mirror of
https://github.com/python/cpython.git
synced 2025-01-10 02:24:46 +08:00
f78e02b798
svn+ssh://pythondev@svn.python.org/python/trunk ........ r63562 | martin.v.loewis | 2008-05-23 17:06:50 +0200 (Fri, 23 May 2008) | 2 lines Patch #1722225: Support QNX 6. ........ r63570 | trent.nelson | 2008-05-23 22:33:14 +0200 (Fri, 23 May 2008) | 1 line Introduce a user macro named $(externalsDir), which should point to the root directory of where all the external sources should live. Developers can change this value if their external sources live elsewhere. The default of '..\..' matches the current status quo. ........ r63728 | gregory.p.smith | 2008-05-26 23:16:34 +0200 (Mon, 26 May 2008) | 4 lines Fix issue2589: there was a potential integer overflow leading to memory corruption on esoteric platforms and incorrect behavior on normal platforms. ........ r63734 | gregory.p.smith | 2008-05-27 00:07:28 +0200 (Tue, 27 May 2008) | 3 lines Fix issue2588: Do not execute str[size-1] = '\0' when a 0 size is passed in. (The assert won't prevent this in non-debug builds). ........ r63784 | raymond.hettinger | 2008-05-29 10:38:23 +0200 (Thu, 29 May 2008) | 1 line Fix two typos. ........ r63788 | facundo.batista | 2008-05-29 18:39:26 +0200 (Thu, 29 May 2008) | 6 lines Fixed the semantic of timeout for socket.create_connection and all the upper level libraries that use it, including urllib2. Added and fixed some tests, and changed docs correspondingly. Thanks to John J Lee for the patch and the pusing, :) ........ r63802 | mark.dickinson | 2008-05-30 04:46:53 +0200 (Fri, 30 May 2008) | 2 lines Fix typo in testSum ........ r63817 | raymond.hettinger | 2008-05-30 20:20:50 +0200 (Fri, 30 May 2008) | 8 lines * Mark intermedidate computes values (hi, lo, yr) as volatile. * Expand comments. * Swap variable names in the sum_exact code so that x and y are consistently chosen as the larger and smaller magnitude values respectively. ........ r63827 | raymond.hettinger | 2008-05-31 05:24:31 +0200 (Sat, 31 May 2008) | 1 line Implement heapq in terms of less-than (to match list.sort()). ........ r63839 | gerhard.haering | 2008-05-31 23:33:27 +0200 (Sat, 31 May 2008) | 2 lines Fixed rowcount for SELECT statements. They're -1 now (again), for better DB-API 2.0 compliance. ........ r63887 | gregory.p.smith | 2008-06-02 06:05:52 +0200 (Mon, 02 Jun 2008) | 4 lines Fix issue 2782: be less strict about the format string type in strftime. Accept unicode and anything else ParseTuple "s#" can deal with. This matches the time.strftime behavior. ........ r63975 | neal.norwitz | 2008-06-06 06:47:01 +0200 (Fri, 06 Jun 2008) | 3 lines Aldo Cortesi confirmed this is still needed for OpenBSD 4.2 and 4.3. (I didn't regen configure, since I don't have a working autoconf.) ........ r63998 | raymond.hettinger | 2008-06-06 23:47:51 +0200 (Fri, 06 Jun 2008) | 1 line Issue 3501: Make heapq support both __le__ and __lt__. ........
