mirror of
https://github.com/python/cpython.git
synced 2024-12-14 20:34:12 +08:00
5c5022b862
Use a fraction internally in the _PyTime API to reduce the risk of integer overflow: simplify the fraction using Greatest Common Divisor (GCD). The fraction API is used by time functions: perf_counter(), monotonic() and process_time(). For example, QueryPerformanceFrequency() usually returns 10 MHz on Windows 10 and newer. The fraction SEC_TO_NS / frequency = 1_000_000_000 / 10_000_000 can be simplified to 100 / 1. * Add _PyTimeFraction type. * Add functions: * _PyTimeFraction_Set() * _PyTimeFraction_Mul() * _PyTimeFraction_Resolution() * No longer check "numer * denom <= _PyTime_MAX" in _PyTimeFraction_Set(). _PyTimeFraction_Mul() uses _PyTime_Mul() which handles integer overflow.
1419 lines
33 KiB
C
1419 lines
33 KiB
C
#include "Python.h"
|
|
#include "pycore_time.h" // _PyTime_t
|
|
|
|
#include <time.h> // gmtime_r()
|
|
#ifdef HAVE_SYS_TIME_H
|
|
# include <sys/time.h> // gettimeofday()
|
|
#endif
|
|
#ifdef MS_WINDOWS
|
|
# include <winsock2.h> // struct timeval
|
|
#endif
|
|
|
|
#if defined(__APPLE__)
|
|
# include <mach/mach_time.h> // mach_absolute_time(), mach_timebase_info()
|
|
|
|
#if defined(__APPLE__) && defined(__has_builtin)
|
|
# if __has_builtin(__builtin_available)
|
|
# define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *)
|
|
# endif
|
|
#endif
|
|
#endif
|
|
|
|
/* To millisecond (10^-3) */
|
|
#define SEC_TO_MS 1000
|
|
|
|
/* To microseconds (10^-6) */
|
|
#define MS_TO_US 1000
|
|
#define SEC_TO_US (SEC_TO_MS * MS_TO_US)
|
|
|
|
/* To nanoseconds (10^-9) */
|
|
#define US_TO_NS 1000
|
|
#define MS_TO_NS (MS_TO_US * US_TO_NS)
|
|
#define SEC_TO_NS (SEC_TO_MS * MS_TO_NS)
|
|
|
|
/* Conversion from nanoseconds */
|
|
#define NS_TO_MS (1000 * 1000)
|
|
#define NS_TO_US (1000)
|
|
#define NS_TO_100NS (100)
|
|
|
|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
|
|
# define PY_TIME_T_MAX LLONG_MAX
|
|
# define PY_TIME_T_MIN LLONG_MIN
|
|
#elif SIZEOF_TIME_T == SIZEOF_LONG
|
|
# define PY_TIME_T_MAX LONG_MAX
|
|
# define PY_TIME_T_MIN LONG_MIN
|
|
#else
|
|
# error "unsupported time_t size"
|
|
#endif
|
|
|
|
#if PY_TIME_T_MAX + PY_TIME_T_MIN != -1
|
|
# error "time_t is not a two's complement integer type"
|
|
#endif
|
|
|
|
#if _PyTime_MIN + _PyTime_MAX != -1
|
|
# error "_PyTime_t is not a two's complement integer type"
|
|
#endif
|
|
|
|
|
|
static _PyTime_t
|
|
_PyTime_GCD(_PyTime_t x, _PyTime_t y)
|
|
{
|
|
// Euclidean algorithm
|
|
assert(x >= 1);
|
|
assert(y >= 1);
|
|
while (y != 0) {
|
|
_PyTime_t tmp = y;
|
|
y = x % y;
|
|
x = tmp;
|
|
}
|
|
assert(x >= 1);
|
|
return x;
|
|
}
|
|
|
|
|
|
int
|
|
_PyTimeFraction_Set(_PyTimeFraction *frac, _PyTime_t numer, _PyTime_t denom)
|
|
{
|
|
if (numer < 1 || denom < 1) {
|
|
return -1;
|
|
}
|
|
|
|
_PyTime_t gcd = _PyTime_GCD(numer, denom);
|
|
frac->numer = numer / gcd;
|
|
frac->denom = denom / gcd;
|
|
return 0;
|
|
}
|
|
|
|
|
|
double
|
|
_PyTimeFraction_Resolution(const _PyTimeFraction *frac)
|
|
{
|
|
return (double)frac->numer / (double)frac->denom / 1e9;
|
|
}
|
|
|
|
|
|
static void
|
|
pytime_time_t_overflow(void)
|
|
{
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timestamp out of range for platform time_t");
|
|
}
|
|
|
|
|
|
static void
|
|
pytime_overflow(void)
|
|
{
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timestamp too large to convert to C _PyTime_t");
|
|
}
|
|
|
|
|
|
static inline _PyTime_t
|
|
pytime_from_nanoseconds(_PyTime_t t)
|
|
{
|
|
// _PyTime_t is a number of nanoseconds
|
|
return t;
|
|
}
|
|
|
|
|
|
static inline _PyTime_t
|
|
pytime_as_nanoseconds(_PyTime_t t)
|
|
{
|
|
// _PyTime_t is a number of nanoseconds: see pytime_from_nanoseconds()
|
|
return t;
|
|
}
|
|
|
|
|
|
// Compute t1 + t2. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
|
|
static inline int
|
|
pytime_add(_PyTime_t *t1, _PyTime_t t2)
|
|
{
|
|
if (t2 > 0 && *t1 > _PyTime_MAX - t2) {
|
|
*t1 = _PyTime_MAX;
|
|
return -1;
|
|
}
|
|
else if (t2 < 0 && *t1 < _PyTime_MIN - t2) {
|
|
*t1 = _PyTime_MIN;
|
|
return -1;
|
|
}
|
|
else {
|
|
*t1 += t2;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_Add(_PyTime_t t1, _PyTime_t t2)
|
|
{
|
|
(void)pytime_add(&t1, t2);
|
|
return t1;
|
|
}
|
|
|
|
|
|
static inline int
|
|
pytime_mul_check_overflow(_PyTime_t a, _PyTime_t b)
|
|
{
|
|
if (b != 0) {
|
|
assert(b > 0);
|
|
return ((a < _PyTime_MIN / b) || (_PyTime_MAX / b < a));
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
// Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
|
|
static inline int
|
|
pytime_mul(_PyTime_t *t, _PyTime_t k)
|
|
{
|
|
assert(k >= 0);
|
|
if (pytime_mul_check_overflow(*t, k)) {
|
|
*t = (*t >= 0) ? _PyTime_MAX : _PyTime_MIN;
|
|
return -1;
|
|
}
|
|
else {
|
|
*t *= k;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
// Compute t * k. Clamp to [_PyTime_MIN; _PyTime_MAX] on overflow.
