cpython/Lib/test/test_time.py
2015-10-07 11:03:53 +00:00

965 lines
36 KiB
Python

from test import support
import decimal
import enum
import locale
import math
import platform
import sys
import sysconfig
import time
import unittest
try:
import threading
except ImportError:
threading = None
try:
import _testcapi
except ImportError:
_testcapi = None
# Max year is only limited by the size of C int.
SIZEOF_INT = sysconfig.get_config_var('SIZEOF_INT') or 4
TIME_MAXYEAR = (1 << 8 * SIZEOF_INT - 1) - 1
TIME_MINYEAR = -TIME_MAXYEAR - 1
SEC_TO_US = 10 ** 6
US_TO_NS = 10 ** 3
MS_TO_NS = 10 ** 6
SEC_TO_NS = 10 ** 9
NS_TO_SEC = 10 ** 9
class _PyTime(enum.IntEnum):
# Round towards minus infinity (-inf)
ROUND_FLOOR = 0
# Round towards infinity (+inf)
ROUND_CEILING = 1
# Round to nearest with ties going to nearest even integer
ROUND_HALF_EVEN = 2
# Rounding modes supported by PyTime
ROUNDING_MODES = (
# (PyTime rounding method, decimal rounding method)
(_PyTime.ROUND_FLOOR, decimal.ROUND_FLOOR),
(_PyTime.ROUND_CEILING, decimal.ROUND_CEILING),
(_PyTime.ROUND_HALF_EVEN, decimal.ROUND_HALF_EVEN),
)
class TimeTestCase(unittest.TestCase):
def setUp(self):
self.t = time.time()
def test_data_attributes(self):
time.altzone
time.daylight
time.timezone
time.tzname
def test_time(self):
time.time()
info = time.get_clock_info('time')
self.assertFalse(info.monotonic)
self.assertTrue(info.adjustable)
def test_clock(self):
time.clock()
info = time.get_clock_info('clock')
self.assertTrue(info.monotonic)
self.assertFalse(info.adjustable)
@unittest.skipUnless(hasattr(time, 'clock_gettime'),
'need time.clock_gettime()')
def test_clock_realtime(self):
time.clock_gettime(time.CLOCK_REALTIME)
@unittest.skipUnless(hasattr(time, 'clock_gettime'),
'need time.clock_gettime()')
@unittest.skipUnless(hasattr(time, 'CLOCK_MONOTONIC'),
'need time.CLOCK_MONOTONIC')
def test_clock_monotonic(self):
a = time.clock_gettime(time.CLOCK_MONOTONIC)
b = time.clock_gettime(time.CLOCK_MONOTONIC)
self.assertLessEqual(a, b)
@unittest.skipUnless(hasattr(time, 'clock_getres'),
'need time.clock_getres()')
def test_clock_getres(self):
res = time.clock_getres(time.CLOCK_REALTIME)
self.assertGreater(res, 0.0)
self.assertLessEqual(res, 1.0)
@unittest.skipUnless(hasattr(time, 'clock_settime'),
'need time.clock_settime()')
def test_clock_settime(self):
t = time.clock_gettime(time.CLOCK_REALTIME)
try:
time.clock_settime(time.CLOCK_REALTIME, t)
except PermissionError:
pass
if hasattr(time, 'CLOCK_MONOTONIC'):
self.assertRaises(OSError,
time.clock_settime, time.CLOCK_MONOTONIC, 0)
def test_conversions(self):
self.assertEqual(time.ctime(self.t),
time.asctime(time.localtime(self.t)))
self.assertEqual(int(time.mktime(time.localtime(self.t))),
int(self.t))
def test_sleep(self):
self.assertRaises(ValueError, time.sleep, -2)
self.assertRaises(ValueError, time.sleep, -1)
time.sleep(1.2)
def test_strftime(self):
tt = time.gmtime(self.t)
for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I',
'j', 'm', 'M', 'p', 'S',
'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'):
format = ' %' + directive
try:
time.strftime(format, tt)
except ValueError:
self.fail('conversion specifier: %r failed.' % format)
def _bounds_checking(self, func):
