mirror of
https://github.com/python/cpython.git
synced 2024-11-28 20:33:54 +08:00
7a3b03509e
This PR removes `_Py_dg_stdnan` and `_Py_dg_infinity` in favour of using the standard `NAN` and `INFINITY` macros provided by C99. This change has the side-effect of fixing a bug on MIPS where the hard-coded value used by `_Py_dg_stdnan` gave a signalling NaN rather than a quiet NaN. --------- Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
626 lines
24 KiB
Python
626 lines
24 KiB
Python
from test.support import requires_IEEE_754, cpython_only, import_helper
|
|
from test.test_math import parse_testfile, test_file
|
|
import test.test_math as test_math
|
|
import unittest
|
|
import cmath, math
|
|
from cmath import phase, polar, rect, pi
|
|
import platform
|
|
import sys
|
|
|
|
|
|
INF = float('inf')
|
|
NAN = float('nan')
|
|
|
|
complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
|
|
complex_infinities = [complex(x, y) for x, y in [
|
|
(INF, 0.0), # 1st quadrant
|
|
(INF, 2.3),
|
|
(INF, INF),
|
|
(2.3, INF),
|
|
(0.0, INF),
|
|
(-0.0, INF), # 2nd quadrant
|
|
(-2.3, INF),
|
|
(-INF, INF),
|
|
(-INF, 2.3),
|
|
(-INF, 0.0),
|
|
(-INF, -0.0), # 3rd quadrant
|
|
(-INF, -2.3),
|
|
(-INF, -INF),
|
|
(-2.3, -INF),
|
|
(-0.0, -INF),
|
|
(0.0, -INF), # 4th quadrant
|
|
(2.3, -INF),
|
|
(INF, -INF),
|
|
(INF, -2.3),
|
|
(INF, -0.0)
|
|
]]
|
|
complex_nans = [complex(x, y) for x, y in [
|
|
(NAN, -INF),
|
|
(NAN, -2.3),
|
|
(NAN, -0.0),
|
|
(NAN, 0.0),
|
|
(NAN, 2.3),
|
|
(NAN, INF),
|
|
(-INF, NAN),
|
|
(-2.3, NAN),
|
|
(-0.0, NAN),
|
|
(0.0, NAN),
|
|
(2.3, NAN),
|
|
(INF, NAN)
|
|
]]
|
|
|
|
class CMathTests(unittest.TestCase):
|
|
# list of all functions in cmath
|
|
test_functions = [getattr(cmath, fname) for fname in [
|
|
'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh',
|
|
'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh',
|
|
'sqrt', 'tan', 'tanh']]
|
|
# test first and second arguments independently for 2-argument log
|
|
test_functions.append(lambda x : cmath.log(x, 1729. + 0j))
|
|
test_functions.append(lambda x : cmath.log(14.-27j, x))
|
|
|
|
def setUp(self):
|
|
self.test_values = open(test_file, encoding="utf-8")
|
|
|
|
def tearDown(self):
|
|
self.test_values.close()
|
|
|
|
def assertFloatIdentical(self, x, y):
|
|
"""Fail unless floats x and y are identical, in the sense that:
|
|
(1) both x and y are nans, or
|
|
(2) both x and y are infinities, with the same sign, or
|
|
(3) both x and y are zeros, with the same sign, or
|
|
(4) x and y are both finite and nonzero, and x == y
|
|
|
|
"""
|
|
msg = 'floats {!r} and {!r} are not identical'
|
|
|
|
if math.isnan(x) or math.isnan(y):
|
|
if math.isnan(x) and math.isnan(y):
|
|
return
|
|
elif x == y:
|
|
if x != 0.0:
|
|
return
|
|
# both zero; check that signs match
|
|
elif math.copysign(1.0, x) == math.copysign(1.0, y):
|
|
return
|
|
else:
|
|
msg += ': zeros have different signs'
|
|
self.fail(msg.format(x, y))
|
|
|
|
def assertComplexIdentical(self, x, y):
|
|
"""Fail unless complex numbers x and y have equal values and signs.
