mirror of
https://github.com/python/cpython.git
synced 2024-11-27 20:04:41 +08:00
720e65541c
* Fix acquire() signature * Remove outdated help(LockType) reference * Replace PyThread_allocate_lock() with threading.Lock() Patch by Christopher Welborn.
1413 lines
43 KiB
C
1413 lines
43 KiB
C
|
|
/* Thread module */
|
|
/* Interface to Sjoerd's portable C thread library */
|
|
|
|
#include "Python.h"
|
|
#include "structmember.h" /* offsetof */
|
|
|
|
#ifndef WITH_THREAD
|
|
#error "Error! The rest of Python is not compiled with thread support."
|
|
#error "Rerun configure, adding a --with-threads option."
|
|
#error "Then run `make clean' followed by `make'."
|
|
#endif
|
|
|
|
#include "pythread.h"
|
|
|
|
static PyObject *ThreadError;
|
|
static long nb_threads = 0;
|
|
static PyObject *str_dict;
|
|
|
|
_Py_IDENTIFIER(stderr);
|
|
|
|
/* Lock objects */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyThread_type_lock lock_lock;
|
|
PyObject *in_weakreflist;
|
|
char locked; /* for sanity checking */
|
|
} lockobject;
|
|
|
|
static void
|
|
lock_dealloc(lockobject *self)
|
|
{
|
|
if (self->in_weakreflist != NULL)
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
if (self->lock_lock != NULL) {
|
|
/* Unlock the lock so it's safe to free it */
|
|
if (self->locked)
|
|
PyThread_release_lock(self->lock_lock);
|
|
PyThread_free_lock(self->lock_lock);
|
|
}
|
|
PyObject_Del(self);
|
|
}
|
|
|
|
/* Helper to acquire an interruptible lock with a timeout. If the lock acquire
|
|
* is interrupted, signal handlers are run, and if they raise an exception,
|
|
* PY_LOCK_INTR is returned. Otherwise, PY_LOCK_ACQUIRED or PY_LOCK_FAILURE
|
|
* are returned, depending on whether the lock can be acquired withing the
|
|
* timeout.
|
|
*/
|
|
static PyLockStatus
|
|
acquire_timed(PyThread_type_lock lock, _PyTime_t timeout)
|
|
{
|
|
PyLockStatus r;
|
|
_PyTime_t endtime = 0;
|
|
_PyTime_t microseconds;
|
|
|
|
if (timeout > 0)
|
|
endtime = _PyTime_GetMonotonicClock() + timeout;
|
|
|
|
do {
|
|
microseconds = _PyTime_AsMicroseconds(timeout, _PyTime_ROUND_CEILING);
|
|
|
|
/* first a simple non-blocking try without releasing the GIL */
|
|
r = PyThread_acquire_lock_timed(lock, 0, 0);
|
|
if (r == PY_LOCK_FAILURE && microseconds != 0) {
|
|
Py_BEGIN_ALLOW_THREADS
|
|
r = PyThread_acquire_lock_timed(lock, microseconds, 1);
|
|
Py_END_ALLOW_THREADS
|
|
}
|
|
|
|
if (r == PY_LOCK_INTR) {
|
|
/* Run signal handlers if we were interrupted. Propagate
|
|
* exceptions from signal handlers, such as KeyboardInterrupt, by
|
|
* passing up PY_LOCK_INTR. */
|
|
if (Py_MakePendingCalls() < 0) {
|
|
return PY_LOCK_INTR;
|
|
}
|
|
|
|
/* If we're using a timeout, recompute the timeout after processing
|
|
* signals, since those can take time. */
|
|
if (timeout > 0) {
|
|
timeout = endtime - _PyTime_GetMonotonicClock();
|
|
|
|
/* Check for negative values, since those mean block forever.
|
|
*/
|
|
if (timeout < 0) {
|
|
r = PY_LOCK_FAILURE;
|
|
}
|
|
}
|
|
}
|
|
} while (r == PY_LOCK_INTR); /* Retry if we were interrupted. */
|
|
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
lock_acquire_parse_args(PyObject *args, PyObject *kwds,
|
|
_PyTime_t *timeout)
|
|
{
|
|
char *kwlist[] = {"blocking", "timeout", NULL};
|
|
int blocking = 1;
|
|
PyObject *timeout_obj = NULL;
|
|
const _PyTime_t unset_timeout = _PyTime_FromSeconds(-1);
|
|
|
|
*timeout = unset_timeout ;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|iO:acquire", kwlist,
|
|
&blocking, &timeout_obj))
|
|
return -1;
|
|
|
|
if (timeout_obj
|
|
&& _PyTime_FromSecondsObject(timeout,
|
|
timeout_obj, _PyTime_ROUND_CEILING) < 0)
|
|
return -1;
|
|
|
|
if (!blocking && *timeout != unset_timeout ) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"can't specify a timeout for a non-blocking call");
|
|
return -1;
|
|
}
|
|
if (*timeout < 0 && *timeout != unset_timeout) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"timeout value must be positive");
|
|
return -1;
|
|
}
|
|
if (!blocking)
|
|
*timeout = 0;
|
|
else if (*timeout != unset_timeout) {
|
|
_PyTime_t microseconds;
|
|
|
|
microseconds = _PyTime_AsMicroseconds(*timeout, _PyTime_ROUND_CEILING);
|
|
if (microseconds >= PY_TIMEOUT_MAX) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timeout value is too large");
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
lock_PyThread_acquire_lock(lockobject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
_PyTime_t timeout;
|
|
PyLockStatus r;
|
|
|
|
if (lock_acquire_parse_args(args, kwds, &timeout) < 0)
|
|
return NULL;
|
|
|
|
r = acquire_timed(self->lock_lock, timeout);
|
|
if (r == PY_LOCK_INTR) {
|
|
return NULL;
|
|
}
|
|
|
|
if (r == PY_LOCK_ACQUIRED)
|
|
self->locked = 1;
|
|
return PyBool_FromLong(r == PY_LOCK_ACQUIRED);
|
|
}
|
|
|
|
PyDoc_STRVAR(acquire_doc,
|
|
"acquire(blocking=True, timeout=-1) -> bool\n\
|
|
(acquire_lock() is an obsolete synonym)\n\
|
|
\n\
|
|
Lock the lock. Without argument, this blocks if the lock is already\n\
|
|
locked (even by the same thread), waiting for another thread to release\n\
|
|
the lock, and return True once the lock is acquired.\n\
|
|
With an argument, this will only block if the argument is true,\n\
|
|
and the return value reflects whether the lock is acquired.\n\
|
|
The blocking operation is interruptible.");
|
|
|
|
static PyObject *
|
|
lock_PyThread_release_lock(lockobject *self)
|
|
{
|
|
/* Sanity check: the lock must be locked */
|
|
if (!self->locked) {
|
|
PyErr_SetString(ThreadError, "release unlocked lock");
|
|
return NULL;
|
|
}
|
|
|
|
PyThread_release_lock(self->lock_lock);