# Make sure that strftime() checks the bounds of the various parts
# of the time tuple (0 is valid for *all* values).
# The year field is tested by other test cases above
# Check month [1, 12] + zero support
func((1900, 0, 1, 0, 0, 0, 0, 1, -1))
func((1900, 12, 1, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, -1, 1, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 13, 1, 0, 0, 0, 0, 1, -1))
# Check day of month [1, 31] + zero support
func((1900, 1, 0, 0, 0, 0, 0, 1, -1))
func((1900, 1, 31, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, -1, 0, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 32, 0, 0, 0, 0, 1, -1))
# Check hour [0, 23]
func((1900, 1, 1, 23, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, -1, 0, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 24, 0, 0, 0, 1, -1))
# Check minute [0, 59]
func((1900, 1, 1, 0, 59, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, -1, 0, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 60, 0, 0, 1, -1))
# Check second [0, 61]
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, -1, 0, 1, -1))
# C99 only requires allowing for one leap second, but Python's docs say
# allow two leap seconds (0..61)
func((1900, 1, 1, 0, 0, 60, 0, 1, -1))
func((1900, 1, 1, 0, 0, 61, 0, 1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 62, 0, 1, -1))
# No check for upper-bound day of week;
# value forced into range by a ``% 7`` calculation.
# Start check at -2 since gettmarg() increments value before taking
# modulo.
self.assertEqual(func((1900, 1, 1, 0, 0, 0, -1, 1, -1)),
func((1900, 1, 1, 0, 0, 0, +6, 1, -1)))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 0, -2, 1, -1))
# Check day of the year [1, 366] + zero support
func((1900, 1, 1, 0, 0, 0, 0, 0, -1))
func((1900, 1, 1, 0, 0, 0, 0, 366, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 0, 0, -1, -1))
self.assertRaises(ValueError, func,
(1900, 1, 1, 0, 0, 0, 0, 367, -1))
def test_strftime_bounding_check(self):
self._bounds_checking(lambda tup: time.strftime('', tup))
def test_strftime_format_check(self):
# Test that strftime does not crash on invalid format strings
# that may trigger a buffer overread. When not triggered,
# strftime may succeed or raise ValueError depending on
# the platform.
for x in [ '', 'A', '%A', '%AA' ]:
for y in range(0x0, 0x10):
for z in [ '%', 'A%', 'AA%', '%A%', 'A%A%', '%#' ]:
try:
time.strftime(x * y + z)
except ValueError:
pass
def test_default_values_for_zero(self):
# Make sure that using all zeros uses the proper default
# values. No test for daylight savings since strftime() does
# not change output based on its value and no test for year
# because systems vary in their support for year 0.
expected = "2000 01 01 00 00 00 1 001"
with support.check_warnings():
result = time.strftime("%Y %m %d %H %M %S %w %j", (2000,)+(0,)*8)
self.assertEqual(expected, result)
def test_strptime(self):
# Should be able to go round-trip from strftime to strptime without
# raising an exception.
tt = time.gmtime(self.t)
for directive in ('a', 'A', 'b', 'B', 'c', 'd', 'H', 'I',
'j', 'm', 'M', 'p', 'S',
'U', 'w', 'W', 'x', 'X', 'y', 'Y', 'Z', '%'):
format = '%' + directive
strf_output = time.strftime(format, tt)
try:
time.strptime(strf_output, format)
except ValueError:
self.fail("conversion specifier %r failed with '%s' input." %
(format, strf_output))
def test_strptime_bytes(self):
# Make sure only strings are accepted as arguments to strptime.
self.assertRaises(TypeError, time.strptime, b'2009', "%Y")
self.assertRaises(TypeError, time.strptime, '2009', b'%Y')
def test_strptime_exception_context(self):
# check that this doesn't chain exceptions needlessly (see #17572)
with self.assertRaises(ValueError) as e:
time.strptime('', '%D')
self.assertIs(e.exception.__suppress_context__, True)
# additional check for IndexError branch (issue #19545)
with self.assertRaises(ValueError) as e:
time.strptime('19', '%Y %')
self.assertIs(e.exception.__suppress_context__, True)
def test_asctime(self):
time.asctime(time.gmtime(self.t))