|
|
static inline _PyTime_t
|
|
_PyTime_Mul(_PyTime_t t, _PyTime_t k)
|
|
{
|
|
(void)pytime_mul(&t, k);
|
|
return t;
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTimeFraction_Mul(_PyTime_t ticks, const _PyTimeFraction *frac)
|
|
{
|
|
const _PyTime_t mul = frac->numer;
|
|
const _PyTime_t div = frac->denom;
|
|
|
|
if (div == 1) {
|
|
// Fast-path taken by mach_absolute_time() with 1/1 time base.
|
|
return _PyTime_Mul(ticks, mul);
|
|
}
|
|
|
|
/* Compute (ticks * mul / div) in two parts to reduce the risk of integer
|
|
overflow: compute the integer part, and then the remaining part.
|
|
|
|
(ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div
|
|
*/
|
|
_PyTime_t intpart, remaining;
|
|
intpart = ticks / div;
|
|
ticks %= div;
|
|
remaining = _PyTime_Mul(ticks, mul) / div;
|
|
// intpart * mul + remaining
|
|
return _PyTime_Add(_PyTime_Mul(intpart, mul), remaining);
|
|
}
|
|
|
|
|
|
time_t
|
|
_PyLong_AsTime_t(PyObject *obj)
|
|
{
|
|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
|
|
long long val = PyLong_AsLongLong(obj);
|
|
#elif SIZEOF_TIME_T <= SIZEOF_LONG
|
|
long val = PyLong_AsLong(obj);
|
|
#else
|
|
# error "unsupported time_t size"
|
|
#endif
|
|
if (val == -1 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
|
pytime_time_t_overflow();
|
|
}
|
|
return -1;
|
|
}
|
|
return (time_t)val;
|
|
}
|
|
|
|
|
|
PyObject *
|
|
_PyLong_FromTime_t(time_t t)
|
|
{
|
|
#if SIZEOF_TIME_T == SIZEOF_LONG_LONG
|
|
return PyLong_FromLongLong((long long)t);
|
|
#elif SIZEOF_TIME_T <= SIZEOF_LONG
|
|
return PyLong_FromLong((long)t);
|
|
#else
|
|
# error "unsupported time_t size"
|
|
#endif
|
|
}
|
|
|
|
|
|
// Convert _PyTime_t to time_t.
|
|
// Return 0 on success. Return -1 and clamp the value on overflow.
|
|
static int
|
|
_PyTime_AsTime_t(_PyTime_t t, time_t *t2)
|
|
{
|
|
#if SIZEOF_TIME_T < _SIZEOF_PYTIME_T
|
|
if ((_PyTime_t)PY_TIME_T_MAX < t) {
|
|
*t2 = PY_TIME_T_MAX;
|
|
return -1;
|
|
}
|
|
if (t < (_PyTime_t)PY_TIME_T_MIN) {
|
|
*t2 = PY_TIME_T_MIN;
|
|
return -1;
|
|
}
|
|
#endif
|
|
*t2 = (time_t)t;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef MS_WINDOWS
|
|
// Convert _PyTime_t to long.
|
|
// Return 0 on success. Return -1 and clamp the value on overflow.
