mirror of
https://github.com/python/cpython.git
synced 2025-01-14 04:25:54 +08:00
3070 lines
92 KiB
C
3070 lines
92 KiB
C
|
|
/* Dictionary object implementation using a hash table */
|
|
|
|
/* The distribution includes a separate file, Objects/dictnotes.txt,
|
|
describing explorations into dictionary design and optimization.
|
|
It covers typical dictionary use patterns, the parameters for
|
|
tuning dictionaries, and several ideas for possible optimizations.
|
|
*/
|
|
|
|
#include "Python.h"
|
|
#include "stringlib/eq.h"
|
|
|
|
|
|
/* Set a key error with the specified argument, wrapping it in a
|
|
* tuple automatically so that tuple keys are not unpacked as the
|
|
* exception arguments. */
|
|
static void
|
|
set_key_error(PyObject *arg)
|
|
{
|
|
PyObject *tup;
|
|
tup = PyTuple_Pack(1, arg);
|
|
if (!tup)
|
|
return; /* caller will expect error to be set anyway */
|
|
PyErr_SetObject(PyExc_KeyError, tup);
|
|
Py_DECREF(tup);
|
|
}
|
|
|
|
/* Define this out if you don't want conversion statistics on exit. */
|
|
#undef SHOW_CONVERSION_COUNTS
|
|
|
|
/* See large comment block below. This must be >= 1. */
|
|
#define PERTURB_SHIFT 5
|
|
|
|
/*
|
|
Major subtleties ahead: Most hash schemes depend on having a "good" hash
|
|
function, in the sense of simulating randomness. Python doesn't: its most
|
|
important hash functions (for strings and ints) are very regular in common
|
|
cases:
|
|
|
|
>>> map(hash, (0, 1, 2, 3))
|
|
[0, 1, 2, 3]
|
|
>>> map(hash, ("namea", "nameb", "namec", "named"))
|
|
[-1658398457, -1658398460, -1658398459, -1658398462]
|
|
>>>
|
|
|
|
This isn't necessarily bad! To the contrary, in a table of size 2**i, taking
|
|
the low-order i bits as the initial table index is extremely fast, and there
|
|
are no collisions at all for dicts indexed by a contiguous range of ints.
|
|
The same is approximately true when keys are "consecutive" strings. So this
|
|
gives better-than-random behavior in common cases, and that's very desirable.
|
|
|
|
OTOH, when collisions occur, the tendency to fill contiguous slices of the
|
|
hash table makes a good collision resolution strategy crucial. Taking only
|
|
the last i bits of the hash code is also vulnerable: for example, consider
|
|
the list [i << 16 for i in range(20000)] as a set of keys. Since ints are
|
|
their own hash codes, and this fits in a dict of size 2**15, the last 15 bits
|
|
of every hash code are all 0: they *all* map to the same table index.
|
|
|
|
But catering to unusual cases should not slow the usual ones, so we just take
|
|
the last i bits anyway. It's up to collision resolution to do the rest. If
|
|
we *usually* find the key we're looking for on the first try (and, it turns
|
|
out, we usually do -- the table load factor is kept under 2/3, so the odds
|
|
are solidly in our favor), then it makes best sense to keep the initial index
|
|
computation dirt cheap.
|
|
|
|
The first half of collision resolution is to visit table indices via this
|
|
recurrence:
|
|
|
|
j = ((5*j) + 1) mod 2**i
|
|
|
|
For any initial j in range(2**i), repeating that 2**i times generates each
|
|
int in range(2**i) exactly once (see any text on random-number generation for
|
|
proof). By itself, this doesn't help much: like linear probing (setting
|
|
j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed
|
|
order. This would be bad, except that's not the only thing we do, and it's
|
|
actually *good* in the common cases where hash keys are consecutive. In an
|
|
example that's really too small to make this entirely clear, for a table of
|
|
size 2**3 the order of indices is:
|
|
|
|
0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating]
|
|
|
|
If two things come in at index 5, the first place we look after is index 2,
|
|
not 6, so if another comes in at index 6 the collision at 5 didn't hurt it.