388 lines
15 KiB
Python
388 lines
15 KiB
Python
# -*- coding: Latin-1 -*-
|
|
|
|
"""Heap queue algorithm (a.k.a. priority queue).
|
|
|
|
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
|
|
all k, counting elements from 0. For the sake of comparison,
|
|
non-existing elements are considered to be infinite. The interesting
|
|
property of a heap is that a[0] is always its smallest element.
|
|
|
|
Usage:
|
|
|
|
heap = [] # creates an empty heap
|
|
heappush(heap, item) # pushes a new item on the heap
|
|
item = heappop(heap) # pops the smallest item from the heap
|
|
item = heap[0] # smallest item on the heap without popping it
|
|
heapify(x) # transforms list into a heap, in-place, in linear time
|
|
item = heapreplace(heap, item) # pops and returns smallest item, and adds
|
|
# new item; the heap size is unchanged
|
|
|
|
Our API differs from textbook heap algorithms as follows:
|
|
|
|
- We use 0-based indexing. This makes the relationship between the
|
|
index for a node and the indexes for its children slightly less
|
|
obvious, but is more suitable since Python uses 0-based indexing.
|
|
|
|
- Our heappop() method returns the smallest item, not the largest.
|
|
|
|
These two make it possible to view the heap as a regular Python list
|
|
without surprises: heap[0] is the smallest item, and heap.sort()
|
|
maintains the heap invariant!
|
|
"""
|
|
|
|
# Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger
|
|
|
|
__about__ = """Heap queues
|
|
|
|
[explanation by François Pinard]
|
|
|
|
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
|
|
all k, counting elements from 0. For the sake of comparison,
|
|
non-existing elements are considered to be infinite. The interesting
|
|
property of a heap is that a[0] is always its smallest element.
|
|
|
|
The strange invariant above is meant to be an efficient memory
|
|
representation for a tournament. The numbers below are `k', not a[k]:
|
|
|
|
0
|
|
|
|
1 2
|
|
|
|
3 4 5 6
|
|
|
|
7 8 9 10 11 12 13 14
|
|
|
|
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
|
|
|
|
|
|
In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In
|
|
an usual binary tournament we see in sports, each cell is the winner
|
|
over the two cells it tops, and we can trace the winner down the tree
|
|
to see all opponents s/he had. However, in many computer applications
|
|
of such tournaments, we do not need to trace the history of a winner.
|
|
To be more memory efficient, when a winner is promoted, we try to
|
|
replace it by something else at a lower level, and the rule becomes
|
|
that a cell and the two cells it tops contain three different items,
|
|
but the top cell "wins" over the two topped cells.
|
|
|
|
If this heap invariant is protected at all time, index 0 is clearly
|
|
the overall winner. The simplest algorithmic way to remove it and
|
|
find the "next" winner is to move some loser (let's say cell 30 in the
|
|
diagram above) into the 0 position, and then percolate this new 0 down
|
|
the tree, exchanging values, until the invariant is re-established.
|
|
This is clearly logarithmic on the total number of items in the tree.
|
|
By iterating over all items, you get an O(n ln n) sort.
|
|
|
|
A nice feature of this sort is that you can efficiently insert new
|
|
items while the sort is going on, provided that the inserted items are
|
|
not "better" than the last 0'th element you extracted. This is
|
|
especially useful in simulation contexts, where the tree holds all
|
|
incoming events, and the "win" condition means the smallest scheduled
|
|
time. When an event schedule other events for execution, they are
|
|
scheduled into the future, so they can easily go into the heap. So, a
|
|
heap is a good structure for implementing schedulers (this is what I
|
|
used for my MIDI sequencer :-).
|
|
|
|
Various structures for implementing schedulers have been extensively
|
|
studied, and heaps are good for this, as they are reasonably speedy,
|
|
the speed is almost constant, and the worst case is not much different
|
|
than the average case. However, there are other representations which
|
|
are more efficient overall, yet the worst cases might be terrible.
|
|
|
|
Heaps are also very useful in big disk sorts. You most probably all
|
|
know that a big sort implies producing "runs" (which are pre-sorted
|
|
sequences, which size is usually related to the amount of CPU memory),
|
|
followed by a merging passes for these runs, which merging is often
|
|
very cleverly organised[1]. It is very important that the initial
|
|
sort produces the longest runs possible. Tournaments are a good way
|
|
to that. If, using all the memory available to hold a tournament, you
|
|
replace and percolate items that happen to fit the current run, you'll
|
|
produce runs which are twice the size of the memory for random input,
|
|
and much better for input fuzzily ordered.