|
|
static int
|
|
_PyTime_AsLong(_PyTime_t t, long *t2)
|
|
{
|
|
#if SIZEOF_LONG < _SIZEOF_PYTIME_T
|
|
if ((_PyTime_t)LONG_MAX < t) {
|
|
*t2 = LONG_MAX;
|
|
return -1;
|
|
}
|
|
if (t < (_PyTime_t)LONG_MIN) {
|
|
*t2 = LONG_MIN;
|
|
return -1;
|
|
}
|
|
#endif
|
|
*t2 = (long)t;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Round to nearest with ties going to nearest even integer
|
|
(_PyTime_ROUND_HALF_EVEN) */
|
|
static double
|
|
pytime_round_half_even(double x)
|
|
{
|
|
double rounded = round(x);
|
|
if (fabs(x-rounded) == 0.5) {
|
|
/* halfway case: round to even */
|
|
rounded = 2.0 * round(x / 2.0);
|
|
}
|
|
return rounded;
|
|
}
|
|
|
|
|
|
static double
|
|
pytime_round(double x, _PyTime_round_t round)
|
|
{
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
|
|
d = x;
|
|
if (round == _PyTime_ROUND_HALF_EVEN) {
|
|
d = pytime_round_half_even(d);
|
|
}
|
|
else if (round == _PyTime_ROUND_CEILING) {
|
|
d = ceil(d);
|
|
}
|
|
else if (round == _PyTime_ROUND_FLOOR) {
|
|
d = floor(d);
|
|
}
|
|
else {
|
|
assert(round == _PyTime_ROUND_UP);
|
|
d = (d >= 0.0) ? ceil(d) : floor(d);
|
|
}
|
|
return d;
|
|
}
|
|
|
|
|
|
static int
|
|
pytime_double_to_denominator(double d, time_t *sec, long *numerator,
|
|
long idenominator, _PyTime_round_t round)
|
|
{
|
|
double denominator = (double)idenominator;
|
|
double intpart;
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double floatpart;
|
|
|
|
floatpart = modf(d, &intpart);
|
|
|
|
floatpart *= denominator;
|
|
floatpart = pytime_round(floatpart, round);
|
|
if (floatpart >= denominator) {
|
|
floatpart -= denominator;
|
|
intpart += 1.0;
|
|
}
|
|
else if (floatpart < 0) {
|
|
floatpart += denominator;
|
|
intpart -= 1.0;
|
|
}
|
|
assert(0.0 <= floatpart && floatpart < denominator);
|
|
|
|
/*
|
|
Conversion of an out-of-range value to time_t gives undefined behaviour
|
|
(C99 §6.3.1.4p1), so we must guard against it. However, checking that
|
|
`intpart` is in range is delicate: the obvious expression `intpart <=
|
|
PY_TIME_T_MAX` will first convert the value `PY_TIME_T_MAX` to a double,
|
|
potentially changing its value and leading to us failing to catch some
|
|
UB-inducing values. The code below works correctly under the mild
|
|
assumption that time_t is a two's complement integer type with no trap
|
|
representation, and that `PY_TIME_T_MIN` is within the representable
|
|
range of a C double.
|
|
|
|
Note: we want the `if` condition below to be true for NaNs; therefore,
|
|
resist any temptation to simplify by applying De Morgan's laws.
|
|
*/
|
|
if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
*sec = (time_t)intpart;
|
|
*numerator = (long)floatpart;
|
|
assert(0 <= *numerator && *numerator < idenominator);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
pytime_object_to_denominator(PyObject *obj, time_t *sec, long *numerator,
|
|
long denominator, _PyTime_round_t round)
|
|
{
|
|
assert(denominator >= 1);
|
|
|
|
if (PyFloat_Check(obj)) {
|
|
double d = PyFloat_AsDouble(obj);
|
|
if (Py_IS_NAN(d)) {
|
|
*numerator = 0;
|
|
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
|
return -1;
|
|
}
|
|
return pytime_double_to_denominator(d, sec, numerator,
|
|
denominator, round);
|
|
}
|
|
else {
|
|
*sec = _PyLong_AsTime_t(obj);
|
|
*numerator = 0;
|
|
if (*sec == (time_t)-1 && PyErr_Occurred()) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round)
|
|
{
|
|
if (PyFloat_Check(obj)) {
|
|
double intpart;
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
|
|
d = PyFloat_AsDouble(obj);
|
|
if (Py_IS_NAN(d)) {
|
|
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
|
return -1;
|
|
}
|
|
|
|
d = pytime_round(d, round);
|
|
(void)modf(d, &intpart);
|
|
|
|
/* See comments in pytime_double_to_denominator */
|
|
if (!((double)PY_TIME_T_MIN <= intpart && intpart < -(double)PY_TIME_T_MIN)) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
*sec = (time_t)intpart;
|
|
return 0;
|
|
}
|
|
else {
|
|
*sec = _PyLong_AsTime_t(obj);
|
|
if (*sec == (time_t)-1 && PyErr_Occurred()) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec,
|
|
_PyTime_round_t round)
|
|
{
|
|
return pytime_object_to_denominator(obj, sec, nsec, SEC_TO_NS, round);
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec,
|
|
_PyTime_round_t round)
|
|
{
|
|
return pytime_object_to_denominator(obj, sec, usec, SEC_TO_US, round);
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_FromSeconds(int seconds)
|
|
{
|
|
/* ensure that integer overflow cannot happen, int type should have 32
|
|
bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_NS takes 30
|
|
bits). */
|
|
static_assert(INT_MAX <= _PyTime_MAX / SEC_TO_NS, "_PyTime_t overflow");
|
|
static_assert(INT_MIN >= _PyTime_MIN / SEC_TO_NS, "_PyTime_t underflow");
|
|
|
|
_PyTime_t t = (_PyTime_t)seconds;
|
|
assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS)
|
|
|| (t < 0 && t >= _PyTime_MIN / SEC_TO_NS));
|
|
t *= SEC_TO_NS;
|
|
return pytime_from_nanoseconds(t);
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_FromNanoseconds(_PyTime_t ns)
|
|
{
|
|
return pytime_from_nanoseconds(ns);
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_FromMicrosecondsClamp(_PyTime_t us)
|
|
{
|
|
_PyTime_t ns = _PyTime_Mul(us, US_TO_NS);
|
|
