = PyNumber_Float(r);
|
|
if (own_r) {
|
|
/* r was a newly created complex number, rather
|
|
than the original "real" argument. */
|
|
Py_DECREF(r);
|
|
}
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
if (!PyFloat_Check(tmp)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"float(r) didn't return a float");
|
|
Py_DECREF(tmp);
|
|
return NULL;
|
|
}
|
|
cr.real = PyFloat_AsDouble(tmp);
|
|
cr.imag = 0.0; /* Shut up compiler warning */
|
|
Py_DECREF(tmp);
|
|
}
|
|
if (i == NULL) {
|
|
ci.real = 0.0;
|
|
}
|
|
else if (PyComplex_Check(i)) {
|
|
ci = ((PyComplexObject*)i)->cval;
|
|
ci_is_complex = 1;
|
|
} else {
|
|
/* The "imag" part really is entirely imaginary, and
|
|
contributes nothing in the real direction.
|
|
Just treat it as a double. */
|
|
tmp = (*nbi->nb_float)(i);
|
|
if (tmp == NULL)
|
|
return NULL;
|
|
ci.real = PyFloat_AsDouble(tmp);
|
|
Py_DECREF(tmp);
|
|
}
|
|
/* If the input was in canonical form, then the "real" and "imag"
|
|
parts are real numbers, so that ci.imag and cr.imag are zero.
|
|
We need this correction in case they were not real numbers. */
|
|
|
|
if (ci_is_complex) {
|
|
cr.real -= ci.imag;
|
|
}
|
|
if (cr_is_complex) {
|
|
ci.real += cr.imag;
|
|
}
|
|
return complex_subtype_from_doubles(type, cr.real, ci.real);
|
|
}
|
|
|
|
PyDoc_STRVAR(complex_doc,
|
|
"complex(real[, imag]) -> complex number\n"
|
|
"\n"
|
|
"Create a complex number from a real part and an optional imaginary part.\n"
|
|
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
|
|
|
|
static PyNumberMethods complex_as_number = {
|
|
(binaryfunc)complex_add, /* nb_add */
|
|
(binaryfunc)complex_sub, /* nb_subtract */
|
|
(binaryfunc)complex_mul, /* nb_multiply */
|
|
(binaryfunc)complex_remainder, /* nb_remainder */
|
|
(binaryfunc)complex_divmod, /* nb_divmod */
|
|
(ternaryfunc)complex_pow, /* nb_power */
|
|
(unaryfunc)complex_neg, /* nb_negative */
|
|
(unaryfunc)complex_pos, /* nb_positive */
|
|
(unaryfunc)complex_abs, /* nb_absolute */
|
|
(inquiry)complex_bool, /* nb_bool */
|
|
0, /* nb_invert */
|
|
0, /* nb_lshift */
|
|
0, /* nb_rshift */
|
|
0, /* nb_and */
|
|
0, /* nb_xor */
|
|
0, /* nb_or */
|
|
complex_int, /* nb_int */
|
|
0, /* nb_reserved */
|
|
complex_float, /* nb_float */
|
|
0, /* nb_inplace_add */
|
|
0, /* nb_inplace_subtract */
|
|
0, /* nb_inplace_multiply*/
|
|
0, /* nb_inplace_remainder */
|
|
0, /* nb_inplace_power */
|
|
0, /* nb_inplace_lshift */
|
|
0, /* nb_inplace_rshift */
|
|
0, /* nb_inplace_and */
|
|
0, /* nb_inplace_xor */
|
|
0, /* nb_inplace_or */
|
|
(binaryfunc)complex_int_div, /* nb_floor_divide */
|
|
(binaryfunc)complex_div, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
};
|
|
|
|
PyTypeObject PyComplex_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"complex",
|
|
sizeof(PyComplexObject),
|
|
0,
|
|
complex_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)complex_repr, /* tp_repr */
|
|
&complex_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)complex_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)complex_repr, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
complex_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
complex_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
complex_methods, /* tp_methods */
|
|
complex_members, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
complex_new, /* tp_new */
|
|
PyObject_Del, /* tp_free */
|
|
};
|