# Max year is only limited by the size of C int.
for bigyear in TIME_MAXYEAR, TIME_MINYEAR:
asc = time.asctime((bigyear, 6, 1) + (0,) * 6)
self.assertEqual(asc[-len(str(bigyear)):], str(bigyear))
self.assertRaises(OverflowError, time.asctime,
(TIME_MAXYEAR + 1,) + (0,) * 8)
self.assertRaises(OverflowError, time.asctime,
(TIME_MINYEAR - 1,) + (0,) * 8)
self.assertRaises(TypeError, time.asctime, 0)
self.assertRaises(TypeError, time.asctime, ())
self.assertRaises(TypeError, time.asctime, (0,) * 10)
def test_asctime_bounding_check(self):
self._bounds_checking(time.asctime)
def test_ctime(self):
t = time.mktime((1973, 9, 16, 1, 3, 52, 0, 0, -1))
self.assertEqual(time.ctime(t), 'Sun Sep 16 01:03:52 1973')
t = time.mktime((2000, 1, 1, 0, 0, 0, 0, 0, -1))
self.assertEqual(time.ctime(t), 'Sat Jan 1 00:00:00 2000')
for year in [-100, 100, 1000, 2000, 2050, 10000]:
try:
testval = time.mktime((year, 1, 10) + (0,)*6)
except (ValueError, OverflowError):
# If mktime fails, ctime will fail too. This may happen
# on some platforms.
pass
else:
self.assertEqual(time.ctime(testval)[20:], str(year))
@unittest.skipUnless(hasattr(time, "tzset"),
"time module has no attribute tzset")
def test_tzset(self):
from os import environ
# Epoch time of midnight Dec 25th 2002. Never DST in northern
# hemisphere.
xmas2002 = 1040774400.0
# These formats are correct for 2002, and possibly future years
# This format is the 'standard' as documented at:
# http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap08.html
# They are also documented in the tzset(3) man page on most Unix
# systems.
eastern = 'EST+05EDT,M4.1.0,M10.5.0'
victoria = 'AEST-10AEDT-11,M10.5.0,M3.5.0'
utc='UTC+0'
org_TZ = environ.get('TZ',None)
try:
# Make sure we can switch to UTC time and results are correct
# Note that unknown timezones default to UTC.
# Note that altzone is undefined in UTC, as there is no DST
environ['TZ'] = eastern
time.tzset()
environ['TZ'] = utc
time.tzset()
self.assertEqual(
time.gmtime(xmas2002), time.localtime(xmas2002)
)
self.assertEqual(time.daylight, 0)
self.assertEqual(time.timezone, 0)
self.assertEqual(time.localtime(xmas2002).tm_isdst, 0)
# Make sure we can switch to US/Eastern
environ['TZ'] = eastern
time.tzset()
self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002))
self.assertEqual(time.tzname, ('EST', 'EDT'))
self.assertEqual(len(time.tzname), 2)
self.assertEqual(time.daylight, 1)
self.assertEqual(time.timezone, 18000)
self.assertEqual(time.altzone, 14400)
self.assertEqual(time.localtime(xmas2002).tm_isdst, 0)
self.assertEqual(len(time.tzname), 2)
# Now go to the southern hemisphere.
environ['TZ'] = victoria
time.tzset()
self.assertNotEqual(time.gmtime(xmas2002), time.localtime(xmas2002))
# Issue #11886: Australian Eastern Standard Time (UTC+10) is called
# "EST" (as Eastern Standard Time, UTC-5) instead of "AEST"
# (non-DST timezone), and "EDT" instead of "AEDT" (DST timezone),
# on some operating systems (e.g. FreeBSD), which is wrong. See for
# example this bug:
# http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=93810
self.assertIn(time.tzname[0], ('AEST' 'EST'), time.tzname[0])
self.assertTrue(time.tzname[1] in ('AEDT', 'EDT'), str(time.tzname[1]))
self.assertEqual(len(time.tzname), 2)
self.assertEqual(time.daylight, 1)
self.assertEqual(time.timezone, -36000)
self.assertEqual(time.altzone, -39600)
self.assertEqual(time.localtime(xmas2002).tm_isdst, 1)
finally:
# Repair TZ environment variable in case any other tests
# rely on it.
if org_TZ is not None:
environ['TZ'] = org_TZ
elif 'TZ' in environ:
del environ['TZ']
time.tzset()
def test_insane_timestamps(self):
# It's possible that some platform maps time_t to double,
# and that this test will fail there. This test should
# exempt such platforms (provided they return reasonable
# results!).
for func in time.ctime, time.gmtime, time.localtime:
for unreasonable in -1e200, 1e200:
self.assertRaises(OverflowError, func, unreasonable)
def test_ctime_without_arg(self):
# Not sure how to check the values, since the clock could tick
# at any time. Make sure these are at least accepted and
# don't raise errors.
time.ctime()
time.ctime(None)
def test_gmtime_without_arg(self):
gt0 = time.gmtime()
gt1 = time.gmtime(None)
t0 = time.mktime(gt0)
t1 = time.mktime(gt1)
self.assertAlmostEqual(t1, t0, delta=0.2)
def test_localtime_without_arg(self):
lt0 = time.localtime()
lt1 = time.localtime(None)
t0 = time.mktime(lt0)
t1 = time.mktime(lt1)
self.assertAlmostEqual(t1, t0, delta=0.2)
def test_mktime(self):
# Issue #1726687
for t in (-2, -1, 0, 1):
if sys.platform.startswith('aix') and t == -1:
# Issue #11188, #19748: mktime() returns -1 on error. On Linux,
# the tm_wday field is used as a sentinel () to detect if -1 is
# really an error or a valid timestamp. On AIX, tm_wday is
# unchanged even on success and so cannot be used as a
# sentinel.
continue
try:
tt = time.localtime(t)
except (OverflowError, OSError):
pass
else:
self.assertEqual(time.mktime(tt), t)
# Issue #13309: passing extreme values to mktime() or localtime()
# borks the glibc's internal timezone data.
@unittest.skipUnless(platform.libc_ver()[0] != 'glibc',
"disabled because of a bug in glibc. Issue #13309")
def test_mktime_error(self):
# It may not be possible to reliably make mktime return error
# on all platfom. This will make sure that no other exception
# than OverflowError is raised for an extreme value.
tt = time.gmtime(self.t)
tzname = time.strftime('%Z', tt)
self.assertNotEqual(tzname, 'LMT')
try:
time.mktime((-1, 1, 1, 0, 0, 0, -1, -1, -1))
except OverflowError:
pass
self.assertEqual(time.strftime('%Z', tt), tzname)
@unittest.skipUnless(hasattr(time, 'monotonic'),
'need time.monotonic')
def test_monotonic(self):
# monotonic() should not go backward
times = [time.monotonic() for n in range(100)]
t1 = times[0]
for t2 in times[1:]:
self.assertGreaterEqual(t2, t1, "times=%s" % times)
t1 = t2
# monotonic() includes time elapsed during a sleep
t1 = time.monotonic()
time.sleep(0.5)
t2 = time.monotonic()
dt = t2 - t1
self.assertGreater(t2, t1)
# Issue #20101: On some Windows machines, dt may be slightly low
self.assertTrue(0.45 <= dt <= 1.0, dt)
# monotonic() is a monotonic but non adjustable clock
info = time.get_clock_info('monotonic')
self.assertTrue(info.monotonic)
self.assertFalse(info.adjustable)
def test_perf_counter(self):
time.perf_counter()
def test_process_time(self):
# process_time() should not include time spend during a sleep
start = time.process_time()
time.sleep(0.100)
stop = time.process_time()
# use 20 ms because process_time() has usually a resolution of 15 ms
# on Windows
self.assertLess(stop - start, 0.020)
info = time.get_clock_info('process_time')
self.assertTrue(info.monotonic)
self.assertFalse(info.adjustable)
@unittest.skipUnless(hasattr(time, 'monotonic'),
'need time.monotonic')