|
|
self->locked = 0;
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
PyDoc_STRVAR(release_doc,
|
|
"release()\n\
|
|
(release_lock() is an obsolete synonym)\n\
|
|
\n\
|
|
Release the lock, allowing another thread that is blocked waiting for\n\
|
|
the lock to acquire the lock. The lock must be in the locked state,\n\
|
|
but it needn't be locked by the same thread that unlocks it.");
|
|
|
|
static PyObject *
|
|
lock_locked_lock(lockobject *self)
|
|
{
|
|
return PyBool_FromLong((long)self->locked);
|
|
}
|
|
|
|
PyDoc_STRVAR(locked_doc,
|
|
"locked() -> bool\n\
|
|
(locked_lock() is an obsolete synonym)\n\
|
|
\n\
|
|
Return whether the lock is in the locked state.");
|
|
|
|
static PyObject *
|
|
lock_repr(lockobject *self)
|
|
{
|
|
return PyUnicode_FromFormat("<%s %s object at %p>",
|
|
self->locked ? "locked" : "unlocked", Py_TYPE(self)->tp_name, self);
|
|
}
|
|
|
|
static PyMethodDef lock_methods[] = {
|
|
{"acquire_lock", (PyCFunction)lock_PyThread_acquire_lock,
|
|
METH_VARARGS | METH_KEYWORDS, acquire_doc},
|
|
{"acquire", (PyCFunction)lock_PyThread_acquire_lock,
|
|
METH_VARARGS | METH_KEYWORDS, acquire_doc},
|
|
{"release_lock", (PyCFunction)lock_PyThread_release_lock,
|
|
METH_NOARGS, release_doc},
|
|
{"release", (PyCFunction)lock_PyThread_release_lock,
|
|
METH_NOARGS, release_doc},
|
|
{"locked_lock", (PyCFunction)lock_locked_lock,
|
|
METH_NOARGS, locked_doc},
|
|
{"locked", (PyCFunction)lock_locked_lock,
|
|
METH_NOARGS, locked_doc},
|
|
{"__enter__", (PyCFunction)lock_PyThread_acquire_lock,
|
|
METH_VARARGS | METH_KEYWORDS, acquire_doc},
|
|
{"__exit__", (PyCFunction)lock_PyThread_release_lock,
|
|
METH_VARARGS, release_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyTypeObject Locktype = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"_thread.lock", /*tp_name*/
|
|
sizeof(lockobject), /*tp_size*/
|
|
0, /*tp_itemsize*/
|
|
/* methods */
|
|
(destructor)lock_dealloc, /*tp_dealloc*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_reserved*/
|
|
(reprfunc)lock_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash*/
|
|
0, /*tp_call*/
|
|
0, /*tp_str*/
|
|
0, /*tp_getattro*/
|
|
0, /*tp_setattro*/
|
|
0, /*tp_as_buffer*/
|
|
Py_TPFLAGS_DEFAULT, /*tp_flags*/
|
|
0, /*tp_doc*/
|
|
0, /*tp_traverse*/
|
|
0, /*tp_clear*/
|
|
0, /*tp_richcompare*/
|
|
offsetof(lockobject, in_weakreflist), /*tp_weaklistoffset*/
|
|
0, /*tp_iter*/
|
|
0, /*tp_iternext*/
|
|
lock_methods, /*tp_methods*/
|
|
};
|
|
|
|
/* Recursive lock objects */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyThread_type_lock rlock_lock;
|
|
long rlock_owner;
|
|
unsigned long rlock_count;
|
|
PyObject *in_weakreflist;
|
|
} rlockobject;
|
|
|
|
static void
|
|
rlock_dealloc(rlockobject *self)
|
|
{
|
|
if (self->in_weakreflist != NULL)
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
/* self->rlock_lock can be NULL if PyThread_allocate_lock() failed
|
|
in rlock_new() */
|
|
if (self->rlock_lock != NULL) {
|
|
/* Unlock the lock so it's safe to free it */
|
|
if (self->rlock_count > 0)
|
|
PyThread_release_lock(self->rlock_lock);
|
|
|
|
PyThread_free_lock(self->rlock_lock);
|
|
}
|
|
Py_TYPE(self)->tp_free(self);
|
|
}
|
|
|
|
static PyObject *
|
|
rlock_acquire(rlockobject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
_PyTime_t timeout;
|
|
long tid;
|
|
PyLockStatus r = PY_LOCK_ACQUIRED;
|
|
|
|
if (lock_acquire_parse_args(args, kwds, &timeout) < 0)
|
|
return NULL;
|
|
|
|
tid = PyThread_get_thread_ident();
|
|
if (self->rlock_count > 0 && tid == self->rlock_owner) {
|
|
unsigned long count = self->rlock_count + 1;
|
|
if (count <= self->rlock_count) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"Internal lock count overflowed");
|
|
return NULL;
|
|
}
|
|
self->rlock_count = count;
|
|
Py_RETURN_TRUE;
|
|
}
|
|
r = acquire_timed(self->rlock_lock, timeout);
|
|
if (r == PY_LOCK_ACQUIRED) {
|
|
assert(self->rlock_count == 0);
|
|
self->rlock_owner = tid;
|
|
self->rlock_count = 1;
|
|
}
|
|
else if (r == PY_LOCK_INTR) {
|
|
return NULL;
|
|
}
|
|
|
|
return PyBool_FromLong(r == PY_LOCK_ACQUIRED);
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_acquire_doc,
|
|
"acquire(blocking=True) -> bool\n\
|
|
\n\
|
|
Lock the lock. `blocking` indicates whether we should wait\n\
|
|
for the lock to be available or not. If `blocking` is False\n\
|
|
and another thread holds the lock, the method will return False\n\
|
|
immediately. If `blocking` is True and another thread holds\n\
|
|
the lock, the method will wait for the lock to be released,\n\
|
|
take it and then return True.\n\
|
|
(note: the blocking operation is interruptible.)\n\
|
|
\n\
|
|
In all other cases, the method will return True immediately.\n\
|
|
Precisely, if the current thread already holds the lock, its\n\
|
|
internal counter is simply incremented. If nobody holds the lock,\n\
|
|
the lock is taken and its internal counter initialized to 1.");
|
|
|
|
static PyObject *
|
|
rlock_release(rlockobject *self)
|
|
{
|
|
long tid = PyThread_get_thread_ident();
|
|
|
|
if (self->rlock_count == 0 || self->rlock_owner != tid) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"cannot release un-acquired lock");
|
|
return NULL;
|
|
}
|
|
if (--self->rlock_count == 0) {
|
|
self->rlock_owner = 0;
|
|
PyThread_release_lock(self->rlock_lock);
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_release_doc,
|
|
"release()\n\
|
|
\n\
|
|
Release the lock, allowing another thread that is blocked waiting for\n\
|
|
the lock to acquire the lock. The lock must be in the locked state,\n\
|
|