|
|
Linear probing is deadly in this case because there the fixed probe order
|
|
is the *same* as the order consecutive keys are likely to arrive. But it's
|
|
extremely unlikely hash codes will follow a 5*j+1 recurrence by accident,
|
|
and certain that consecutive hash codes do not.
|
|
|
|
The other half of the strategy is to get the other bits of the hash code
|
|
into play. This is done by initializing a (unsigned) vrbl "perturb" to the
|
|
full hash code, and changing the recurrence to:
|
|
|
|
j = (5*j) + 1 + perturb;
|
|
perturb >>= PERTURB_SHIFT;
|
|
use j % 2**i as the next table index;
|
|
|
|
Now the probe sequence depends (eventually) on every bit in the hash code,
|
|
and the pseudo-scrambling property of recurring on 5*j+1 is more valuable,
|
|
because it quickly magnifies small differences in the bits that didn't affect
|
|
the initial index. Note that because perturb is unsigned, if the recurrence
|
|
is executed often enough perturb eventually becomes and remains 0. At that
|
|
point (very rarely reached) the recurrence is on (just) 5*j+1 again, and
|
|
that's certain to find an empty slot eventually (since it generates every int
|
|
in range(2**i), and we make sure there's always at least one empty slot).
|
|
|
|
Selecting a good value for PERTURB_SHIFT is a balancing act. You want it
|
|
small so that the high bits of the hash code continue to affect the probe
|
|
sequence across iterations; but you want it large so that in really bad cases
|
|
the high-order hash bits have an effect on early iterations. 5 was "the
|
|
best" in minimizing total collisions across experiments Tim Peters ran (on
|
|
both normal and pathological cases), but 4 and 6 weren't significantly worse.
|
|
|
|
Historical: Reimer Behrends contributed the idea of using a polynomial-based
|
|
approach, using repeated multiplication by x in GF(2**n) where an irreducible
|
|
polynomial for each table size was chosen such that x was a primitive root.
|
|
Christian Tismer later extended that to use division by x instead, as an
|
|
efficient way to get the high bits of the hash code into play. This scheme
|
|
also gave excellent collision statistics, but was more expensive: two
|
|
if-tests were required inside the loop; computing "the next" index took about
|
|
the same number of operations but without as much potential parallelism
|
|
(e.g., computing 5*j can go on at the same time as computing 1+perturb in the
|
|
above, and then shifting perturb can be done while the table index is being
|
|
masked); and the PyDictObject struct required a member to hold the table's
|
|
polynomial. In Tim's experiments the current scheme ran faster, produced
|
|
equally good collision statistics, needed less code & used less memory.
|
|
|
|
*/
|
|
|
|
/* Object used as dummy key to fill deleted entries */
|
|
static PyObject *dummy = NULL; /* Initialized by first call to newPyDictObject() */
|
|
|
|
#ifdef Py_REF_DEBUG
|
|
PyObject *
|
|
_PyDict_Dummy(void)
|
|
{
|
|
return dummy;
|
|
}
|
|
#endif
|
|
|
|
/* forward declarations */
|
|
static PyDictEntry *
|
|
lookdict_unicode(PyDictObject *mp, PyObject *key, Py_hash_t hash);
|
|
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
static long created = 0L;
|
|
static long converted = 0L;
|
|
|
|
static void
|
|
show_counts(void)
|
|
{
|
|
fprintf(stderr, "created %ld string dicts\n", created);
|
|
fprintf(stderr, "converted %ld to normal dicts\n", converted);