|
|
|
|
Moreover, if you output the 0'th item on disk and get an input which
|
|
may not fit in the current tournament (because the value "wins" over
|
|
the last output value), it cannot fit in the heap, so the size of the
|
|
heap decreases. The freed memory could be cleverly reused immediately
|
|
for progressively building a second heap, which grows at exactly the
|
|
same rate the first heap is melting. When the first heap completely
|
|
vanishes, you switch heaps and start a new run. Clever and quite
|
|
effective!
|
|
|
|
In a word, heaps are useful memory structures to know. I use them in
|
|
a few applications, and I think it is good to keep a `heap' module
|
|
around. :-)
|
|
|
|
--------------------
|
|
[1] The disk balancing algorithms which are current, nowadays, are
|
|
more annoying than clever, and this is a consequence of the seeking
|
|
capabilities of the disks. On devices which cannot seek, like big
|
|
tape drives, the story was quite different, and one had to be very
|
|
clever to ensure (far in advance) that each tape movement will be the
|
|
most effective possible (that is, will best participate at
|
|
"progressing" the merge). Some tapes were even able to read
|
|
backwards, and this was also used to avoid the rewinding time.
|
|
Believe me, real good tape sorts were quite spectacular to watch!
|
|
From all times, sorting has always been a Great Art! :-)
|
|
"""
|
|
|
|
__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
|
|
'nlargest', 'nsmallest', 'heappushpop']
|
|
|
|
from itertools import islice, repeat, count, tee
|
|
from operator import itemgetter, neg
|
|
import bisect
|
|
|
|
def heappush(heap, item):
|
|
"""Push item onto heap, maintaining the heap invariant."""
|
|
heap.append(item)
|
|
_siftdown(heap, 0, len(heap)-1)
|
|
|
|
def heappop(heap):
|
|
"""Pop the smallest item off the heap, maintaining the heap invariant."""
|
|
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
|
|
if heap:
|
|
returnitem = heap[0]
|
|
heap[0] = lastelt
|
|
_siftup(heap, 0)
|
|
else:
|
|
returnitem = lastelt
|
|
return returnitem
|
|
|
|
def heapreplace(heap, item):
|
|
"""Pop and return the current smallest value, and add the new item.
|
|
|
|
This is more efficient than heappop() followed by heappush(), and can be
|
|
more appropriate when using a fixed-size heap. Note that the value
|
|
returned may be larger than item! That constrains reasonable uses of
|
|
this routine unless written as part of a conditional replacement:
|
|
|
|
if item > heap[0]:
|
|
item = heapreplace(heap, item)
|
|
"""
|
|
returnitem = heap[0] # raises appropriate IndexError if heap is empty
|
|
heap[0] = item
|
|
_siftup(heap, 0)
|
|
return returnitem
|
|
|
|
def heappushpop(heap, item):
|
|
"""Fast version of a heappush followed by a heappop."""
|
|
if heap and heap[0] < item:
|
|
item, heap[0] = heap[0], item
|
|
_siftup(heap, 0)
|
|
return item
|
|
|
|
def heapify(x):
|
|
"""Transform list into a heap, in-place, in O(len(heap)) time."""
|
|
n = len(x)
|
|
# Transform bottom-up. The largest index there's any point to looking at
|
|
# is the largest with a child index in-range, so must have 2*i + 1 < n,
|
|
# or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
|
|
# j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
|
|
# (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
|
|
for i in reversed(range(n//2)):
|
|
_siftup(x, i)
|
|
|
|
def nlargest(n, iterable):
|
|
"""Find the n largest elements in a dataset.
|
|
|
|
Equivalent to: sorted(iterable, reverse=True)[:n]
|
|
"""
|
|
it = iter(iterable)
|
|
result = list(islice(it, n))
|
|
if not result:
|
|
return result
|
|
heapify(result)
|
|
_heappushpop = heappushpop
|
|
for elem in it:
|
|
heappushpop(result, elem)
|
|
result.sort(reverse=True)
|
|
return result
|
|
|
|
def nsmallest(n, iterable):
|
|
"""Find the n smallest elements in a dataset.