return pytime_from_nanoseconds(ns);
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj)
|
|
{
|
|
|
|
if (!PyLong_Check(obj)) {
|
|
PyErr_Format(PyExc_TypeError, "expect int, got %s",
|
|
Py_TYPE(obj)->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
static_assert(sizeof(long long) == sizeof(_PyTime_t),
|
|
"_PyTime_t is not long long");
|
|
long long nsec = PyLong_AsLongLong(obj);
|
|
if (nsec == -1 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
|
pytime_overflow();
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
_PyTime_t t = (_PyTime_t)nsec;
|
|
*tp = pytime_from_nanoseconds(t);
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef HAVE_CLOCK_GETTIME
|
|
static int
|
|
pytime_fromtimespec(_PyTime_t *tp, const struct timespec *ts, int raise_exc)
|
|
{
|
|
_PyTime_t t, tv_nsec;
|
|
|
|
static_assert(sizeof(ts->tv_sec) <= sizeof(_PyTime_t),
|
|
"timespec.tv_sec is larger than _PyTime_t");
|
|
t = (_PyTime_t)ts->tv_sec;
|
|
|
|
int res1 = pytime_mul(&t, SEC_TO_NS);
|
|
|
|
tv_nsec = ts->tv_nsec;
|
|
int res2 = pytime_add(&t, tv_nsec);
|
|
|
|
*tp = pytime_from_nanoseconds(t);
|
|
|
|
if (raise_exc && (res1 < 0 || res2 < 0)) {
|
|
pytime_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyTime_FromTimespec(_PyTime_t *tp, const struct timespec *ts)
|
|
{
|
|
return pytime_fromtimespec(tp, ts, 1);
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef MS_WINDOWS
|
|
static int
|
|
pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise_exc)
|
|
{
|
|
static_assert(sizeof(tv->tv_sec) <= sizeof(_PyTime_t),
|
|
"timeval.tv_sec is larger than _PyTime_t");
|
|
_PyTime_t t = (_PyTime_t)tv->tv_sec;
|
|
|
|
int res1 = pytime_mul(&t, SEC_TO_NS);
|
|
|
|
_PyTime_t usec = (_PyTime_t)tv->tv_usec * US_TO_NS;
|
|
int res2 = pytime_add(&t, usec);
|
|
|
|
*tp = pytime_from_nanoseconds(t);
|
|
|
|
if (raise_exc && (res1 < 0 || res2 < 0)) {
|
|
pytime_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv)
|
|
{
|
|
return pytime_fromtimeval(tp, tv, 1);
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
pytime_from_double(_PyTime_t *tp, double value, _PyTime_round_t round,
|
|
long unit_to_ns)
|
|
{
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
|
|
/* convert to a number of nanoseconds */
|
|
d = value;
|
|
d *= (double)unit_to_ns;
|
|
d = pytime_round(d, round);
|
|
|
|
/* See comments in pytime_double_to_denominator */
|
|
if (!((double)_PyTime_MIN <= d && d < -(double)_PyTime_MIN)) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
_PyTime_t ns = (_PyTime_t)d;
|
|
|
|
*tp = pytime_from_nanoseconds(ns);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
pytime_from_object(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round,
|
|
long unit_to_ns)
|
|
{
|
|
if (PyFloat_Check(obj)) {
|
|
double d;
|
|
d = PyFloat_AsDouble(obj);
|
|
if (Py_IS_NAN(d)) {
|
|
PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)");
|
|
return -1;
|
|
}
|
|
return pytime_from_double(tp, d, round, unit_to_ns);
|
|
}
|
|
else {
|
|
long long sec = PyLong_AsLongLong(obj);
|
|
if (sec == -1 && PyErr_Occurred()) {
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
|
pytime_overflow();
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static_assert(sizeof(long long) <= sizeof(_PyTime_t),
|
|
"_PyTime_t is smaller than long long");
|
|
_PyTime_t ns = (_PyTime_t)sec;
|
|
if (pytime_mul(&ns, unit_to_ns) < 0) {
|
|
pytime_overflow();
|
|
return -1;
|
|
}
|
|
|
|
*tp = pytime_from_nanoseconds(ns);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_FromSecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round)
|
|
{
|
|
return pytime_from_object(tp, obj, round, SEC_TO_NS);
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_FromMillisecondsObject(_PyTime_t *tp, PyObject *obj, _PyTime_round_t round)
|
|
{
|
|
return pytime_from_object(tp, obj, round, MS_TO_NS);
|
|
}
|
|
|
|
|
|
double
|
|
_PyTime_AsSecondsDouble(_PyTime_t t)
|
|
{
|
|
/* volatile avoids optimization changing how numbers are rounded */
|
|
volatile double d;
|
|
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
if (ns % SEC_TO_NS == 0) {
|
|
/* Divide using integers to avoid rounding issues on the integer part.
|
|
1e-9 cannot be stored exactly in IEEE 64-bit. */
|
|
_PyTime_t secs = ns / SEC_TO_NS;
|
|
d = (double)secs;
|
|
}
|
|
else {
|
|
d = (double)ns;
|
|
d /= 1e9;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
|
|
PyObject *
|
|
_PyTime_AsNanosecondsObject(_PyTime_t t)
|
|
{
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
static_assert(sizeof(long long) >= sizeof(_PyTime_t),
|
|
"_PyTime_t is larger than long long");
|
|
return PyLong_FromLongLong((long long)ns);
|
|
}
|
|
|
|
_PyTime_t
|
|
_PyTime_FromSecondsDouble(double seconds, _PyTime_round_t round)
|
|
{
|
|
_PyTime_t tp;
|
|
if(pytime_from_double(&tp, seconds, round, SEC_TO_NS) < 0) {
|
|
return -1;
|
|
}
|
|
return tp;
|
|
}
|
|
|
|
|
|
static _PyTime_t
|
|
pytime_divide_round_up(const _PyTime_t t, const _PyTime_t k)
|
|
{
|
|
assert(k > 1);
|
|
if (t >= 0) {
|
|
// Don't use (t + k - 1) / k to avoid integer overflow
|
|
// if t is equal to _PyTime_MAX
|
|
_PyTime_t q = t / k;
|
|
if (t % k) {
|
|
q += 1;
|
|
}
|
|
return q;
|
|
}
|
|
else {
|
|
// Don't use (t - (k - 1)) / k to avoid integer overflow
|
|
// if t is equals to _PyTime_MIN.