|
|
fprintf(stderr, "%.2f%% conversion rate\n", (100.0*converted)/created);
|
|
}
|
|
#endif
|
|
|
|
/* Debug statistic to compare allocations with reuse through the free list */
|
|
#undef SHOW_ALLOC_COUNT
|
|
#ifdef SHOW_ALLOC_COUNT
|
|
static size_t count_alloc = 0;
|
|
static size_t count_reuse = 0;
|
|
|
|
static void
|
|
show_alloc(void)
|
|
{
|
|
fprintf(stderr, "Dict allocations: %" PY_FORMAT_SIZE_T "d\n",
|
|
count_alloc);
|
|
fprintf(stderr, "Dict reuse through freelist: %" PY_FORMAT_SIZE_T
|
|
"d\n", count_reuse);
|
|
fprintf(stderr, "%.2f%% reuse rate\n\n",
|
|
(100.0*count_reuse/(count_alloc+count_reuse)));
|
|
}
|
|
#endif
|
|
|
|
/* Debug statistic to count GC tracking of dicts */
|
|
#ifdef SHOW_TRACK_COUNT
|
|
static Py_ssize_t count_untracked = 0;
|
|
static Py_ssize_t count_tracked = 0;
|
|
|
|
static void
|
|
show_track(void)
|
|
{
|
|
fprintf(stderr, "Dicts created: %" PY_FORMAT_SIZE_T "d\n",
|
|
count_tracked + count_untracked);
|
|
fprintf(stderr, "Dicts tracked by the GC: %" PY_FORMAT_SIZE_T
|
|
"d\n", count_tracked);
|
|
fprintf(stderr, "%.2f%% dict tracking rate\n\n",
|
|
(100.0*count_tracked/(count_untracked+count_tracked)));
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Initialization macros.
|
|
There are two ways to create a dict: PyDict_New() is the main C API
|
|
function, and the tp_new slot maps to dict_new(). In the latter case we
|
|
can save a little time over what PyDict_New does because it's guaranteed
|
|
that the PyDictObject struct is already zeroed out.
|
|
Everyone except dict_new() should use EMPTY_TO_MINSIZE (unless they have
|
|
an excellent reason not to).
|
|
*/
|
|
|
|
#define INIT_NONZERO_DICT_SLOTS(mp) do { \
|
|
(mp)->ma_table = (mp)->ma_smalltable; \
|
|
(mp)->ma_mask = PyDict_MINSIZE - 1; \
|
|
} while(0)
|
|
|
|
#define EMPTY_TO_MINSIZE(mp) do { \
|
|
memset((mp)->ma_smalltable, 0, sizeof((mp)->ma_smalltable)); \
|
|
(mp)->ma_used = (mp)->ma_fill = 0; \
|
|
INIT_NONZERO_DICT_SLOTS(mp); \
|
|
} while(0)
|
|
|
|
/* Dictionary reuse scheme to save calls to malloc, free, and memset */
|
|
#ifndef PyDict_MAXFREELIST
|
|
#define PyDict_MAXFREELIST 80
|
|
#endif
|
|
static PyDictObject *free_list[PyDict_MAXFREELIST];
|
|
static int numfree = 0;
|
|
|
|
int
|
|
PyDict_ClearFreeList(void)
|
|
{
|
|
PyDictObject *op;
|
|
int ret = numfree;
|
|
while (numfree) {
|
|
op = free_list[--numfree];
|
|
assert(PyDict_CheckExact(op));
|
|
PyObject_GC_Del(op);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
PyDict_Fini(void)
|
|
{
|
|
PyDict_ClearFreeList();
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_New(void)
|
|
{
|
|
register PyDictObject *mp;
|
|
if (dummy == NULL) { /* Auto-initialize dummy */
|
|
dummy = PyUnicode_FromString("<dummy key>");
|
|
if (dummy == NULL)
|
|
return NULL;
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
Py_AtExit(show_counts);
|
|
#endif
|
|
#ifdef SHOW_ALLOC_COUNT
|
|
Py_AtExit(show_alloc);
|
|
#endif
|
|
#ifdef SHOW_TRACK_COUNT
|
|
Py_AtExit(show_track);
|
|
#endif
|
|
}
|
|
if (numfree) {
|
|
mp = free_list[--numfree];
|
|
assert (mp != NULL);
|
|
assert (Py_TYPE(mp) == &PyDict_Type);
|
|
_Py_NewReference((PyObject *)mp);
|
|
if (mp->ma_fill) {
|
|
EMPTY_TO_MINSIZE(mp);
|
|
} else {
|
|
/* At least set ma_table and ma_mask; these are wrong
|
|
if an empty but presized dict is added to freelist */
|
|
INIT_NONZERO_DICT_SLOTS(mp);
|
|
}
|
|
assert (mp->ma_used == 0);
|
|