@unittest.skipUnless(hasattr(time, 'clock_settime'),
'need time.clock_settime')
def test_monotonic_settime(self):
t1 = time.monotonic()
realtime = time.clock_gettime(time.CLOCK_REALTIME)
# jump backward with an offset of 1 hour
try:
time.clock_settime(time.CLOCK_REALTIME, realtime - 3600)
except PermissionError as err:
self.skipTest(err)
t2 = time.monotonic()
time.clock_settime(time.CLOCK_REALTIME, realtime)
# monotonic must not be affected by system clock updates
self.assertGreaterEqual(t2, t1)
def test_localtime_failure(self):
# Issue #13847: check for localtime() failure
invalid_time_t = None
for time_t in (-1, 2**30, 2**33, 2**60):
try:
time.localtime(time_t)
except OverflowError:
self.skipTest("need 64-bit time_t")
except OSError:
invalid_time_t = time_t
break
if invalid_time_t is None:
self.skipTest("unable to find an invalid time_t value")
self.assertRaises(OSError, time.localtime, invalid_time_t)
self.assertRaises(OSError, time.ctime, invalid_time_t)
def test_get_clock_info(self):
clocks = ['clock', 'perf_counter', 'process_time', 'time']
if hasattr(time, 'monotonic'):
clocks.append('monotonic')
for name in clocks:
info = time.get_clock_info(name)
#self.assertIsInstance(info, dict)
self.assertIsInstance(info.implementation, str)
self.assertNotEqual(info.implementation, '')
self.assertIsInstance(info.monotonic, bool)
self.assertIsInstance(info.resolution, float)
# 0.0 < resolution <= 1.0
self.assertGreater(info.resolution, 0.0)
self.assertLessEqual(info.resolution, 1.0)
self.assertIsInstance(info.adjustable, bool)
self.assertRaises(ValueError, time.get_clock_info, 'xxx')
class TestLocale(unittest.TestCase):
def setUp(self):
self.oldloc = locale.setlocale(locale.LC_ALL)
def tearDown(self):
locale.setlocale(locale.LC_ALL, self.oldloc)
def test_bug_3061(self):
try:
tmp = locale.setlocale(locale.LC_ALL, "fr_FR")
except locale.Error:
self.skipTest('could not set locale.LC_ALL to fr_FR')
# This should not cause an exception
time.strftime("%B", (2009,2,1,0,0,0,0,0,0))
class _TestAsctimeYear:
_format = '%d'
def yearstr(self, y):
return time.asctime((y,) + (0,) * 8).split()[-1]
def test_large_year(self):
# Check that it doesn't crash for year > 9999
self.assertEqual(self.yearstr(12345), '12345')
self.assertEqual(self.yearstr(123456789), '123456789')
class _TestStrftimeYear:
# Issue 13305: For years < 1000, the value is not always
# padded to 4 digits across platforms. The C standard
# assumes year >= 1900, so it does not specify the number
# of digits.
if time.strftime('%Y', (1,) + (0,) * 8) == '0001':
_format = '%04d'
else:
_format = '%d'
def yearstr(self, y):
return time.strftime('%Y', (y,) + (0,) * 8)
def test_4dyear(self):
# Check that we can return the zero padded value.
if self._format == '%04d':
self.test_year('%04d')
else:
def year4d(y):
return time.strftime('%4Y', (y,) + (0,) * 8)
self.test_year('%04d', func=year4d)
def skip_if_not_supported(y):
msg = "strftime() is limited to [1; 9999] with Visual Studio"
# Check that it doesn't crash for year > 9999
try:
time.strftime('%Y', (y,) + (0,) * 8)
except ValueError:
cond = False
else:
cond = True
return unittest.skipUnless(cond, msg)
@skip_if_not_supported(10000)
def test_large_year(self):
return super().test_large_year()
@skip_if_not_supported(0)
def test_negative(self):
return super().test_negative()
del skip_if_not_supported
class _Test4dYear:
_format = '%d'