and must be locked by the same thread that unlocks it; otherwise a\n\
|
|
`RuntimeError` is raised.\n\
|
|
\n\
|
|
Do note that if the lock was acquire()d several times in a row by the\n\
|
|
current thread, release() needs to be called as many times for the lock\n\
|
|
to be available for other threads.");
|
|
|
|
static PyObject *
|
|
rlock_acquire_restore(rlockobject *self, PyObject *args)
|
|
{
|
|
long owner;
|
|
unsigned long count;
|
|
int r = 1;
|
|
|
|
if (!PyArg_ParseTuple(args, "(kl):_acquire_restore", &count, &owner))
|
|
return NULL;
|
|
|
|
if (!PyThread_acquire_lock(self->rlock_lock, 0)) {
|
|
Py_BEGIN_ALLOW_THREADS
|
|
r = PyThread_acquire_lock(self->rlock_lock, 1);
|
|
Py_END_ALLOW_THREADS
|
|
}
|
|
if (!r) {
|
|
PyErr_SetString(ThreadError, "couldn't acquire lock");
|
|
return NULL;
|
|
}
|
|
assert(self->rlock_count == 0);
|
|
self->rlock_owner = owner;
|
|
self->rlock_count = count;
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_acquire_restore_doc,
|
|
"_acquire_restore(state) -> None\n\
|
|
\n\
|
|
For internal use by `threading.Condition`.");
|
|
|
|
static PyObject *
|
|
rlock_release_save(rlockobject *self)
|
|
{
|
|
long owner;
|
|
unsigned long count;
|
|
|
|
if (self->rlock_count == 0) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"cannot release un-acquired lock");
|
|
return NULL;
|
|
}
|
|
|
|
owner = self->rlock_owner;
|
|
count = self->rlock_count;
|
|
self->rlock_count = 0;
|
|
self->rlock_owner = 0;
|
|
PyThread_release_lock(self->rlock_lock);
|
|
return Py_BuildValue("kl", count, owner);
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_release_save_doc,
|
|
"_release_save() -> tuple\n\
|
|
\n\
|
|
For internal use by `threading.Condition`.");
|
|
|
|
|
|
static PyObject *
|
|
rlock_is_owned(rlockobject *self)
|
|
{
|
|
long tid = PyThread_get_thread_ident();
|
|
|
|
if (self->rlock_count > 0 && self->rlock_owner == tid) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_is_owned_doc,
|
|
"_is_owned() -> bool\n\
|
|
\n\
|
|
For internal use by `threading.Condition`.");
|
|
|
|
static PyObject *
|
|
rlock_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
rlockobject *self;
|
|
|
|
self = (rlockobject *) type->tp_alloc(type, 0);
|
|
if (self != NULL) {
|
|
self->in_weakreflist = NULL;
|
|
self->rlock_owner = 0;
|
|
self->rlock_count = 0;
|
|
|
|
self->rlock_lock = PyThread_allocate_lock();
|
|
if (self->rlock_lock == NULL) {
|
|
Py_DECREF(self);
|
|
PyErr_SetString(ThreadError, "can't allocate lock");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
static PyObject *
|
|
rlock_repr(rlockobject *self)
|
|
{
|
|
return PyUnicode_FromFormat("<%s %s object owner=%ld count=%lu at %p>",
|
|
self->rlock_count ? "locked" : "unlocked",
|
|
Py_TYPE(self)->tp_name, self->rlock_owner,
|
|
self->rlock_count, self);
|
|
}
|
|
|
|
|
|
static PyMethodDef rlock_methods[] = {
|
|
{"acquire", (PyCFunction)rlock_acquire,
|
|
METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc},
|
|
{"release", (PyCFunction)rlock_release,
|
|
METH_NOARGS, rlock_release_doc},
|
|
{"_is_owned", (PyCFunction)rlock_is_owned,
|
|
METH_NOARGS, rlock_is_owned_doc},
|
|
{"_acquire_restore", (PyCFunction)rlock_acquire_restore,
|
|
METH_VARARGS, rlock_acquire_restore_doc},
|
|
{"_release_save", (PyCFunction)rlock_release_save,
|
|
METH_NOARGS, rlock_release_save_doc},
|
|
{"__enter__", (PyCFunction)rlock_acquire,
|
|
METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc},
|
|
{"__exit__", (PyCFunction)rlock_release,
|
|
METH_VARARGS, rlock_release_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
static PyTypeObject RLocktype = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"_thread.RLock", /*tp_name*/
|
|
sizeof(rlockobject), /*tp_size*/
|
|
0, /*tp_itemsize*/
|
|
/* methods */
|
|
(destructor)rlock_dealloc, /*tp_dealloc*/
|
|
0, /*tp_print*/
|
|
0, /*tp_getattr*/
|
|
0, /*tp_setattr*/
|
|
0, /*tp_reserved*/
|
|
(reprfunc)rlock_repr, /*tp_repr*/
|
|
0, /*tp_as_number*/
|
|
0, /*tp_as_sequence*/
|
|
0, /*tp_as_mapping*/
|
|
0, /*tp_hash*/
|
|
0, /*tp_call*/
|
|
0, /*tp_str*/
|
|
0, /*tp_getattro*/
|
|
0, /*tp_setattro*/
|
|
0, /*tp_as_buffer*/
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
0, /*tp_doc*/
|
|
0, /*tp_traverse*/
|
|
0, /*tp_clear*/
|
|
0, /*tp_richcompare*/
|
|
offsetof(rlockobject, in_weakreflist), /*tp_weaklistoffset*/
|
|
0, /*tp_iter*/
|
|
0, /*tp_iternext*/
|
|
rlock_methods, /*tp_methods*/
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
rlock_new /* tp_new */
|
|
};
|
|
|
|
static lockobject *
|
|
newlockobject(void)
|
|
{
|
|
lockobject *self;
|
|
self = PyObject_New(lockobject, &Locktype);
|
|
if (self == NULL)
|
|
return NULL;
|
|
self->lock_lock = PyThread_allocate_lock();
|
|
self->locked = 0;
|
|
self->in_weakreflist = NULL;
|
|
if (self->lock_lock == NULL) {
|
|
Py_DECREF(self);
|
|
PyErr_SetString(ThreadError, "can't allocate lock");
|
|
return NULL;
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Thread-local objects */
|
|
|
|
#include "structmember.h"
|
|
|
|
/* Quick overview:
|
|
|
|
We need to be able to reclaim reference cycles as soon as possible
|
|
(both when a thread is being terminated, or a thread-local object
|
|
becomes unreachable from user data). Constraints:
|
|
- it must not be possible for thread-state dicts to be involved in
|
|
reference cycles (otherwise the cyclic GC will refuse to consider
|
|
objects referenced from a reachable thread-state dict, even though
|
|
local_dealloc would clear them)
|
|
- the death of a thread-state dict must still imply destruction of the
|
|
corresponding local dicts in all thread-local objects.