|
|
_PyTime_t q = t / k;
|
|
if (t % k) {
|
|
q -= 1;
|
|
}
|
|
return q;
|
|
}
|
|
}
|
|
|
|
|
|
static _PyTime_t
|
|
pytime_divide(const _PyTime_t t, const _PyTime_t k,
|
|
const _PyTime_round_t round)
|
|
{
|
|
assert(k > 1);
|
|
if (round == _PyTime_ROUND_HALF_EVEN) {
|
|
_PyTime_t x = t / k;
|
|
_PyTime_t r = t % k;
|
|
_PyTime_t abs_r = Py_ABS(r);
|
|
if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) {
|
|
if (t >= 0) {
|
|
x++;
|
|
}
|
|
else {
|
|
x--;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
else if (round == _PyTime_ROUND_CEILING) {
|
|
if (t >= 0) {
|
|
return pytime_divide_round_up(t, k);
|
|
}
|
|
else {
|
|
return t / k;
|
|
}
|
|
}
|
|
else if (round == _PyTime_ROUND_FLOOR){
|
|
if (t >= 0) {
|
|
return t / k;
|
|
}
|
|
else {
|
|
return pytime_divide_round_up(t, k);
|
|
}
|
|
}
|
|
else {
|
|
assert(round == _PyTime_ROUND_UP);
|
|
return pytime_divide_round_up(t, k);
|
|
}
|
|
}
|
|
|
|
|
|
// Compute (t / k, t % k) in (pq, pr).
|
|
// Make sure that 0 <= pr < k.
|
|
// Return 0 on success.
|
|
// Return -1 on underflow and store (_PyTime_MIN, 0) in (pq, pr).
|
|
static int
|
|
pytime_divmod(const _PyTime_t t, const _PyTime_t k,
|
|
_PyTime_t *pq, _PyTime_t *pr)
|
|
{
|
|
assert(k > 1);
|
|
_PyTime_t q = t / k;
|
|
_PyTime_t r = t % k;
|
|
if (r < 0) {
|
|
if (q == _PyTime_MIN) {
|
|
*pq = _PyTime_MIN;
|
|
*pr = 0;
|
|
return -1;
|
|
}
|
|
r += k;
|
|
q -= 1;
|
|
}
|
|
assert(0 <= r && r < k);
|
|
|
|
*pq = q;
|
|
*pr = r;
|
|
return 0;
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_AsNanoseconds(_PyTime_t t)
|
|
{
|
|
return pytime_as_nanoseconds(t);
|
|
}
|
|
|
|
|
|
#ifdef MS_WINDOWS
|
|
_PyTime_t
|
|
_PyTime_As100Nanoseconds(_PyTime_t t, _PyTime_round_t round)
|
|
{
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
return pytime_divide(ns, NS_TO_100NS, round);
|
|
}
|
|
#endif
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round)
|
|
{
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
return pytime_divide(ns, NS_TO_US, round);
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round)
|
|
{
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
return pytime_divide(ns, NS_TO_MS, round);
|
|
}
|
|
|
|
|
|
static int
|
|
pytime_as_timeval(_PyTime_t t, _PyTime_t *ptv_sec, int *ptv_usec,
|
|
_PyTime_round_t round)
|
|
{
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
_PyTime_t us = pytime_divide(ns, US_TO_NS, round);
|
|
|
|
_PyTime_t tv_sec, tv_usec;
|
|
int res = pytime_divmod(us, SEC_TO_US, &tv_sec, &tv_usec);
|
|
*ptv_sec = tv_sec;
|
|
*ptv_usec = (int)tv_usec;
|
|
return res;
|
|
}
|
|
|
|
|
|
static int
|
|
pytime_as_timeval_struct(_PyTime_t t, struct timeval *tv,
|
|
_PyTime_round_t round, int raise_exc)
|
|
{
|
|
_PyTime_t tv_sec;
|
|
int tv_usec;
|
|
int res = pytime_as_timeval(t, &tv_sec, &tv_usec, round);
|
|
int res2;
|
|
#ifdef MS_WINDOWS
|
|
// On Windows, timeval.tv_sec type is long
|
|
res2 = _PyTime_AsLong(tv_sec, &tv->tv_sec);
|
|
#else
|
|
res2 = _PyTime_AsTime_t(tv_sec, &tv->tv_sec);
|
|
#endif
|
|
if (res2 < 0) {
|
|
tv_usec = 0;
|
|
}
|
|
tv->tv_usec = tv_usec;
|
|
|
|
if (raise_exc && (res < 0 || res2 < 0)) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
|
|
{
|
|
return pytime_as_timeval_struct(t, tv, round, 1);
|
|
}
|
|
|
|
|
|
void
|
|
_PyTime_AsTimeval_clamp(_PyTime_t t, struct timeval *tv, _PyTime_round_t round)
|
|
{
|
|
(void)pytime_as_timeval_struct(t, tv, round, 0);
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us,
|
|
_PyTime_round_t round)
|
|
{
|
|
_PyTime_t secs;
|
|
if (pytime_as_timeval(t, &secs, us, round) < 0) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
|
|
if (_PyTime_AsTime_t(secs, p_secs) < 0) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE)
|
|
static int
|
|