|
|
|
|
Equivalent to: sorted(iterable)[:n]
|
|
"""
|
|
if hasattr(iterable, '__len__') and n * 10 <= len(iterable):
|
|
# For smaller values of n, the bisect method is faster than a minheap.
|
|
# It is also memory efficient, consuming only n elements of space.
|
|
it = iter(iterable)
|
|
result = sorted(islice(it, 0, n))
|
|
if not result:
|
|
return result
|
|
insort = bisect.insort
|
|
pop = result.pop
|
|
los = result[-1] # los --> Largest of the nsmallest
|
|
for elem in it:
|
|
if los <= elem:
|
|
continue
|
|
insort(result, elem)
|
|
pop()
|
|
los = result[-1]
|
|
return result
|
|
# An alternative approach manifests the whole iterable in memory but
|
|
# saves comparisons by heapifying all at once. Also, saves time
|
|
# over bisect.insort() which has O(n) data movement time for every
|
|
# insertion. Finding the n smallest of an m length iterable requires
|
|
# O(m) + O(n log m) comparisons.
|
|
h = list(iterable)
|
|
heapify(h)
|
|
return list(map(heappop, repeat(h, min(n, len(h)))))
|
|
|
|
# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
|
|
# is the index of a leaf with a possibly out-of-order value. Restore the
|
|
# heap invariant.
|
|
def _siftdown(heap, startpos, pos):
|
|
newitem = heap[pos]
|
|
# Follow the path to the root, moving parents down until finding a place
|
|
# newitem fits.
|
|
while pos > startpos:
|
|
parentpos = (pos - 1) >> 1
|
|
parent = heap[parentpos]
|
|
if newitem < parent:
