cpython/Doc/distutils/introduction.rst
Victor Stinner 0e2a0f72cc
bpo-42802: Remove distutils bdist_wininst command (GH-24043)
The distutils bdist_wininst command deprecated in Python 3.8 has been
removed. The distutils bidst_wheel command is now recommended to
distribute binary packages on Windows.

* Remove Lib/distutils/command/bdist_wininst.py
* Remove PC/bdist_wininst/ project
* Remove Lib/distutils/command/wininst-*.exe programs
* Remove all references to bdist_wininst
2021-01-09 00:35:01 +01:00

204 lines
7.9 KiB
ReStructuredText

.. _distutils-intro:
****************************
An Introduction to Distutils
****************************
.. include:: ./_setuptools_disclaimer.rst
This document covers using the Distutils to distribute your Python modules,
concentrating on the role of developer/distributor: if you're looking for
information on installing Python modules, you should refer to the
:ref:`install-index` chapter.
.. _distutils-concepts:
Concepts & Terminology
======================
Using the Distutils is quite simple, both for module developers and for
users/administrators installing third-party modules. As a developer, your
responsibilities (apart from writing solid, well-documented and well-tested
code, of course!) are:
* write a setup script (:file:`setup.py` by convention)
* (optional) write a setup configuration file
* create a source distribution
* (optional) create one or more built (binary) distributions
Each of these tasks is covered in this document.
Not all module developers have access to a multitude of platforms, so it's not
always feasible to expect them to create a multitude of built distributions. It
is hoped that a class of intermediaries, called *packagers*, will arise to
address this need. Packagers will take source distributions released by module
developers, build them on one or more platforms, and release the resulting built
distributions. Thus, users on the most popular platforms will be able to
install most popular Python module distributions in the most natural way for
their platform, without having to run a single setup script or compile a line of
code.
.. _distutils-simple-example:
A Simple Example
================
The setup script is usually quite simple, although since it's written in Python,
there are no arbitrary limits to what you can do with it, though you should be
careful about putting arbitrarily expensive operations in your setup script.
Unlike, say, Autoconf-style configure scripts, the setup script may be run
multiple times in the course of building and installing your module
distribution.
If all you want to do is distribute a module called :mod:`foo`, contained in a
file :file:`foo.py`, then your setup script can be as simple as this::
from distutils.core import setup
setup(name='foo',
version='1.0',
py_modules=['foo'],
)
Some observations:
* most information that you supply to the Distutils is supplied as keyword
arguments to the :func:`setup` function
* those keyword arguments fall into two categories: package metadata (name,
version number) and information about what's in the package (a list of pure
Python modules, in this case)
* modules are specified by module name, not filename (the same will hold true
for packages and extensions)
* it's recommended that you supply a little more metadata, in particular your
name, email address and a URL for the project (see section :ref:`setup-script`
for an example)
To create a source distribution for this module, you would create a setup
script, :file:`setup.py`, containing the above code, and run this command from a
terminal::
python setup.py sdist
For Windows, open a command prompt window (:menuselection:`Start -->
Accessories`) and change the command to::
setup.py sdist
:command:`sdist` will create an archive file (e.g., tarball on Unix, ZIP file on Windows)
containing your setup script :file:`setup.py`, and your module :file:`foo.py`.
The archive file will be named :file:`foo-1.0.tar.gz` (or :file:`.zip`), and
will unpack into a directory :file:`foo-1.0`.
If an end-user wishes to install your :mod:`foo` module, all they have to do is
download :file:`foo-1.0.tar.gz` (or :file:`.zip`), unpack it, and---from the
:file:`foo-1.0` directory---run ::
python setup.py install
which will ultimately copy :file:`foo.py` to the appropriate directory for
third-party modules in their Python installation.
This simple example demonstrates some fundamental concepts of the Distutils.
First, both developers and installers have the same basic user interface, i.e.
the setup script. The difference is which Distutils *commands* they use: the
:command:`sdist` command is almost exclusively for module developers, while
:command:`install` is more often for installers (although most developers will
want to install their own code occasionally).
Other useful built distribution formats are RPM, implemented by the
:command:`bdist_rpm` command, Solaris :program:`pkgtool`
(:command:`bdist_pkgtool`), and HP-UX :program:`swinstall`
(:command:`bdist_sdux`). For example, the following command will create an RPM
file called :file:`foo-1.0.noarch.rpm`::
python setup.py bdist_rpm
(The :command:`bdist_rpm` command uses the :command:`rpm` executable, therefore
this has to be run on an RPM-based system such as Red Hat Linux, SuSE Linux, or
Mandrake Linux.)
You can find out what distribution formats are available at any time by running
::
python setup.py bdist --help-formats
.. _python-terms:
General Python terminology
==========================
If you're reading this document, you probably have a good idea of what modules,
extensions, and so forth are. Nevertheless, just to be sure that everyone is
operating from a common starting point, we offer the following glossary of
common Python terms:
module
the basic unit of code reusability in Python: a block of code imported by some
other code. Three types of modules concern us here: pure Python modules,
extension modules, and packages.
pure Python module
a module written in Python and contained in a single :file:`.py` file (and
possibly associated :file:`.pyc` files). Sometimes referred to as a
"pure module."
extension module
a module written in the low-level language of the Python implementation: C/C++
for Python, Java for Jython. Typically contained in a single dynamically
loadable pre-compiled file, e.g. a shared object (:file:`.so`) file for Python
extensions on Unix, a DLL (given the :file:`.pyd` extension) for Python
extensions on Windows, or a Java class file for Jython extensions. (Note that
currently, the Distutils only handles C/C++ extensions for Python.)
package
a module that contains other modules; typically contained in a directory in the
filesystem and distinguished from other directories by the presence of a file
:file:`__init__.py`.
root package
the root of the hierarchy of packages. (This isn't really a package, since it
doesn't have an :file:`__init__.py` file. But we have to call it something.)
The vast majority of the standard library is in the root package, as are many
small, standalone third-party modules that don't belong to a larger module
collection. Unlike regular packages, modules in the root package can be found in
many directories: in fact, every directory listed in ``sys.path`` contributes
modules to the root package.
.. _distutils-term:
Distutils-specific terminology
==============================
The following terms apply more specifically to the domain of distributing Python
modules using the Distutils:
module distribution
a collection of Python modules distributed together as a single downloadable
resource and meant to be installed *en masse*. Examples of some well-known
module distributions are NumPy, SciPy, Pillow,
or mxBase. (This would be called a *package*, except that term is
already taken in the Python context: a single module distribution may contain
zero, one, or many Python packages.)
pure module distribution
a module distribution that contains only pure Python modules and packages.
Sometimes referred to as a "pure distribution."
non-pure module distribution
a module distribution that contains at least one extension module. Sometimes
referred to as a "non-pure distribution."
distribution root
the top-level directory of your source tree (or source distribution); the
directory where :file:`setup.py` exists. Generally :file:`setup.py` will be
run from this directory.