|
|
|
|
In particular, if x and y both have real (or imaginary) part
|
|
zero, but the zeros have different signs, this test will fail.
|
|
|
|
"""
|
|
self.assertFloatIdentical(x.real, y.real)
|
|
self.assertFloatIdentical(x.imag, y.imag)
|
|
|
|
def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323,
|
|
msg=None):
|
|
"""Fail if the two floating-point numbers are not almost equal.
|
|
|
|
Determine whether floating-point values a and b are equal to within
|
|
a (small) rounding error. The default values for rel_err and
|
|
abs_err are chosen to be suitable for platforms where a float is
|
|
represented by an IEEE 754 double. They allow an error of between
|
|
9 and 19 ulps.
|
|
"""
|
|
|
|
# special values testing
|
|
if math.isnan(a):
|
|
if math.isnan(b):
|
|
return
|
|
self.fail(msg or '{!r} should be nan'.format(b))
|
|
|
|
if math.isinf(a):
|
|
if a == b:
|
|
return
|
|
self.fail(msg or 'finite result where infinity expected: '
|
|
'expected {!r}, got {!r}'.format(a, b))
|
|
|
|
# if both a and b are zero, check whether they have the same sign
|
|
# (in theory there are examples where it would be legitimate for a
|
|
# and b to have opposite signs; in practice these hardly ever
|
|
# occur).
|
|
if not a and not b:
|
|
if math.copysign(1., a) != math.copysign(1., b):
|
|
self.fail(msg or 'zero has wrong sign: expected {!r}, '
|
|
'got {!r}'.format(a, b))
|
|
|
|
# if a-b overflows, or b is infinite, return False. Again, in
|
|
# theory there are examples where a is within a few ulps of the
|
|
# max representable float, and then b could legitimately be
|
|
# infinite. In practice these examples are rare.
|
|
try:
|
|
absolute_error = abs(b-a)
|
|
except OverflowError:
|
|
pass
|
|
else:
|
|
# test passes if either the absolute error or the relative
|
|
# error is sufficiently small. The defaults amount to an
|
|
# error of between 9 ulps and 19 ulps on an IEEE-754 compliant
|
|
# machine.
|
|
if absolute_error <= max(abs_err, rel_err * abs(a)):
|
|
return
|
|
self.fail(msg or
|
|
'{!r} and {!r} are not sufficiently close'.format(a, b))
|
|
|
|
def test_constants(self):
|
|
e_expected = 2.71828182845904523536
|
|
pi_expected = 3.14159265358979323846
|
|
self.assertAlmostEqual(cmath.pi, pi_expected, places=9,
|
|
msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected))
|
|
self.assertAlmostEqual(cmath.e, e_expected, places=9,
|
|
msg="cmath.e is {}; should be {}".format(cmath.e, e_expected))
|
|
|
|
def test_infinity_and_nan_constants(self):
|
|
self.assertEqual(cmath.inf.real, math.inf)
|
|
self.assertEqual(cmath.inf.imag, 0.0)
|
|
self.assertEqual(cmath.infj.real, 0.0)
|
|
self.assertEqual(cmath.infj.imag, math.inf)
|
|
|
|
self.assertTrue(math.isnan(cmath.nan.real))
|
|
self.assertEqual(cmath.nan.imag, 0.0)
|
|
self.assertEqual(cmath.nanj.real, 0.0)
|
|
self.assertTrue(math.isnan(cmath.nanj.imag))
|
|
# Also check that the sign of all of these is positive:
|
|
self.assertEqual(math.copysign(1., cmath.nan.real), 1.)
|
|
self.assertEqual(math.copysign(1., cmath.nan.imag), 1.)
|
|
self.assertEqual(math.copysign(1., cmath.nanj.real), 1.)
|
|
self.assertEqual(math.copysign(1., cmath.nanj.imag), 1.)