pytime_as_timespec(_PyTime_t t, struct timespec *ts, int raise_exc)
|
|
{
|
|
_PyTime_t ns = pytime_as_nanoseconds(t);
|
|
_PyTime_t tv_sec, tv_nsec;
|
|
int res = pytime_divmod(ns, SEC_TO_NS, &tv_sec, &tv_nsec);
|
|
|
|
int res2 = _PyTime_AsTime_t(tv_sec, &ts->tv_sec);
|
|
if (res2 < 0) {
|
|
tv_nsec = 0;
|
|
}
|
|
ts->tv_nsec = tv_nsec;
|
|
|
|
if (raise_exc && (res < 0 || res2 < 0)) {
|
|
pytime_time_t_overflow();
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
_PyTime_AsTimespec_clamp(_PyTime_t t, struct timespec *ts)
|
|
{
|
|
(void)pytime_as_timespec(t, ts, 0);
|
|
}
|
|
|
|
int
|
|
_PyTime_AsTimespec(_PyTime_t t, struct timespec *ts)
|
|
{
|
|
return pytime_as_timespec(t, ts, 1);
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
py_get_system_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
|
|
{
|
|
assert(info == NULL || raise_exc);
|
|
|
|
#ifdef MS_WINDOWS
|
|
FILETIME system_time;
|
|
ULARGE_INTEGER large;
|
|
|
|
GetSystemTimeAsFileTime(&system_time);
|
|
large.u.LowPart = system_time.dwLowDateTime;
|
|
large.u.HighPart = system_time.dwHighDateTime;
|
|
/* 11,644,473,600,000,000,000: number of nanoseconds between
|
|
the 1st january 1601 and the 1st january 1970 (369 years + 89 leap
|
|
days). */
|
|
_PyTime_t ns = large.QuadPart * 100 - 11644473600000000000;
|
|
*tp = pytime_from_nanoseconds(ns);
|
|
if (info) {
|
|
DWORD timeAdjustment, timeIncrement;
|
|
BOOL isTimeAdjustmentDisabled, ok;
|
|
|
|
info->implementation = "GetSystemTimeAsFileTime()";
|
|
info->monotonic = 0;
|
|
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
|
|
&isTimeAdjustmentDisabled);
|
|
if (!ok) {
|
|
PyErr_SetFromWindowsErr(0);
|
|
return -1;
|
|
}
|
|
info->resolution = timeIncrement * 1e-7;
|
|
info->adjustable = 1;
|
|
}
|
|
|
|
#else /* MS_WINDOWS */
|
|
int err;
|
|
#if defined(HAVE_CLOCK_GETTIME)
|
|
struct timespec ts;
|
|
#endif
|
|
|
|
#if !defined(HAVE_CLOCK_GETTIME) || defined(__APPLE__)
|
|
struct timeval tv;
|
|
#endif
|
|
|
|
#ifdef HAVE_CLOCK_GETTIME
|
|
|
|
#ifdef HAVE_CLOCK_GETTIME_RUNTIME
|
|
if (HAVE_CLOCK_GETTIME_RUNTIME) {
|
|
#endif
|
|
|
|
err = clock_gettime(CLOCK_REALTIME, &ts);
|
|
if (err) {
|
|
if (raise_exc) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
}
|
|
return -1;
|
|
}
|
|
if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (info) {
|
|
struct timespec res;
|
|
info->implementation = "clock_gettime(CLOCK_REALTIME)";
|
|
info->monotonic = 0;
|
|
info->adjustable = 1;
|
|
if (clock_getres(CLOCK_REALTIME, &res) == 0) {
|
|
info->resolution = (double)res.tv_sec + (double)res.tv_nsec * 1e-9;
|
|
}
|
|
else {
|
|
info->resolution = 1e-9;
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_CLOCK_GETTIME_RUNTIME
|
|
}
|
|
else {
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if !defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_GETTIME_RUNTIME)
|
|
|
|
/* test gettimeofday() */
|
|
err = gettimeofday(&tv, (struct timezone *)NULL);
|
|
if (err) {
|
|
if (raise_exc) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
}
|
|
return -1;
|
|
}
|
|
if (pytime_fromtimeval(tp, &tv, raise_exc) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (info) {
|
|
info->implementation = "gettimeofday()";
|
|
info->resolution = 1e-6;
|
|
info->monotonic = 0;
|
|
info->adjustable = 1;
|
|
}
|
|
|
|
#if defined(HAVE_CLOCK_GETTIME_RUNTIME) && defined(HAVE_CLOCK_GETTIME)
|
|
} /* end of availability block */
|
|
#endif
|
|
|
|
#endif /* !HAVE_CLOCK_GETTIME */
|
|
#endif /* !MS_WINDOWS */
|
|
return 0;
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_GetSystemClock(void)
|
|
{
|
|
_PyTime_t t;
|
|
if (py_get_system_clock(&t, NULL, 0) < 0) {
|
|
// If clock_gettime(CLOCK_REALTIME) or gettimeofday() fails:
|
|
// silently ignore the failure and return 0.