|
|
|
|
Our implementation uses small "localdummy" objects in order to break
|
|
the reference chain. These trivial objects are hashable (using the
|
|
default scheme of identity hashing) and weakrefable.
|
|
Each thread-state holds a separate localdummy for each local object
|
|
(as a /strong reference/),
|
|
and each thread-local object holds a dict mapping /weak references/
|
|
of localdummies to local dicts.
|
|
|
|
Therefore:
|
|
- only the thread-state dict holds a strong reference to the dummies
|
|
- only the thread-local object holds a strong reference to the local dicts
|
|
- only outside objects (application- or library-level) hold strong
|
|
references to the thread-local objects
|
|
- as soon as a thread-state dict is destroyed, the weakref callbacks of all
|
|
dummies attached to that thread are called, and destroy the corresponding
|
|
local dicts from thread-local objects
|
|
- as soon as a thread-local object is destroyed, its local dicts are
|
|
destroyed and its dummies are manually removed from all thread states
|
|
- the GC can do its work correctly when a thread-local object is dangling,
|
|
without any interference from the thread-state dicts
|
|
|
|
As an additional optimization, each localdummy holds a borrowed reference
|
|
to the corresponding localdict. This borrowed reference is only used
|
|
by the thread-local object which has created the localdummy, which should
|
|
guarantee that the localdict still exists when accessed.
|
|
*/
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyObject *localdict; /* Borrowed reference! */
|
|
PyObject *weakreflist; /* List of weak references to self */
|
|
} localdummyobject;
|
|
|
|
static void
|
|
localdummy_dealloc(localdummyobject *self)
|
|
{
|
|
if (self->weakreflist != NULL)
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
static PyTypeObject localdummytype = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
/* tp_name */ "_thread._localdummy",
|
|
/* tp_basicsize */ sizeof(localdummyobject),
|
|
/* tp_itemsize */ 0,
|
|
/* tp_dealloc */ (destructor)localdummy_dealloc,
|
|
/* tp_print */ 0,
|
|
/* tp_getattr */ 0,
|
|
/* tp_setattr */ 0,
|
|
/* tp_reserved */ 0,
|
|
/* tp_repr */ 0,
|
|
/* tp_as_number */ 0,
|
|
/* tp_as_sequence */ 0,
|
|
/* tp_as_mapping */ 0,
|
|
/* tp_hash */ 0,
|
|
/* tp_call */ 0,
|
|
/* tp_str */ 0,
|
|
/* tp_getattro */ 0,
|
|
/* tp_setattro */ 0,
|
|
/* tp_as_buffer */ 0,
|
|
/* tp_flags */ Py_TPFLAGS_DEFAULT,
|
|
/* tp_doc */ "Thread-local dummy",
|
|
/* tp_traverse */ 0,
|
|
/* tp_clear */ 0,
|
|
/* tp_richcompare */ 0,
|
|
/* tp_weaklistoffset */ offsetof(localdummyobject, weakreflist)
|
|
};
|
|
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyObject *key;
|
|
PyObject *args;
|
|
PyObject *kw;
|
|
PyObject *weakreflist; /* List of weak references to self */
|
|
/* A {localdummy weakref -> localdict} dict */
|
|
PyObject *dummies;
|
|
/* The callback for weakrefs to localdummies */
|
|
PyObject *wr_callback;
|
|
} localobject;
|
|
|
|
/* Forward declaration */
|
|
static PyObject *_ldict(localobject *self);
|
|
static PyObject *_localdummy_destroyed(PyObject *meth_self, PyObject *dummyweakref);
|
|
|
|
/* Create and register the dummy for the current thread.
|
|
Returns a borrowed reference of the corresponding local dict */
|
|
static PyObject *
|
|
_local_create_dummy(localobject *self)
|
|
{
|
|
PyObject *tdict, *ldict = NULL, *wr = NULL;
|
|
localdummyobject *dummy = NULL;
|
|
int r;
|
|
|
|
tdict = PyThreadState_GetDict();
|
|
if (tdict == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"Couldn't get thread-state dictionary");
|
|
goto err;
|
|
}
|
|
|
|
ldict = PyDict_New();
|
|
if (ldict == NULL)
|
|
goto err;
|
|
dummy = (localdummyobject *) localdummytype.tp_alloc(&localdummytype, 0);
|
|
if (dummy == NULL)
|
|
goto err;
|
|
dummy->localdict = ldict;
|
|
wr = PyWeakref_NewRef((PyObject *) dummy, self->wr_callback);
|
|
if (wr == NULL)
|
|
goto err;
|
|
|
|
/* As a side-effect, this will cache the weakref's hash before the
|
|
dummy gets deleted */
|
|
r = PyDict_SetItem(self->dummies, wr, ldict);
|
|
if (r < 0)
|
|
goto err;
|
|
Py_CLEAR(wr);
|
|
r = PyDict_SetItem(tdict, self->key, (PyObject *) dummy);
|
|
if (r < 0)
|
|
goto err;
|
|
Py_CLEAR(dummy);
|
|
|
|
Py_DECREF(ldict);
|
|
return ldict;
|
|
|
|
err:
|
|
Py_XDECREF(ldict);
|
|
Py_XDECREF(wr);
|
|
Py_XDECREF(dummy);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
local_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
localobject *self;
|
|
PyObject *wr;
|
|
static PyMethodDef wr_callback_def = {
|
|
"_localdummy_destroyed", (PyCFunction) _localdummy_destroyed, METH_O
|
|
};
|
|
|
|
if (type->tp_init == PyBaseObject_Type.tp_init) {
|
|
int rc = 0;
|
|
if (args != NULL)
|
|
rc = PyObject_IsTrue(args);
|
|
if (rc == 0 && kw != NULL)
|
|
rc = PyObject_IsTrue(kw);
|
|
if (rc != 0) {
|
|
if (rc > 0)
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"Initialization arguments are not supported");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
self = (localobject *)type->tp_alloc(type, 0);
|
|
if (self == NULL)
|
|
return NULL;
|
|
|
|
Py_XINCREF(args);
|
|
self->args = args;
|
|
Py_XINCREF(kw);
|
|
self->kw = kw;
|
|
self->key = PyUnicode_FromFormat("thread.local.%p", self);
|
|
if (self->key == NULL)
|
|
goto err;
|
|
|
|
self->dummies = PyDict_New();
|
|
if (self->dummies == NULL)