|
|
|
|
# Check consistency with reprs.
|
|
self.assertEqual(repr(cmath.inf), "inf")
|
|
self.assertEqual(repr(cmath.infj), "infj")
|
|
self.assertEqual(repr(cmath.nan), "nan")
|
|
self.assertEqual(repr(cmath.nanj), "nanj")
|
|
|
|
def test_user_object(self):
|
|
# Test automatic calling of __complex__ and __float__ by cmath
|
|
# functions
|
|
|
|
# some random values to use as test values; we avoid values
|
|
# for which any of the functions in cmath is undefined
|
|
# (i.e. 0., 1., -1., 1j, -1j) or would cause overflow
|
|
cx_arg = 4.419414439 + 1.497100113j
|
|
flt_arg = -6.131677725
|
|
|
|
# a variety of non-complex numbers, used to check that
|
|
# non-complex return values from __complex__ give an error
|
|
non_complexes = ["not complex", 1, 5, 2., None,
|
|
object(), NotImplemented]
|
|
|
|
# Now we introduce a variety of classes whose instances might
|
|
# end up being passed to the cmath functions
|
|
|
|
# usual case: new-style class implementing __complex__
|
|
class MyComplex:
|
|
def __init__(self, value):
|
|
self.value = value
|
|
def __complex__(self):
|
|
return self.value
|
|
|
|
# classes for which __complex__ raises an exception
|
|
class SomeException(Exception):
|
|
pass
|
|
class MyComplexException:
|
|
def __complex__(self):
|
|
raise SomeException
|
|
|
|
# some classes not providing __float__ or __complex__
|
|
class NeitherComplexNorFloat(object):
|
|
pass
|
|
class Index:
|
|
def __int__(self): return 2
|
|
def __index__(self): return 2
|
|
class MyInt:
|
|
def __int__(self): return 2
|
|
|
|
# other possible combinations of __float__ and __complex__
|
|
# that should work
|
|
class FloatAndComplex:
|
|
def __float__(self):
|
|
return flt_arg
|
|
def __complex__(self):
|
|
return cx_arg
|
|
class JustFloat:
|
|
def __float__(self):
|
|
return flt_arg
|
|
|
|
for f in self.test_functions:
|
|
# usual usage
|
|
self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg))
|
|
# other combinations of __float__ and __complex__
|
|
self.assertEqual(f(FloatAndComplex()), f(cx_arg))
|
|
self.assertEqual(f(JustFloat()), f(flt_arg))
|
|
self.assertEqual(f(Index()), f(int(Index())))
|
|
# TypeError should be raised for classes not providing
|
|
# either __complex__ or __float__, even if they provide
|
|
# __int__ or __index__:
|
|
self.assertRaises(TypeError, f, NeitherComplexNorFloat())
|
|
self.assertRaises(TypeError, f, MyInt())
|
|
# non-complex return value from __complex__ -> TypeError
|
|
for bad_complex in non_complexes:
|
|
self.assertRaises(TypeError, f, MyComplex(bad_complex))
|
|
# exceptions in __complex__ should be propagated correctly
|
|
self.assertRaises(SomeException, f, MyComplexException())
|
|
|
|
def test_input_type(self):
|
|
# ints should be acceptable inputs to all cmath
|
|
# functions, by virtue of providing a __float__ method
|
|
for f in self.test_functions:
|
|
for arg in [2, 2.]:
|
|
self.assertEqual(f(arg), f(arg.__float__()))
|
|
|
|
# but strings should give a TypeError
|
|
for f in self.test_functions:
|
|
for arg in ["a", "long_string", "0", "1j", ""]:
|
|
self.assertRaises(TypeError, f, arg)
|
|
|
|
def test_cmath_matches_math(self):
|
|
# check that corresponding cmath and math functions are equal
|
|
# for floats in the appropriate range
|
|
|
|
# test_values in (0, 1)
|
|
test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99]
|
|
|
|
# test_values for functions defined on [-1., 1.]
|
|
unit_interval = test_values + [-x for x in test_values] + \
|
|
[0., 1., -1.]