assert (mp->ma_table == mp->ma_smalltable);
|
|
assert (mp->ma_mask == PyDict_MINSIZE - 1);
|
|
#ifdef SHOW_ALLOC_COUNT
|
|
count_reuse++;
|
|
#endif
|
|
} else {
|
|
mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
|
|
if (mp == NULL)
|
|
return NULL;
|
|
EMPTY_TO_MINSIZE(mp);
|
|
#ifdef SHOW_ALLOC_COUNT
|
|
count_alloc++;
|
|
#endif
|
|
}
|
|
mp->ma_lookup = lookdict_unicode;
|
|
#ifdef SHOW_TRACK_COUNT
|
|
count_untracked++;
|
|
#endif
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
++created;
|
|
#endif
|
|
return (PyObject *)mp;
|
|
}
|
|
|
|
/*
|
|
The basic lookup function used by all operations.
|
|
This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4.
|
|
Open addressing is preferred over chaining since the link overhead for
|
|
chaining would be substantial (100% with typical malloc overhead).
|
|
|
|
The initial probe index is computed as hash mod the table size. Subsequent
|
|
probe indices are computed as explained earlier.
|
|
|
|
All arithmetic on hash should ignore overflow.
|
|
|
|
The details in this version are due to Tim Peters, building on many past
|
|
contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and
|
|
Christian Tismer.
|
|
|
|
lookdict() is general-purpose, and may return NULL if (and only if) a
|
|
comparison raises an exception (this was new in Python 2.5).
|
|
lookdict_unicode() below is specialized to string keys, comparison of which can
|
|
never raise an exception; that function can never return NULL. For both, when
|
|
the key isn't found a PyDictEntry* is returned for which the me_value field is
|
|
NULL; this is the slot in the dict at which the key would have been found, and
|
|
the caller can (if it wishes) add the <key, value> pair to the returned
|
|
PyDictEntry*.
|
|
*/
|
|
static PyDictEntry *
|
|
lookdict(PyDictObject *mp, PyObject *key, register Py_hash_t hash)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register PyDictEntry *freeslot;
|
|
register size_t mask = (size_t)mp->ma_mask;
|
|
PyDictEntry *ep0 = mp->ma_table;
|
|
register PyDictEntry *ep;
|
|
register int cmp;
|
|
PyObject *startkey;
|
|
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
if (ep->me_key == NULL || ep->me_key == key)
|
|
return ep;
|
|
|
|
if (ep->me_key == dummy)
|
|
freeslot = ep;
|
|
else {
|
|
if (ep->me_hash == hash) {
|
|
startkey = ep->me_key;
|
|
Py_INCREF(startkey);
|
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
if (ep0 == mp->ma_table && ep->me_key == startkey) {
|
|
if (cmp > 0)
|
|
return ep;
|
|
}
|
|
else {
|
|
/* The compare did major nasty stuff to the
|
|
* dict: start over.
|
|
* XXX A clever adversary could prevent this
|
|
* XXX from terminating.
|
|
*/
|
|
return lookdict(mp, key, hash);
|
|
}
|
|
}
|
|
freeslot = NULL;
|
|
}
|
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the
|
|
least likely outcome, so test for that last. */
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
if (ep->me_key == NULL)
|
|
return freeslot == NULL ? ep : freeslot;
|
|
if (ep->me_key == key)
|
|
return ep;
|
|
if (ep->me_hash == hash && ep->me_key != dummy) {
|
|
startkey = ep->me_key;
|
|
Py_INCREF(startkey);
|
|
cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
|
|
Py_DECREF(startkey);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
if (ep0 == mp->ma_table && ep->me_key == startkey) {
|
|
if (cmp > 0)
|
|
return ep;
|
|
}
|
|
else {
|
|
/* The compare did major nasty stuff to the
|
|
* dict: start over.