def test_year(self, fmt=None, func=None):
fmt = fmt or self._format
func = func or self.yearstr
self.assertEqual(func(1), fmt % 1)
self.assertEqual(func(68), fmt % 68)
self.assertEqual(func(69), fmt % 69)
self.assertEqual(func(99), fmt % 99)
self.assertEqual(func(999), fmt % 999)
self.assertEqual(func(9999), fmt % 9999)
def test_large_year(self):
self.assertEqual(self.yearstr(12345), '12345')
self.assertEqual(self.yearstr(123456789), '123456789')
self.assertEqual(self.yearstr(TIME_MAXYEAR), str(TIME_MAXYEAR))
self.assertRaises(OverflowError, self.yearstr, TIME_MAXYEAR + 1)
def test_negative(self):
self.assertEqual(self.yearstr(-1), self._format % -1)
self.assertEqual(self.yearstr(-1234), '-1234')
self.assertEqual(self.yearstr(-123456), '-123456')
self.assertEqual(self.yearstr(-123456789), str(-123456789))
self.assertEqual(self.yearstr(-1234567890), str(-1234567890))
self.assertEqual(self.yearstr(TIME_MINYEAR + 1900), str(TIME_MINYEAR + 1900))
# Issue #13312: it may return wrong value for year < TIME_MINYEAR + 1900
# Skip the value test, but check that no error is raised
self.yearstr(TIME_MINYEAR)
# self.assertEqual(self.yearstr(TIME_MINYEAR), str(TIME_MINYEAR))
self.assertRaises(OverflowError, self.yearstr, TIME_MINYEAR - 1)
class TestAsctime4dyear(_TestAsctimeYear, _Test4dYear, unittest.TestCase):
pass
class TestStrftime4dyear(_TestStrftimeYear, _Test4dYear, unittest.TestCase):
pass
class TestPytime(unittest.TestCase):
@unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support")
def test_localtime_timezone(self):
# Get the localtime and examine it for the offset and zone.
lt = time.localtime()
self.assertTrue(hasattr(lt, "tm_gmtoff"))
self.assertTrue(hasattr(lt, "tm_zone"))
# See if the offset and zone are similar to the module
# attributes.
if lt.tm_gmtoff is None:
self.assertTrue(not hasattr(time, "timezone"))
else:
self.assertEqual(lt.tm_gmtoff, -[time.timezone, time.altzone][lt.tm_isdst])
if lt.tm_zone is None:
self.assertTrue(not hasattr(time, "tzname"))
else:
self.assertEqual(lt.tm_zone, time.tzname[lt.tm_isdst])
# Try and make UNIX times from the localtime and a 9-tuple
# created from the localtime. Test to see that the times are
# the same.
t = time.mktime(lt); t9 = time.mktime(lt[:9])
self.assertEqual(t, t9)
# Make localtimes from the UNIX times and compare them to
# the original localtime, thus making a round trip.
new_lt = time.localtime(t); new_lt9 = time.localtime(t9)
self.assertEqual(new_lt, lt)
self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff)
self.assertEqual(new_lt.tm_zone, lt.tm_zone)
self.assertEqual(new_lt9, lt)
self.assertEqual(new_lt.tm_gmtoff, lt.tm_gmtoff)
self.assertEqual(new_lt9.tm_zone, lt.tm_zone)
@unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support")
def test_strptime_timezone(self):
t = time.strptime("UTC", "%Z")
self.assertEqual(t.tm_zone, 'UTC')
t = time.strptime("+0500", "%z")
self.assertEqual(t.tm_gmtoff, 5 * 3600)
@unittest.skipUnless(time._STRUCT_TM_ITEMS == 11, "needs tm_zone support")
def test_short_times(self):
import pickle
# Load a short time structure using pickle.
st = b"ctime\nstruct_time\np0\n((I2007\nI8\nI11\nI1\nI24\nI49\nI5\nI223\nI1\ntp1\n(dp2\ntp3\nRp4\n."
lt = pickle.loads(st)
self.assertIs(lt.tm_gmtoff, None)
self.assertIs(lt.tm_zone, None)
@unittest.skipIf(_testcapi is None, 'need the _testcapi module')
class CPyTimeTestCase:
"""
Base class to test the C _PyTime_t API.