|
|
|
|
# test_values for log, log10, sqrt
|
|
positive = test_values + [1.] + [1./x for x in test_values]
|
|
nonnegative = [0.] + positive
|
|
|
|
# test_values for functions defined on the whole real line
|
|
real_line = [0.] + positive + [-x for x in positive]
|
|
|
|
test_functions = {
|
|
'acos' : unit_interval,
|
|
'asin' : unit_interval,
|
|
'atan' : real_line,
|
|
'cos' : real_line,
|
|
'cosh' : real_line,
|
|
'exp' : real_line,
|
|
'log' : positive,
|
|
'log10' : positive,
|
|
'sin' : real_line,
|
|
'sinh' : real_line,
|
|
'sqrt' : nonnegative,
|
|
'tan' : real_line,
|
|
'tanh' : real_line}
|
|
|
|
for fn, values in test_functions.items():
|
|
float_fn = getattr(math, fn)
|
|
complex_fn = getattr(cmath, fn)
|
|
for v in values:
|
|
z = complex_fn(v)
|
|
self.rAssertAlmostEqual(float_fn(v), z.real)
|
|
self.assertEqual(0., z.imag)
|
|
|
|
# test two-argument version of log with various bases
|
|
for base in [0.5, 2., 10.]:
|
|
for v in positive:
|
|
z = cmath.log(v, base)
|
|
self.rAssertAlmostEqual(math.log(v, base), z.real)
|
|
self.assertEqual(0., z.imag)
|
|
|
|
@requires_IEEE_754
|
|
def test_specific_values(self):
|
|
# Some tests need to be skipped on ancient OS X versions.
|
|
# See issue #27953.
|
|
SKIP_ON_TIGER = {'tan0064'}
|
|
|
|
osx_version = None
|
|
if sys.platform == 'darwin':
|
|
version_txt = platform.mac_ver()[0]
|
|
try:
|
|
osx_version = tuple(map(int, version_txt.split('.')))
|
|
except ValueError:
|
|
pass
|
|
|
|
def rect_complex(z):
|
|
"""Wrapped version of rect that accepts a complex number instead of
|
|
two float arguments."""
|
|
return cmath.rect(z.real, z.imag)
|
|
|
|
def polar_complex(z):
|
|
"""Wrapped version of polar that returns a complex number instead of
|
|
two floats."""
|
|
return complex(*polar(z))
|
|
|
|
for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
|
|
arg = complex(ar, ai)
|
|
expected = complex(er, ei)
|
|
|
|
# Skip certain tests on OS X 10.4.
|
|
if osx_version is not None and osx_version < (10, 5):
|
|
if id in SKIP_ON_TIGER:
|
|
continue
|
|
|
|
if fn == 'rect':
|
|
function = rect_complex
|
|
elif fn == 'polar':
|
|
function = polar_complex
|
|
else:
|
|
function = getattr(cmath, fn)
|
|
if 'divide-by-zero' in flags or 'invalid' in flags:
|
|
try:
|
|
actual = function(arg)
|
|
except ValueError:
|
|
continue
|
|
else:
|
|
self.fail('ValueError not raised in test '
|
|
'{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
|
|
|
|
if 'overflow' in flags:
|
|
try:
|
|
actual = function(arg)
|
|
except OverflowError:
|
|
continue
|
|
else:
|
|
self.fail('OverflowError not raised in test '
|
|
'{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai))
|
|
|
|
actual = function(arg)
|
|
|
|
if 'ignore-real-sign' in flags:
|
|
actual = complex(abs(actual.real), actual.imag)
|
|
expected = complex(abs(expected.real), expected.imag)
|
|
if 'ignore-imag-sign' in flags:
|
|
actual = complex(actual.real, abs(actual.imag))
|
|
expected = complex(expected.real, abs(expected.imag))
|
|
|
|
# for the real part of the log function, we allow an
|
|
# absolute error of up to 2e-15.
|
|
if fn in ('log', 'log10'):
|
|
real_abs_err = 2e-15
|
|
else:
|
|
real_abs_err = 5e-323
|
|
|
|
error_message = (
|
|
'{}: {}(complex({!r}, {!r}))\n'
|
|
'Expected: complex({!r}, {!r})\n'
|
|
'Received: complex({!r}, {!r})\n'
|
|
'Received value insufficiently close to expected value.'