|
|
goto err;
|
|
|
|
/* We use a weak reference to self in the callback closure
|
|
in order to avoid spurious reference cycles */
|
|
wr = PyWeakref_NewRef((PyObject *) self, NULL);
|
|
if (wr == NULL)
|
|
goto err;
|
|
self->wr_callback = PyCFunction_NewEx(&wr_callback_def, wr, NULL);
|
|
Py_DECREF(wr);
|
|
if (self->wr_callback == NULL)
|
|
goto err;
|
|
|
|
if (_local_create_dummy(self) == NULL)
|
|
goto err;
|
|
|
|
return (PyObject *)self;
|
|
|
|
err:
|
|
Py_DECREF(self);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
local_traverse(localobject *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(self->args);
|
|
Py_VISIT(self->kw);
|
|
Py_VISIT(self->dummies);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
local_clear(localobject *self)
|
|
{
|
|
PyThreadState *tstate;
|
|
Py_CLEAR(self->args);
|
|
Py_CLEAR(self->kw);
|
|
Py_CLEAR(self->dummies);
|
|
Py_CLEAR(self->wr_callback);
|
|
/* Remove all strong references to dummies from the thread states */
|
|
if (self->key
|
|
&& (tstate = PyThreadState_Get())
|
|
&& tstate->interp) {
|
|
for(tstate = PyInterpreterState_ThreadHead(tstate->interp);
|
|
tstate;
|
|
tstate = PyThreadState_Next(tstate))
|
|
if (tstate->dict &&
|
|
PyDict_GetItem(tstate->dict, self->key))
|
|
PyDict_DelItem(tstate->dict, self->key);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
local_dealloc(localobject *self)
|
|
{
|
|
/* Weakrefs must be invalidated right now, otherwise they can be used
|
|
from code called below, which is very dangerous since Py_REFCNT(self) == 0 */
|
|
if (self->weakreflist != NULL)
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
|
|
PyObject_GC_UnTrack(self);
|
|
|
|
local_clear(self);
|
|
Py_XDECREF(self->key);
|
|
Py_TYPE(self)->tp_free((PyObject*)self);
|
|
}
|
|
|
|
/* Returns a borrowed reference to the local dict, creating it if necessary */
|
|
static PyObject *
|
|
_ldict(localobject *self)
|
|
{
|
|
PyObject *tdict, *ldict, *dummy;
|
|
|
|
tdict = PyThreadState_GetDict();
|
|
if (tdict == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"Couldn't get thread-state dictionary");
|
|
return NULL;
|
|
}
|
|
|
|
dummy = PyDict_GetItem(tdict, self->key);
|
|
if (dummy == NULL) {
|
|
ldict = _local_create_dummy(self);
|
|
if (ldict == NULL)
|
|
return NULL;
|
|
|
|
if (Py_TYPE(self)->tp_init != PyBaseObject_Type.tp_init &&
|
|
Py_TYPE(self)->tp_init((PyObject*)self,
|
|
self->args, self->kw) < 0) {
|
|
/* we need to get rid of ldict from thread so
|
|
we create a new one the next time we do an attr
|
|
access */
|
|
PyDict_DelItem(tdict, self->key);
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
assert(Py_TYPE(dummy) == &localdummytype);
|
|
ldict = ((localdummyobject *) dummy)->localdict;
|
|
}
|
|
|
|
return ldict;
|
|
}
|
|
|
|
static int
|
|
local_setattro(localobject *self, PyObject *name, PyObject *v)
|
|
{
|
|
PyObject *ldict;
|
|
int r;
|
|
|
|
ldict = _ldict(self);
|
|
if (ldict == NULL)
|
|
return -1;
|
|
|
|
r = PyObject_RichCompareBool(name, str_dict, Py_EQ);
|
|
if (r == 1) {
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.50s' object attribute '%U' is read-only",
|
|
Py_TYPE(self)->tp_name, name);
|
|
return -1;
|
|
}
|
|
if (r == -1)
|
|
return -1;
|
|
|
|
return _PyObject_GenericSetAttrWithDict((PyObject *)self, name, v, ldict);
|
|
}
|
|
|
|
static PyObject *local_getattro(localobject *, PyObject *);
|
|
|
|
static PyTypeObject localtype = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
/* tp_name */ "_thread._local",
|
|
/* tp_basicsize */ sizeof(localobject),
|
|
/* tp_itemsize */ 0,
|
|
/* tp_dealloc */ (destructor)local_dealloc,
|
|
/* tp_print */ 0,
|
|
/* tp_getattr */ 0,
|
|
/* tp_setattr */ 0,
|
|
/* tp_reserved */ 0,
|
|
/* tp_repr */ 0,
|
|
/* tp_as_number */ 0,
|
|
/* tp_as_sequence */ 0,
|
|
/* tp_as_mapping */ 0,
|
|
/* tp_hash */ 0,
|
|
/* tp_call */ 0,
|
|
/* tp_str */ 0,
|
|
/* tp_getattro */ (getattrofunc)local_getattro,
|
|
/* tp_setattro */ (setattrofunc)local_setattro,
|
|
/* tp_as_buffer */ 0,
|
|
/* tp_flags */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE
|
|
| Py_TPFLAGS_HAVE_GC,
|
|
/* tp_doc */ "Thread-local data",
|
|
/* tp_traverse */ (traverseproc)local_traverse,
|
|
/* tp_clear */ (inquiry)local_clear,
|
|
/* tp_richcompare */ 0,
|
|
/* tp_weaklistoffset */ offsetof(localobject, weakreflist),
|
|
/* tp_iter */ 0,
|
|
/* tp_iternext */ 0,
|
|
/* tp_methods */ 0,
|
|
/* tp_members */ 0,
|
|
/* tp_getset */ 0,
|
|
/* tp_base */ 0,
|
|
/* tp_dict */ 0, /* internal use */
|
|
/* tp_descr_get */ 0,
|
|
/* tp_descr_set */ 0,
|
|
/* tp_dictoffset */ 0,
|
|
/* tp_init */ 0,
|
|
/* tp_alloc */ 0,
|
|
/* tp_new */ local_new,
|
|
/* tp_free */ 0, /* Low-level free-mem routine */
|
|
/* tp_is_gc */ 0, /* For PyObject_IS_GC */
|
|
};
|
|
|
|
static PyObject *
|
|
local_getattro(localobject *self, PyObject *name)
|
|
{
|
|
PyObject *ldict, *value;
|
|
int r;
|
|
|
|
ldict = _ldict(self);
|
|
if (ldict == NULL)
|
|
return NULL;
|
|
|
|
r = PyObject_RichCompareBool(name, str_dict, Py_EQ);
|
|
if (r == 1) {
|
|
Py_INCREF(ldict);
|
|
return ldict;
|
|
}
|
|
if (r == -1)
|
|
return NULL;
|
|
|
|
if (Py_TYPE(self) != &localtype)
|
|
/* use generic lookup for subtypes */
|
|
return _PyObject_GenericGetAttrWithDict((PyObject *)self, name, ldict);
|
|
|
|
/* Optimization: just look in dict ourselves */
|
|