"""
OVERFLOW_SECONDS = None
def setUp(self):
from _testcapi import SIZEOF_TIME_T
bits = SIZEOF_TIME_T * 8 - 1
self.time_t_min = -2 ** bits
self.time_t_max = 2 ** bits - 1
def time_t_filter(self, seconds):
return (self.time_t_min <= seconds <= self.time_t_max)
def _rounding_values(self, use_float):
"Build timestamps used to test rounding."
units = [1, US_TO_NS, MS_TO_NS, SEC_TO_NS]
if use_float:
# picoseconds are only tested to pytime_converter accepting floats
units.append(1e-3)
values = (
# small values
1, 2, 5, 7, 123, 456, 1234,
# 10^k - 1
9,
99,
999,
9999,
99999,
999999,
# test half even rounding near 0.5, 1.5, 2.5, 3.5, 4.5
499, 500, 501,
1499, 1500, 1501,
2500,
3500,
4500,
)
ns_timestamps = [0]
for unit in units:
for value in values:
ns = value * unit
ns_timestamps.extend((-ns, ns))
for pow2 in (0, 5, 10, 15, 22, 23, 24, 30, 33):
ns = (2 ** pow2) * SEC_TO_NS
ns_timestamps.extend((
-ns-1, -ns, -ns+1,
ns-1, ns, ns+1
))
for seconds in (_testcapi.INT_MIN, _testcapi.INT_MAX):
ns_timestamps.append(seconds * SEC_TO_NS)
if use_float:
# numbers with an extract representation in IEEE 754 (base 2)
for pow2 in (3, 7, 10, 15):
ns = 2.0 ** (-pow2)
ns_timestamps.extend((-ns, ns))
# seconds close to _PyTime_t type limit
ns = (2 ** 63 // SEC_TO_NS) * SEC_TO_NS
ns_timestamps.extend((-ns, ns))
return ns_timestamps
def _check_rounding(self, pytime_converter, expected_func,
use_float, unit_to_sec, value_filter=None):
def convert_values(ns_timestamps):
if use_float:
unit_to_ns = SEC_TO_NS / float(unit_to_sec)
values = [ns / unit_to_ns for ns in ns_timestamps]
else:
unit_to_ns = SEC_TO_NS // unit_to_sec
values = [ns // unit_to_ns for ns in ns_timestamps]
if value_filter:
values = filter(value_filter, values)
# remove duplicates and sort
return sorted(set(values))
# test rounding
ns_timestamps = self._rounding_values(use_float)
valid_values = convert_values(ns_timestamps)
for time_rnd, decimal_rnd in ROUNDING_MODES :
context = decimal.getcontext()
context.rounding = decimal_rnd
for value in valid_values:
debug_info = {'value': value, 'rounding': decimal_rnd}
try:
result = pytime_converter(value, time_rnd)
expected = expected_func(value)
except Exception as exc:
self.fail("Error on timestamp conversion: %s" % debug_info)
self.assertEqual(result,
expected,
debug_info)
# test overflow
ns = self.OVERFLOW_SECONDS * SEC_TO_NS
ns_timestamps = (-ns, ns)
overflow_values = convert_values(ns_timestamps)
for time_rnd, _ in ROUNDING_MODES :
for value in overflow_values:
debug_info = {'value': value, 'rounding': time_rnd}
with self.assertRaises(OverflowError, msg=debug_info):
pytime_converter(value, time_rnd)
def check_int_rounding(self, pytime_converter, expected_func,
unit_to_sec=1, value_filter=None):
self._check_rounding(pytime_converter, expected_func,
False, unit_to_sec, value_filter)
def check_float_rounding(self, pytime_converter, expected_func,
unit_to_sec=1, value_filter=None):
self._check_rounding(pytime_converter, expected_func,
True, unit_to_sec, value_filter)
def decimal_round(self, x):
d = decimal.Decimal(x)
d = d.quantize(1)
return int(d)
class TestCPyTime(CPyTimeTestCase, unittest.TestCase):
"""
Test the C _PyTime_t API.