|
|
).format(id, fn, ar, ai,
|
|
expected.real, expected.imag,
|
|
actual.real, actual.imag)
|
|
self.rAssertAlmostEqual(expected.real, actual.real,
|
|
abs_err=real_abs_err,
|
|
msg=error_message)
|
|
self.rAssertAlmostEqual(expected.imag, actual.imag,
|
|
msg=error_message)
|
|
|
|
def check_polar(self, func):
|
|
def check(arg, expected):
|
|
got = func(arg)
|
|
for e, g in zip(expected, got):
|
|
self.rAssertAlmostEqual(e, g)
|
|
check(0, (0., 0.))
|
|
check(1, (1., 0.))
|
|
check(-1, (1., pi))
|
|
check(1j, (1., pi / 2))
|
|
check(-3j, (3., -pi / 2))
|
|
inf = float('inf')
|
|
check(complex(inf, 0), (inf, 0.))
|
|
check(complex(-inf, 0), (inf, pi))
|
|
check(complex(3, inf), (inf, pi / 2))
|
|
check(complex(5, -inf), (inf, -pi / 2))
|
|
check(complex(inf, inf), (inf, pi / 4))
|
|
check(complex(inf, -inf), (inf, -pi / 4))
|
|
check(complex(-inf, inf), (inf, 3 * pi / 4))
|
|
check(complex(-inf, -inf), (inf, -3 * pi / 4))
|
|
nan = float('nan')
|
|
check(complex(nan, 0), (nan, nan))
|
|
check(complex(0, nan), (nan, nan))
|
|
check(complex(nan, nan), (nan, nan))
|
|
check(complex(inf, nan), (inf, nan))
|
|
check(complex(-inf, nan), (inf, nan))
|
|
check(complex(nan, inf), (inf, nan))
|
|
check(complex(nan, -inf), (inf, nan))
|
|
|
|
def test_polar(self):
|
|
self.check_polar(polar)
|
|
|
|
@cpython_only
|
|
def test_polar_errno(self):
|
|
# Issue #24489: check a previously set C errno doesn't disturb polar()
|
|
_testcapi = import_helper.import_module('_testcapi')
|
|
def polar_with_errno_set(z):
|
|
_testcapi.set_errno(11)
|
|
try:
|
|
return polar(z)
|
|
finally:
|
|
_testcapi.set_errno(0)
|
|
self.check_polar(polar_with_errno_set)
|
|
|
|
def test_phase(self):
|
|
self.assertAlmostEqual(phase(0), 0.)
|
|
self.assertAlmostEqual(phase(1.), 0.)