|
|
t = 0;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
|
|
{
|
|
return py_get_system_clock(t, info, 1);
|
|
}
|
|
|
|
|
|
#ifdef __APPLE__
|
|
static int
|
|
py_mach_timebase_info(_PyTimeFraction *base, int raise)
|
|
{
|
|
mach_timebase_info_data_t timebase;
|
|
// According to the Technical Q&A QA1398, mach_timebase_info() cannot
|
|
// fail: https://developer.apple.com/library/mac/#qa/qa1398/
|
|
(void)mach_timebase_info(&timebase);
|
|
|
|
// Check that timebase.numer and timebase.denom can be casted to
|
|
// _PyTime_t. In practice, timebase uses uint32_t, so casting cannot
|
|
// overflow. At the end, only make sure that the type is uint32_t
|
|
// (_PyTime_t is 64-bit long).
|
|
Py_BUILD_ASSERT(sizeof(timebase.numer) <= sizeof(_PyTime_t));
|
|
Py_BUILD_ASSERT(sizeof(timebase.denom) <= sizeof(_PyTime_t));
|
|
_PyTime_t numer = (_PyTime_t)timebase.numer;
|
|
_PyTime_t denom = (_PyTime_t)timebase.denom;
|
|
|
|
// Known time bases:
|
|
//
|
|
// * (1, 1) on Intel: 1 ns
|
|
// * (1000000000, 33333335) on PowerPC: ~30 ns
|
|
// * (1000000000, 25000000) on PowerPC: 40 ns
|
|
if (_PyTimeFraction_Set(base, numer, denom) < 0) {
|
|
if (raise) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"invalid mach_timebase_info");
|
|
}
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
static int
|
|
py_get_monotonic_clock(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
|
|
{
|
|
assert(info == NULL || raise_exc);
|
|
|
|
#if defined(MS_WINDOWS)
|
|
ULONGLONG ticks = GetTickCount64();
|
|
static_assert(sizeof(ticks) <= sizeof(_PyTime_t),
|
|
"ULONGLONG is larger than _PyTime_t");
|
|
_PyTime_t t;
|
|
if (ticks <= (ULONGLONG)_PyTime_MAX) {
|
|
t = (_PyTime_t)ticks;
|
|
}
|
|
else {
|
|
// GetTickCount64() maximum is larger than _PyTime_t maximum:
|
|
// ULONGLONG is unsigned, whereas _PyTime_t is signed.
|
|
t = _PyTime_MAX;
|
|
}
|
|
|
|
int res = pytime_mul(&t, MS_TO_NS);
|
|
*tp = t;
|
|
|
|
if (raise_exc && res < 0) {
|
|
pytime_overflow();
|
|
return -1;
|
|
}
|
|
|
|
if (info) {
|
|
DWORD timeAdjustment, timeIncrement;
|
|
BOOL isTimeAdjustmentDisabled, ok;
|
|
info->implementation = "GetTickCount64()";
|
|
info->monotonic = 1;
|
|
ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement,
|
|
&isTimeAdjustmentDisabled);
|
|
if (!ok) {
|
|
PyErr_SetFromWindowsErr(0);
|
|
return -1;
|
|
}
|
|
info->resolution = timeIncrement * 1e-7;
|
|
info->adjustable = 0;
|
|
}
|
|
|
|
#elif defined(__APPLE__)
|
|
static _PyTimeFraction base = {0, 0};
|
|
if (base.denom == 0) {
|
|
if (py_mach_timebase_info(&base, raise_exc) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (info) {
|
|
info->implementation = "mach_absolute_time()";
|
|
info->resolution = _PyTimeFraction_Resolution(&base);
|
|
info->monotonic = 1;
|
|
info->adjustable = 0;
|
|
}
|
|
|
|
uint64_t uticks = mach_absolute_time();
|
|
// unsigned => signed
|
|
assert(uticks <= (uint64_t)_PyTime_MAX);
|
|
_PyTime_t ticks = (_PyTime_t)uticks;
|
|
|
|
_PyTime_t ns = _PyTimeFraction_Mul(ticks, &base);
|
|
*tp = pytime_from_nanoseconds(ns);
|
|
|
|
#elif defined(__hpux)
|
|
hrtime_t time;
|
|
|
|
time = gethrtime();
|
|
if (time == -1) {
|
|
if (raise_exc) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
*tp = pytime_from_nanoseconds(time);
|
|
|
|
if (info) {
|
|
info->implementation = "gethrtime()";
|
|
info->resolution = 1e-9;
|
|
info->monotonic = 1;
|
|
info->adjustable = 0;
|
|
}
|
|
|
|
#else
|
|
|
|
#ifdef CLOCK_HIGHRES
|
|
const clockid_t clk_id = CLOCK_HIGHRES;
|
|
const char *implementation = "clock_gettime(CLOCK_HIGHRES)";
|
|
#else
|
|
const clockid_t clk_id = CLOCK_MONOTONIC;
|
|
const char *implementation = "clock_gettime(CLOCK_MONOTONIC)";
|
|
#endif
|
|
|
|
struct timespec ts;
|
|
if (clock_gettime(clk_id, &ts) != 0) {
|
|
if (raise_exc) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (pytime_fromtimespec(tp, &ts, raise_exc) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (info) {
|
|
info->monotonic = 1;
|
|
info->implementation = implementation;
|
|
info->adjustable = 0;
|
|
struct timespec res;
|
|
if (clock_getres(clk_id, &res) != 0) {
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_GetMonotonicClock(void)
|
|
{
|
|
_PyTime_t t;
|
|
if (py_get_monotonic_clock(&t, NULL, 0) < 0) {
|
|
// If mach_timebase_info(), clock_gettime() or gethrtime() fails:
|
|
// silently ignore the failure and return 0.