"""
# _PyTime_t is a 64-bit signed integer
OVERFLOW_SECONDS = math.ceil((2**63 + 1) / SEC_TO_NS)
def test_FromSeconds(self):
from _testcapi import PyTime_FromSeconds
# PyTime_FromSeconds() expects a C int, reject values out of range
def c_int_filter(secs):
return (_testcapi.INT_MIN <= secs <= _testcapi.INT_MAX)
self.check_int_rounding(lambda secs, rnd: PyTime_FromSeconds(secs),
lambda secs: secs * SEC_TO_NS,
value_filter=c_int_filter)
def test_FromSecondsObject(self):
from _testcapi import PyTime_FromSecondsObject
self.check_int_rounding(
PyTime_FromSecondsObject,
lambda secs: secs * SEC_TO_NS)
self.check_float_rounding(
PyTime_FromSecondsObject,
lambda ns: self.decimal_round(ns * SEC_TO_NS))
def test_AsSecondsDouble(self):
from _testcapi import PyTime_AsSecondsDouble
def float_converter(ns):
if abs(ns) % SEC_TO_NS == 0:
return float(ns // SEC_TO_NS)
else:
return float(ns) / SEC_TO_NS
self.check_int_rounding(lambda ns, rnd: PyTime_AsSecondsDouble(ns),
float_converter,
NS_TO_SEC)
def create_decimal_converter(self, denominator):
denom = decimal.Decimal(denominator)
def converter(value):
d = decimal.Decimal(value) / denom
return self.decimal_round(d)
return converter
def test_AsTimeval(self):
from _testcapi import PyTime_AsTimeval
us_converter = self.create_decimal_converter(US_TO_NS)
def timeval_converter(ns):
us = us_converter(ns)
return divmod(us, SEC_TO_US)
if sys.platform == 'win32':
from _testcapi import LONG_MIN, LONG_MAX
# On Windows, timeval.tv_sec type is a C long
def seconds_filter(secs):
return LONG_MIN <= secs <= LONG_MAX
else:
seconds_filter = self.time_t_filter
self.check_int_rounding(PyTime_AsTimeval,
timeval_converter,
NS_TO_SEC,
value_filter=seconds_filter)
@unittest.skipUnless(hasattr(_testcapi, 'PyTime_AsTimespec'),
'need _testcapi.PyTime_AsTimespec')
def test_AsTimespec(self):
from _testcapi import PyTime_AsTimespec
def timespec_converter(ns):
return divmod(ns, SEC_TO_NS)
self.check_int_rounding(lambda ns, rnd: PyTime_AsTimespec(ns),
timespec_converter,
NS_TO_SEC,
value_filter=self.time_t_filter)
def test_AsMilliseconds(self):
from _testcapi import PyTime_AsMilliseconds
self.check_int_rounding(PyTime_AsMilliseconds,
self.create_decimal_converter(MS_TO_NS),
NS_TO_SEC)
def test_AsMicroseconds(self):
from _testcapi import PyTime_AsMicroseconds
self.check_int_rounding(PyTime_AsMicroseconds,
self.create_decimal_converter(US_TO_NS),
NS_TO_SEC)
class TestOldPyTime(CPyTimeTestCase, unittest.TestCase):
"""
Test the old C _PyTime_t API: _PyTime_ObjectToXXX() functions.
"""
# time_t is a 32-bit or 64-bit signed integer
OVERFLOW_SECONDS = 2 ** 64
def test_object_to_time_t(self):
from _testcapi import pytime_object_to_time_t
self.check_int_rounding(pytime_object_to_time_t,
lambda secs: secs,
value_filter=self.time_t_filter)
self.check_float_rounding(pytime_object_to_time_t,
self.decimal_round,
value_filter=self.time_t_filter)
def create_converter(self, sec_to_unit):
def converter(secs):
floatpart, intpart = math.modf(secs)
intpart = int(intpart)
floatpart *= sec_to_unit
floatpart = self.decimal_round(floatpart)
if floatpart < 0:
floatpart += sec_to_unit
intpart -= 1
elif floatpart >= sec_to_unit:
floatpart -= sec_to_unit
intpart += 1
return (intpart, floatpart)
return converter
def test_object_to_timeval(self):
from _testcapi import pytime_object_to_timeval
self.check_int_rounding(pytime_object_to_timeval,
lambda secs: (secs, 0),
value_filter=self.time_t_filter)
self.check_float_rounding(pytime_object_to_timeval,
self.create_converter(SEC_TO_US),
value_filter=self.time_t_filter)
def test_object_to_timespec(self):
from _testcapi import pytime_object_to_timespec
self.check_int_rounding(pytime_object_to_timespec,
lambda secs: (secs, 0),
value_filter=self.time_t_filter)
self.check_float_rounding(pytime_object_to_timespec,
self.create_converter(SEC_TO_NS),
value_filter=self.time_t_filter)
if __name__ == "__main__":
unittest.main()