|
|
self.assertAlmostEqual(phase(-1.), pi)
|
|
self.assertAlmostEqual(phase(-1.+1E-300j), pi)
|
|
self.assertAlmostEqual(phase(-1.-1E-300j), -pi)
|
|
self.assertAlmostEqual(phase(1j), pi/2)
|
|
self.assertAlmostEqual(phase(-1j), -pi/2)
|
|
|
|
# zeros
|
|
self.assertEqual(phase(complex(0.0, 0.0)), 0.0)
|
|
self.assertEqual(phase(complex(0.0, -0.0)), -0.0)
|
|
self.assertEqual(phase(complex(-0.0, 0.0)), pi)
|
|
self.assertEqual(phase(complex(-0.0, -0.0)), -pi)
|
|
|
|
# infinities
|
|
self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi)
|
|
self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi)
|
|
self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi)
|
|
self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2)
|
|
self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2)
|
|
self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2)
|
|
self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2)
|
|
self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4)
|
|
self.assertEqual(phase(complex(INF, -2.3)), -0.0)
|
|
self.assertEqual(phase(complex(INF, -0.0)), -0.0)
|
|
self.assertEqual(phase(complex(INF, 0.0)), 0.0)
|
|
self.assertEqual(phase(complex(INF, 2.3)), 0.0)
|
|
self.assertAlmostEqual(phase(complex(INF, INF)), pi/4)
|
|
self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2)
|
|
self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2)
|
|
self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2)
|
|
self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2)
|
|
self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi)
|
|
self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi)
|
|
self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi)
|
|
|
|
# real or imaginary part NaN
|
|
for z in complex_nans:
|
|
self.assertTrue(math.isnan(phase(z)))
|
|
|
|
def test_abs(self):
|
|
# zeros
|
|
for z in complex_zeros:
|
|
self.assertEqual(abs(z), 0.0)
|
|
|
|
# infinities
|
|
for z in complex_infinities:
|
|
self.assertEqual(abs(z), INF)
|
|
|
|
# real or imaginary part NaN
|
|
self.assertEqual(abs(complex(NAN, -INF)), INF)
|
|
self.assertTrue(math.isnan(abs(complex(NAN, -2.3))))
|
|
self.assertTrue(math.isnan(abs(complex(NAN, -0.0))))
|
|
self.assertTrue(math.isnan(abs(complex(NAN, 0.0))))
|
|
self.assertTrue(math.isnan(abs(complex(NAN, 2.3))))
|
|
self.assertEqual(abs(complex(NAN, INF)), INF)
|
|
self.assertEqual(abs(complex(-INF, NAN)), INF)
|
|
self.assertTrue(math.isnan(abs(complex(-2.3, NAN))))
|
|
self.assertTrue(math.isnan(abs(complex(-0.0, NAN))))
|
|
self.assertTrue(math.isnan(abs(complex(0.0, NAN))))
|
|
self.assertTrue(math.isnan(abs(complex(2.3, NAN))))
|
|
self.assertEqual(abs(complex(INF, NAN)), INF)
|
|
self.assertTrue(math.isnan(abs(complex(NAN, NAN))))
|
|
|
|
|
|
@requires_IEEE_754
|
|
def test_abs_overflows(self):
|
|
# result overflows
|
|
self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308))
|
|
|
|
def assertCEqual(self, a, b):
|
|
eps = 1E-7
|
|
if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps:
|
|
self.fail((a ,b))
|
|
|
|
def test_rect(self):
|
|
self.assertCEqual(rect(0, 0), (0, 0))
|
|
self.assertCEqual(rect(1, 0), (1., 0))
|
|
self.assertCEqual(rect(1, -pi), (-1., 0))
|
|
self.assertCEqual(rect(1, pi/2), (0, 1.))
|
|
self.assertCEqual(rect(1, -pi/2), (0, -1.))