value = PyDict_GetItem(ldict, name);
|
|
if (value == NULL)
|
|
/* Fall back on generic to get __class__ and __dict__ */
|
|
return _PyObject_GenericGetAttrWithDict((PyObject *)self, name, ldict);
|
|
|
|
Py_INCREF(value);
|
|
return value;
|
|
}
|
|
|
|
/* Called when a dummy is destroyed. */
|
|
static PyObject *
|
|
_localdummy_destroyed(PyObject *localweakref, PyObject *dummyweakref)
|
|
{
|
|
PyObject *obj;
|
|
localobject *self;
|
|
assert(PyWeakref_CheckRef(localweakref));
|
|
obj = PyWeakref_GET_OBJECT(localweakref);
|
|
if (obj == Py_None)
|
|
Py_RETURN_NONE;
|
|
Py_INCREF(obj);
|
|
assert(PyObject_TypeCheck(obj, &localtype));
|
|
/* If the thread-local object is still alive and not being cleared,
|
|
remove the corresponding local dict */
|
|
self = (localobject *) obj;
|
|
if (self->dummies != NULL) {
|
|
PyObject *ldict;
|
|
ldict = PyDict_GetItem(self->dummies, dummyweakref);
|
|
if (ldict != NULL) {
|
|
PyDict_DelItem(self->dummies, dummyweakref);
|
|
}
|
|
if (PyErr_Occurred())
|
|
PyErr_WriteUnraisable(obj);
|
|
}
|
|
Py_DECREF(obj);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* Module functions */
|
|
|
|
struct bootstate {
|
|
PyInterpreterState *interp;
|
|
PyObject *func;
|
|
PyObject *args;
|
|
PyObject *keyw;
|
|
PyThreadState *tstate;
|
|
};
|
|
|
|
static void
|
|
t_bootstrap(void *boot_raw)
|
|
{
|
|
struct bootstate *boot = (struct bootstate *) boot_raw;
|
|
PyThreadState *tstate;
|
|
PyObject *res;
|
|
|
|
tstate = boot->tstate;
|
|
tstate->thread_id = PyThread_get_thread_ident();
|
|
_PyThreadState_Init(tstate);
|
|
PyEval_AcquireThread(tstate);
|
|
nb_threads++;
|
|
res = PyEval_CallObjectWithKeywords(
|
|
boot->func, boot->args, boot->keyw);
|
|
if (res == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_SystemExit))
|
|
PyErr_Clear();
|
|
else {
|
|
PyObject *file;
|
|
PyObject *exc, *value, *tb;
|
|
PySys_WriteStderr(
|
|
"Unhandled exception in thread started by ");
|
|
PyErr_Fetch(&exc, &value, &tb);
|
|
file = _PySys_GetObjectId(&PyId_stderr);
|
|
if (file != NULL && file != Py_None)
|
|
PyFile_WriteObject(boot->func, file, 0);
|
|
else
|
|
PyObject_Print(boot->func, stderr, 0);
|
|
PySys_WriteStderr("\n");
|
|
PyErr_Restore(exc, value, tb);
|
|
PyErr_PrintEx(0);
|
|
}
|
|
}
|
|
else
|
|
Py_DECREF(res);
|
|
Py_DECREF(boot->func);
|
|
Py_DECREF(boot->args);
|
|
Py_XDECREF(boot->keyw);
|
|
PyMem_DEL(boot_raw);
|
|
nb_threads--;
|
|
PyThreadState_Clear(tstate);
|
|
PyThreadState_DeleteCurrent();
|
|
PyThread_exit_thread();
|
|
}
|
|
|
|
static PyObject *
|
|
thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs)
|
|
{
|
|
PyObject *func, *args, *keyw = NULL;
|
|
struct bootstate *boot;
|
|
long ident;
|
|
|
|
if (!PyArg_UnpackTuple(fargs, "start_new_thread", 2, 3,
|
|
&func, &args, &keyw))
|
|
return NULL;
|
|
if (!PyCallable_Check(func)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"first arg must be callable");
|
|
return NULL;
|
|
}
|
|
if (!PyTuple_Check(args)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"2nd arg must be a tuple");
|
|
return NULL;
|
|
}
|
|
if (keyw != NULL && !PyDict_Check(keyw)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"optional 3rd arg must be a dictionary");
|
|
return NULL;
|
|
}
|
|
boot = PyMem_NEW(struct bootstate, 1);
|
|
if (boot == NULL)
|
|
return PyErr_NoMemory();
|
|
boot->interp = PyThreadState_GET()->interp;
|
|
boot->func = func;
|
|
boot->args = args;
|
|
boot->keyw = keyw;
|
|
boot->tstate = _PyThreadState_Prealloc(boot->interp);
|
|
if (boot->tstate == NULL) {
|
|
PyMem_DEL(boot);
|
|
return PyErr_NoMemory();
|
|
}
|
|
Py_INCREF(func);
|
|
Py_INCREF(args);
|
|
Py_XINCREF(keyw);
|
|
PyEval_InitThreads(); /* Start the interpreter's thread-awareness */
|
|
ident = PyThread_start_new_thread(t_bootstrap, (void*) boot);
|
|
if (ident == -1) {
|
|
PyErr_SetString(ThreadError, "can't start new thread");
|
|
Py_DECREF(func);
|
|
Py_DECREF(args);
|
|
Py_XDECREF(keyw);
|
|
PyThreadState_Clear(boot->tstate);
|
|
PyMem_DEL(boot);
|
|
return NULL;
|
|
}
|
|
return PyLong_FromLong(ident);
|
|
}
|
|
|
|
PyDoc_STRVAR(start_new_doc,
|
|
"start_new_thread(function, args[, kwargs])\n\
|
|
(start_new() is an obsolete synonym)\n\
|
|
\n\
|
|
Start a new thread and return its identifier. The thread will call the\n\
|
|
function with positional arguments from the tuple args and keyword arguments\n\
|
|
taken from the optional dictionary kwargs. The thread exits when the\n\
|
|
function returns; the return value is ignored. The thread will also exit\n\
|
|
when the function raises an unhandled exception; a stack trace will be\n\
|
|
printed unless the exception is SystemExit.\n");
|
|
|
|
static PyObject *
|
|
thread_PyThread_exit_thread(PyObject *self)
|
|
{
|
|
PyErr_SetNone(PyExc_SystemExit);
|
|
return NULL;
|
|
}
|
|
|
|
PyDoc_STRVAR(exit_doc,
|
|
"exit()\n\
|
|
(exit_thread() is an obsolete synonym)\n\
|
|
\n\
|
|
This is synonymous to ``raise SystemExit''. It will cause the current\n\
|
|
thread to exit silently unless the exception is caught.");
|
|
|
|
static PyObject *
|
|
thread_PyThread_interrupt_main(PyObject * self)
|
|
{
|
|
PyErr_SetInterrupt();
|
|
Py_INCREF(Py_None);
|
|
return Py_None;
|
|
}
|
|
|
|
PyDoc_STRVAR(interrupt_doc,
|
|
"interrupt_main()\n\
|
|
\n\
|
|
Raise a KeyboardInterrupt in the main thread.\n\
|
|
A subthread can use this function to interrupt the main thread."