|
|
heap[pos] = parent
|
|
pos = parentpos
|
|
continue
|
|
break
|
|
heap[pos] = newitem
|
|
|
|
# The child indices of heap index pos are already heaps, and we want to make
|
|
# a heap at index pos too. We do this by bubbling the smaller child of
|
|
# pos up (and so on with that child's children, etc) until hitting a leaf,
|
|
# then using _siftdown to move the oddball originally at index pos into place.
|
|
#
|
|
# We *could* break out of the loop as soon as we find a pos where newitem <=
|
|
# both its children, but turns out that's not a good idea, and despite that
|
|
# many books write the algorithm that way. During a heap pop, the last array
|
|
# element is sifted in, and that tends to be large, so that comparing it
|
|
# against values starting from the root usually doesn't pay (= usually doesn't
|
|
# get us out of the loop early). See Knuth, Volume 3, where this is
|
|
# explained and quantified in an exercise.
|
|
#
|
|
# Cutting the # of comparisons is important, since these routines have no
|
|
# way to extract "the priority" from an array element, so that intelligence
|
|
# is likely to be hiding in custom __cmp__ methods, or in array elements
|
|
# storing (priority, record) tuples. Comparisons are thus potentially
|
|
# expensive.
|
|
#
|
|
# On random arrays of length 1000, making this change cut the number of
|
|
# comparisons made by heapify() a little, and those made by exhaustive
|
|
# heappop() a lot, in accord with theory. Here are typical results from 3
|
|
# runs (3 just to demonstrate how small the variance is):
|
|
#
|
|
# Compares needed by heapify Compares needed by 1000 heappops
|
|
# -------------------------- --------------------------------
|
|
# 1837 cut to 1663 14996 cut to 8680
|
|
# 1855 cut to 1659 14966 cut to 8678
|
|
# 1847 cut to 1660 15024 cut to 8703
|
|
#
|
|
# Building the heap by using heappush() 1000 times instead required
|
|
# 2198, 2148, and 2219 compares: heapify() is more efficient, when
|
|
# you can use it.
|
|
#
|
|
# The total compares needed by list.sort() on the same lists were 8627,
|
|
# 8627, and 8632 (this should be compared to the sum of heapify() and
|
|
# heappop() compares): list.sort() is (unsurprisingly!) more efficient
|
|
# for sorting.
|
|
|
|
def _siftup(heap, pos):
|
|
endpos = len(heap)
|
|
startpos = pos
|
|
newitem = heap[pos]
|
|
# Bubble up the smaller child until hitting a leaf.
|
|
childpos = 2*pos + 1 # leftmost child position
|
|
while childpos < endpos:
|
|
# Set childpos to index of smaller child.
|
|
rightpos = childpos + 1
|
|
if rightpos < endpos and not heap[childpos] < heap[rightpos]:
|
|
childpos = rightpos
|
|
# Move the smaller child up.
|
|
heap[pos] = heap[childpos]
|
|
pos = childpos
|
|
childpos = 2*pos + 1
|
|
# The leaf at pos is empty now. Put newitem there, and bubble it up
|
|
# to its final resting place (by sifting its parents down).
|
|
heap[pos] = newitem
|
|
_siftdown(heap, startpos, pos)
|
|
|
|
# If available, use C implementation
|
|
try:
|
|
from _heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest, heappushpop
|
|
except ImportError:
|
|
pass
|
|
|
|
def merge(*iterables):
|
|
'''Merge multiple sorted inputs into a single sorted output.
|
|
|
|
Similar to sorted(itertools.chain(*iterables)) but returns a generator,
|
|
does not pull the data into memory all at once, and assumes that each of
|
|
the input streams is already sorted (smallest to largest).
|
|
|
|
>>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
|
|
[0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]
|
|
|
|
'''
|
|
_heappop, _heapreplace, _StopIteration = heappop, heapreplace, StopIteration
|
|
|
|
h = []
|
|
h_append = h.append
|
|
for itnum, it in enumerate(map(iter, iterables)):
|
|
try:
|
|
next = it.__next__
|
|
h_append([next(), itnum, next])
|
|
except _StopIteration:
|
|
pass
|
|
heapify(h)
|
|
|
|
while 1:
|
|
try:
|
|
while 1:
|
|
v, itnum, next = s = h[0] # raises IndexError when h is empty
|
|
yield v
|
|
s[0] = next() # raises StopIteration when exhausted
|
|
_heapreplace(h, s) # restore heap condition
|
|
except _StopIteration:
|
|
_heappop(h) # remove empty iterator
|
|
except IndexError:
|
|
return
|
|
|
|
# Extend the implementations of nsmallest and nlargest to use a key= argument
|
|
_nsmallest = nsmallest
|
|
def nsmallest(n, iterable, key=None):
|
|
"""Find the n smallest elements in a dataset.
|
|
|
|
Equivalent to: sorted(iterable, key=key)[:n]
|
|
"""
|
|
in1, in2 = tee(iterable)
|
|
keys = in1 if key is None else map(key, in1)
|
|
it = zip(keys, count(), in2) # decorate
|
|
result = _nsmallest(n, it)
|
|
return list(map(itemgetter(2), result)) # undecorate
|
|
|
|
_nlargest = nlargest
|
|
def nlargest(n, iterable, key=None):
|
|
"""Find the n largest elements in a dataset.
|
|
|
|
Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
|
|
"""
|
|
in1, in2 = tee(iterable)
|
|
keys = in1 if key is None else map(key, in1)
|
|
it = zip(keys, map(neg, count()), in2) # decorate
|
|
result = _nlargest(n, it)
|
|
return list(map(itemgetter(2), result)) # undecorate
|
|
|
|
if __name__ == "__main__":
|
|
# Simple sanity test
|
|
heap = []
|
|
data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
|
|
for item in data:
|
|
heappush(heap, item)
|
|
sort = []
|
|
while heap:
|
|
sort.append(heappop(heap))
|
|
print(sort)
|
|
|
|
import doctest
|
|
doctest.testmod()
|