|
|
|
|
def test_isfinite(self):
|
|
real_vals = [float('-inf'), -2.3, -0.0,
|
|
0.0, 2.3, float('inf'), float('nan')]
|
|
for x in real_vals:
|
|
for y in real_vals:
|
|
z = complex(x, y)
|
|
self.assertEqual(cmath.isfinite(z),
|
|
math.isfinite(x) and math.isfinite(y))
|
|
|
|
def test_isnan(self):
|
|
self.assertFalse(cmath.isnan(1))
|
|
self.assertFalse(cmath.isnan(1j))
|
|
self.assertFalse(cmath.isnan(INF))
|
|
self.assertTrue(cmath.isnan(NAN))
|
|
self.assertTrue(cmath.isnan(complex(NAN, 0)))
|
|
self.assertTrue(cmath.isnan(complex(0, NAN)))
|
|
self.assertTrue(cmath.isnan(complex(NAN, NAN)))
|
|
self.assertTrue(cmath.isnan(complex(NAN, INF)))
|
|
self.assertTrue(cmath.isnan(complex(INF, NAN)))
|
|
|
|
def test_isinf(self):
|
|
self.assertFalse(cmath.isinf(1))
|
|
self.assertFalse(cmath.isinf(1j))
|
|
self.assertFalse(cmath.isinf(NAN))
|
|
self.assertTrue(cmath.isinf(INF))
|
|
self.assertTrue(cmath.isinf(complex(INF, 0)))
|
|
self.assertTrue(cmath.isinf(complex(0, INF)))
|
|
self.assertTrue(cmath.isinf(complex(INF, INF)))
|
|
self.assertTrue(cmath.isinf(complex(NAN, INF)))
|
|
self.assertTrue(cmath.isinf(complex(INF, NAN)))
|
|
|
|
@requires_IEEE_754
|
|
def testTanhSign(self):
|
|
for z in complex_zeros:
|
|
self.assertComplexIdentical(cmath.tanh(z), z)
|
|
|
|
# The algorithm used for atan and atanh makes use of the system
|
|
# log1p function; If that system function doesn't respect the sign
|
|
# of zero, then atan and atanh will also have difficulties with
|
|
# the sign of complex zeros.
|
|
@requires_IEEE_754
|
|
def testAtanSign(self):
|
|
for z in complex_zeros:
|
|
self.assertComplexIdentical(cmath.atan(z), z)
|
|
|
|
@requires_IEEE_754
|
|
def testAtanhSign(self):
|
|
for z in complex_zeros:
|
|
self.assertComplexIdentical(cmath.atanh(z), z)
|
|
|
|
|
|
class IsCloseTests(test_math.IsCloseTests):
|
|
isclose = cmath.isclose
|
|
|
|
def test_reject_complex_tolerances(self):
|
|
with self.assertRaises(TypeError):
|
|
self.isclose(1j, 1j, rel_tol=1j)
|
|
|
|
with self.assertRaises(TypeError):
|
|
self.isclose(1j, 1j, abs_tol=1j)
|
|
|
|
with self.assertRaises(TypeError):
|
|
self.isclose(1j, 1j, rel_tol=1j, abs_tol=1j)
|
|
|
|
def test_complex_values(self):
|
|
# test complex values that are close to within 12 decimal places
|
|
complex_examples = [(1.0+1.0j, 1.000000000001+1.0j),
|
|
(1.0+1.0j, 1.0+1.000000000001j),
|
|
(-1.0+1.0j, -1.000000000001+1.0j),
|
|
(1.0-1.0j, 1.0-0.999999999999j),
|
|
]
|
|
|
|
self.assertAllClose(complex_examples, rel_tol=1e-12)
|
|
self.assertAllNotClose(complex_examples, rel_tol=1e-13)
|
|
|
|
def test_complex_near_zero(self):
|
|
# test values near zero that are near to within three decimal places
|
|
near_zero_examples = [(0.001j, 0),
|
|
(0.001, 0),
|
|
(0.001+0.001j, 0),
|
|
(-0.001+0.001j, 0),
|
|
(0.001-0.001j, 0),
|
|
(-0.001-0.001j, 0),
|
|
]
|
|
|
|
self.assertAllClose(near_zero_examples, abs_tol=1.5e-03)
|
|
self.assertAllNotClose(near_zero_examples, abs_tol=0.5e-03)
|
|
|
|
self.assertIsClose(0.001-0.001j, 0.001+0.001j, abs_tol=2e-03)
|
|
self.assertIsNotClose(0.001-0.001j, 0.001+0.001j, abs_tol=1e-03)
|
|
|
|
def test_complex_special(self):
|
|
self.assertIsNotClose(INF, INF*1j)
|
|
self.assertIsNotClose(INF*1j, INF)
|
|
self.assertIsNotClose(INF, -INF)
|
|
self.assertIsNotClose(-INF, INF)
|
|
self.assertIsNotClose(0, INF)
|
|
self.assertIsNotClose(0, INF*1j)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|