|
|
);
|
|
|
|
static lockobject *newlockobject(void);
|
|
|
|
static PyObject *
|
|
thread_PyThread_allocate_lock(PyObject *self)
|
|
{
|
|
return (PyObject *) newlockobject();
|
|
}
|
|
|
|
PyDoc_STRVAR(allocate_doc,
|
|
"allocate_lock() -> lock object\n\
|
|
(allocate() is an obsolete synonym)\n\
|
|
\n\
|
|
Create a new lock object. See help(type(threading.Lock())) for\n\
|
|
information about locks.");
|
|
|
|
static PyObject *
|
|
thread_get_ident(PyObject *self)
|
|
{
|
|
long ident;
|
|
ident = PyThread_get_thread_ident();
|
|
if (ident == -1) {
|
|
PyErr_SetString(ThreadError, "no current thread ident");
|
|
return NULL;
|
|
}
|
|
return PyLong_FromLong(ident);
|
|
}
|
|
|
|
PyDoc_STRVAR(get_ident_doc,
|
|
"get_ident() -> integer\n\
|
|
\n\
|
|
Return a non-zero integer that uniquely identifies the current thread\n\
|
|
amongst other threads that exist simultaneously.\n\
|
|
This may be used to identify per-thread resources.\n\
|
|
Even though on some platforms threads identities may appear to be\n\
|
|
allocated consecutive numbers starting at 1, this behavior should not\n\
|
|
be relied upon, and the number should be seen purely as a magic cookie.\n\
|
|
A thread's identity may be reused for another thread after it exits.");
|
|
|
|
static PyObject *
|
|
thread__count(PyObject *self)
|
|
{
|
|
return PyLong_FromLong(nb_threads);
|
|
}
|
|
|
|
PyDoc_STRVAR(_count_doc,
|
|
"_count() -> integer\n\
|
|
\n\
|
|
\
|
|
Return the number of currently running Python threads, excluding \n\
|
|
the main thread. The returned number comprises all threads created\n\
|
|
through `start_new_thread()` as well as `threading.Thread`, and not\n\
|
|
yet finished.\n\
|
|
\n\
|
|
This function is meant for internal and specialized purposes only.\n\
|
|
In most applications `threading.enumerate()` should be used instead.");
|
|
|
|
static void
|
|
release_sentinel(void *wr)
|
|
{
|
|
/* Tricky: this function is called when the current thread state
|
|
is being deleted. Therefore, only simple C code can safely
|
|
execute here. */
|
|
PyObject *obj = PyWeakref_GET_OBJECT(wr);
|
|
lockobject *lock;
|
|
if (obj != Py_None) {
|
|
assert(Py_TYPE(obj) == &Locktype);
|
|
lock = (lockobject *) obj;
|
|
if (lock->locked) {
|
|
PyThread_release_lock(lock->lock_lock);
|
|
lock->locked = 0;
|
|
}
|
|
}
|
|
/* Deallocating a weakref with a NULL callback only calls
|
|
PyObject_GC_Del(), which can't call any Python code. */
|
|
Py_DECREF(wr);
|
|
}
|
|
|
|
static PyObject *
|
|
thread__set_sentinel(PyObject *self)
|
|
{
|
|
PyObject *wr;
|
|
PyThreadState *tstate = PyThreadState_Get();
|
|
lockobject *lock;
|
|
|
|
if (tstate->on_delete_data != NULL) {
|
|
/* We must support the re-creation of the lock from a
|
|
fork()ed child. */
|
|
assert(tstate->on_delete == &release_sentinel);
|
|
wr = (PyObject *) tstate->on_delete_data;
|
|
tstate->on_delete = NULL;
|
|
tstate->on_delete_data = NULL;
|
|
Py_DECREF(wr);
|
|
}
|
|
lock = newlockobject();
|
|
if (lock == NULL)
|
|
return NULL;
|
|
/* The lock is owned by whoever called _set_sentinel(), but the weakref
|
|
hangs to the thread state. */
|
|
wr = PyWeakref_NewRef((PyObject *) lock, NULL);
|
|
if (wr == NULL) {
|
|
Py_DECREF(lock);
|
|
return NULL;
|
|
}
|
|
tstate->on_delete_data = (void *) wr;
|
|
tstate->on_delete = &release_sentinel;
|
|
return (PyObject *) lock;
|
|
}
|
|
|
|
PyDoc_STRVAR(_set_sentinel_doc,
|
|
"_set_sentinel() -> lock\n\
|
|
\n\
|
|
Set a sentinel lock that will be released when the current thread\n\
|
|
state is finalized (after it is untied from the interpreter).\n\
|
|
\n\
|
|
This is a private API for the threading module.");
|
|
|
|
static PyObject *
|
|
thread_stack_size(PyObject *self, PyObject *args)
|
|
{
|
|
size_t old_size;
|
|
Py_ssize_t new_size = 0;
|
|
int rc;
|
|
|
|
if (!PyArg_ParseTuple(args, "|n:stack_size", &new_size))
|
|
return NULL;
|
|
|
|
if (new_size < 0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"size must be 0 or a positive value");
|
|
return NULL;
|
|
}
|
|
|
|
old_size = PyThread_get_stacksize();
|
|
|
|
rc = PyThread_set_stacksize((size_t) new_size);
|
|
if (rc == -1) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"size not valid: %zd bytes",
|
|
new_size);
|
|
return NULL;
|
|
}
|
|
if (rc == -2) {
|
|
PyErr_SetString(ThreadError,
|
|
"setting stack size not supported");
|
|
return NULL;
|
|
}
|
|
|
|
return PyLong_FromSsize_t((Py_ssize_t) old_size);
|
|
}
|
|
|
|
PyDoc_STRVAR(stack_size_doc,
|
|
"stack_size([size]) -> size\n\
|
|
\n\
|
|
Return the thread stack size used when creating new threads. The\n\
|
|
optional size argument specifies the stack size (in bytes) to be used\n\