|
|
t = 0;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
|
|
{
|
|
return py_get_monotonic_clock(tp, info, 1);
|
|
}
|
|
|
|
|
|
#ifdef MS_WINDOWS
|
|
static int
|
|
py_win_perf_counter_frequency(_PyTimeFraction *base, int raise)
|
|
{
|
|
LONGLONG frequency;
|
|
|
|
LARGE_INTEGER freq;
|
|
// Since Windows XP, the function cannot fail.
|
|
(void)QueryPerformanceFrequency(&freq);
|
|
frequency = freq.QuadPart;
|
|
|
|
// Since Windows XP, frequency cannot be zero.
|
|
assert(frequency >= 1);
|
|
|
|
Py_BUILD_ASSERT(sizeof(_PyTime_t) == sizeof(frequency));
|
|
_PyTime_t denom = (_PyTime_t)frequency;
|
|
|
|
// Known QueryPerformanceFrequency() values:
|
|
//
|
|
// * 10,000,000 (10 MHz): 100 ns resolution
|
|
// * 3,579,545 Hz (3.6 MHz): 279 ns resolution
|
|
if (_PyTimeFraction_Set(base, SEC_TO_NS, denom) < 0) {
|
|
if (raise) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"invalid QueryPerformanceFrequency");
|
|
}
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
py_get_win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info, int raise_exc)
|
|
{
|
|
assert(info == NULL || raise_exc);
|
|
|
|
static _PyTimeFraction base = {0, 0};
|
|
if (base.denom == 0) {
|
|
if (py_win_perf_counter_frequency(&base, raise_exc) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (info) {
|
|
info->implementation = "QueryPerformanceCounter()";
|
|
info->resolution = _PyTimeFraction_Resolution(&base);
|
|
info->monotonic = 1;
|
|
info->adjustable = 0;
|
|
}
|
|
|
|
LARGE_INTEGER now;
|
|
QueryPerformanceCounter(&now);
|
|
LONGLONG ticksll = now.QuadPart;
|
|
|
|
/* Make sure that casting LONGLONG to _PyTime_t cannot overflow,
|
|
both types are signed */
|
|
_PyTime_t ticks;
|
|
static_assert(sizeof(ticksll) <= sizeof(ticks),
|
|
"LONGLONG is larger than _PyTime_t");
|
|
ticks = (_PyTime_t)ticksll;
|
|
|
|
_PyTime_t ns = _PyTimeFraction_Mul(ticks, &base);
|
|
*tp = pytime_from_nanoseconds(ns);
|
|
return 0;
|
|
}
|
|
#endif // MS_WINDOWS
|
|
|
|
|
|
int
|
|
_PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
return py_get_win_perf_counter(t, info, 1);
|
|
#else
|
|
return _PyTime_GetMonotonicClockWithInfo(t, info);
|
|
#endif
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyTime_GetPerfCounter(void)
|
|
{
|
|
_PyTime_t t;
|
|
int res;
|
|
#ifdef MS_WINDOWS
|
|
res = py_get_win_perf_counter(&t, NULL, 0);
|
|
#else
|
|
res = py_get_monotonic_clock(&t, NULL, 0);
|
|
#endif
|
|
if (res < 0) {
|
|
// If py_win_perf_counter_frequency() or py_get_monotonic_clock()
|
|
// fails: silently ignore the failure and return 0.
|
|
t = 0;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_localtime(time_t t, struct tm *tm)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
int error;
|
|
|
|
error = localtime_s(tm, &t);
|
|
if (error != 0) {
|
|
errno = error;
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#else /* !MS_WINDOWS */
|
|
|
|
#if defined(_AIX) && (SIZEOF_TIME_T < 8)
|
|
/* bpo-34373: AIX does not return NULL if t is too small or too large */
|
|
if (t < -2145916800 /* 1902-01-01 */
|
|
|| t > 2145916800 /* 2038-01-01 */) {
|
|
errno = EINVAL;
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"localtime argument out of range");
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
errno = 0;
|
|
if (localtime_r(&t, tm) == NULL) {
|
|
if (errno == 0) {
|
|
errno = EINVAL;
|
|
}
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#endif /* MS_WINDOWS */
|
|
}
|
|
|
|
|
|
int
|
|
_PyTime_gmtime(time_t t, struct tm *tm)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
int error;
|
|
|
|
error = gmtime_s(tm, &t);
|
|
if (error != 0) {
|
|
errno = error;
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#else /* !MS_WINDOWS */
|
|
if (gmtime_r(&t, tm) == NULL) {
|
|
#ifdef EINVAL
|
|
if (errno == 0) {
|
|
errno = EINVAL;
|
|
}
|
|
#endif
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#endif /* MS_WINDOWS */
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyDeadline_Init(_PyTime_t timeout)
|
|
{
|
|
_PyTime_t now = _PyTime_GetMonotonicClock();
|
|
return _PyTime_Add(now, timeout);
|
|
}
|
|
|
|
|
|
_PyTime_t
|
|
_PyDeadline_Get(_PyTime_t deadline)
|
|
{
|
|
_PyTime_t now = _PyTime_GetMonotonicClock();
|
|
return deadline - now;
|
|
}
|