|
|
for subsequently created threads, and must be 0 (use platform or\n\
|
|
configured default) or a positive integer value of at least 32,768 (32k).\n\
|
|
If changing the thread stack size is unsupported, a ThreadError\n\
|
|
exception is raised. If the specified size is invalid, a ValueError\n\
|
|
exception is raised, and the stack size is unmodified. 32k bytes\n\
|
|
currently the minimum supported stack size value to guarantee\n\
|
|
sufficient stack space for the interpreter itself.\n\
|
|
\n\
|
|
Note that some platforms may have particular restrictions on values for\n\
|
|
the stack size, such as requiring a minimum stack size larger than 32kB or\n\
|
|
requiring allocation in multiples of the system memory page size\n\
|
|
- platform documentation should be referred to for more information\n\
|
|
(4kB pages are common; using multiples of 4096 for the stack size is\n\
|
|
the suggested approach in the absence of more specific information).");
|
|
|
|
static PyMethodDef thread_methods[] = {
|
|
{"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread,
|
|
METH_VARARGS, start_new_doc},
|
|
{"start_new", (PyCFunction)thread_PyThread_start_new_thread,
|
|
METH_VARARGS, start_new_doc},
|
|
{"allocate_lock", (PyCFunction)thread_PyThread_allocate_lock,
|
|
METH_NOARGS, allocate_doc},
|
|
{"allocate", (PyCFunction)thread_PyThread_allocate_lock,
|
|
METH_NOARGS, allocate_doc},
|
|
{"exit_thread", (PyCFunction)thread_PyThread_exit_thread,
|
|
METH_NOARGS, exit_doc},
|
|
{"exit", (PyCFunction)thread_PyThread_exit_thread,
|
|
METH_NOARGS, exit_doc},
|
|
{"interrupt_main", (PyCFunction)thread_PyThread_interrupt_main,
|
|
METH_NOARGS, interrupt_doc},
|
|
{"get_ident", (PyCFunction)thread_get_ident,
|
|
METH_NOARGS, get_ident_doc},
|
|
{"_count", (PyCFunction)thread__count,
|
|
METH_NOARGS, _count_doc},
|
|
{"stack_size", (PyCFunction)thread_stack_size,
|
|
METH_VARARGS, stack_size_doc},
|
|
{"_set_sentinel", (PyCFunction)thread__set_sentinel,
|
|
METH_NOARGS, _set_sentinel_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
/* Initialization function */
|
|
|
|
PyDoc_STRVAR(thread_doc,
|
|
"This module provides primitive operations to write multi-threaded programs.\n\
|
|
The 'threading' module provides a more convenient interface.");
|
|
|
|
PyDoc_STRVAR(lock_doc,
|
|
"A lock object is a synchronization primitive. To create a lock,\n\
|
|
call threading.Lock(). Methods are:\n\
|
|
\n\
|
|
acquire() -- lock the lock, possibly blocking until it can be obtained\n\
|
|
release() -- unlock of the lock\n\
|
|
locked() -- test whether the lock is currently locked\n\
|
|
\n\
|
|
A lock is not owned by the thread that locked it; another thread may\n\
|
|
unlock it. A thread attempting to lock a lock that it has already locked\n\
|
|
will block until another thread unlocks it. Deadlocks may ensue.");
|
|
|
|
static struct PyModuleDef threadmodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"_thread",
|
|
thread_doc,
|
|
-1,
|
|
thread_methods,
|
|
NULL,
|
|
NULL,
|
|
NULL,
|
|
NULL
|
|
};
|
|
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__thread(void)
|
|
{
|
|
PyObject *m, *d, *v;
|
|
double time_max;
|
|
double timeout_max;
|
|
|
|
/* Initialize types: */
|
|
if (PyType_Ready(&localdummytype) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&localtype) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&Locktype) < 0)
|
|
return NULL;
|
|
if (PyType_Ready(&RLocktype) < 0)
|
|
return NULL;
|
|
|
|
/* Create the module and add the functions */
|
|
m = PyModule_Create(&threadmodule);
|
|
if (m == NULL)
|
|
return NULL;
|
|
|
|
timeout_max = PY_TIMEOUT_MAX / 1000000;
|
|
time_max = floor(_PyTime_AsSecondsDouble(_PyTime_MAX));
|
|
timeout_max = Py_MIN(timeout_max, time_max);
|
|
|
|
v = PyFloat_FromDouble(timeout_max);
|
|
if (!v)
|
|
return NULL;
|
|
if (PyModule_AddObject(m, "TIMEOUT_MAX", v) < 0)
|
|
return NULL;
|
|
|
|
/* Add a symbolic constant */
|
|
d = PyModule_GetDict(m);
|
|
ThreadError = PyExc_RuntimeError;
|
|
Py_INCREF(ThreadError);
|
|
|
|
PyDict_SetItemString(d, "error", ThreadError);
|
|
Locktype.tp_doc = lock_doc;
|
|
Py_INCREF(&Locktype);
|
|
PyDict_SetItemString(d, "LockType", (PyObject *)&Locktype);
|
|
|
|
Py_INCREF(&RLocktype);
|
|
if (PyModule_AddObject(m, "RLock", (PyObject *)&RLocktype) < 0)
|
|
return NULL;
|
|
|
|
Py_INCREF(&localtype);
|
|
if (PyModule_AddObject(m, "_local", (PyObject *)&localtype) < 0)
|
|
return NULL;
|
|
|
|
nb_threads = 0;
|
|
|
|
str_dict = PyUnicode_InternFromString("__dict__");
|
|
if (str_dict == NULL)
|
|
return NULL;
|
|
|
|
/* Initialize the C thread library */
|
|
PyThread_init_thread();
|
|
return m;
|
|
}
|