|
|
* XXX A clever adversary could prevent this
|
|
* XXX from terminating.
|
|
*/
|
|
return lookdict(mp, key, hash);
|
|
}
|
|
}
|
|
else if (ep->me_key == dummy && freeslot == NULL)
|
|
freeslot = ep;
|
|
}
|
|
assert(0); /* NOT REACHED */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Hacked up version of lookdict which can assume keys are always
|
|
* unicodes; this assumption allows testing for errors during
|
|
* PyObject_RichCompareBool() to be dropped; unicode-unicode
|
|
* comparisons never raise exceptions. This also means we don't need
|
|
* to go through PyObject_RichCompareBool(); we can always use
|
|
* unicode_eq() directly.
|
|
*
|
|
* This is valuable because dicts with only unicode keys are very common.
|
|
*/
|
|
static PyDictEntry *
|
|
lookdict_unicode(PyDictObject *mp, PyObject *key, register Py_hash_t hash)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register PyDictEntry *freeslot;
|
|
register size_t mask = (size_t)mp->ma_mask;
|
|
PyDictEntry *ep0 = mp->ma_table;
|
|
register PyDictEntry *ep;
|
|
|
|
/* Make sure this function doesn't have to handle non-unicode keys,
|
|
including subclasses of str; e.g., one reason to subclass
|
|
unicodes is to override __eq__, and for speed we don't cater to
|
|
that here. */
|
|
if (!PyUnicode_CheckExact(key)) {
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
++converted;
|
|
#endif
|
|
mp->ma_lookup = lookdict;
|
|
return lookdict(mp, key, hash);
|
|
}
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
if (ep->me_key == NULL || ep->me_key == key)
|
|
return ep;
|
|
if (ep->me_key == dummy)
|
|
freeslot = ep;
|
|
else {
|
|
if (ep->me_hash == hash && unicode_eq(ep->me_key, key))
|
|
return ep;
|
|
freeslot = NULL;
|
|
}
|
|
|
|
/* In the loop, me_key == dummy is by far (factor of 100s) the
|
|
least likely outcome, so test for that last. */
|
|
for (perturb = hash; ; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
if (ep->me_key == NULL)
|
|
return freeslot == NULL ? ep : freeslot;
|
|
if (ep->me_key == key
|
|
|| (ep->me_hash == hash
|
|
&& ep->me_key != dummy
|
|
&& unicode_eq(ep->me_key, key)))
|
|
return ep;
|
|
if (ep->me_key == dummy && freeslot == NULL)
|
|
freeslot = ep;
|
|
}
|
|
assert(0); /* NOT REACHED */
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyDict_HasOnlyStringKeys(PyObject *dict)
|
|
{
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key, *value;
|
|
assert(PyDict_Check(dict));
|
|
/* Shortcut */
|
|
if (((PyDictObject *)dict)->ma_lookup == lookdict_unicode)
|
|
return 1;
|
|
while (PyDict_Next(dict, &pos, &key, &value))
|
|
if (!PyUnicode_Check(key))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
#ifdef SHOW_TRACK_COUNT
|
|
#define INCREASE_TRACK_COUNT \
|
|
(count_tracked++, count_untracked--);
|
|
#define DECREASE_TRACK_COUNT \
|
|
(count_tracked--, count_untracked++);
|
|
#else
|
|
#define INCREASE_TRACK_COUNT
|
|
#define DECREASE_TRACK_COUNT
|
|
#endif
|
|
|
|
#define MAINTAIN_TRACKING(mp, key, value) \
|
|
do { \
|
|
if (!_PyObject_GC_IS_TRACKED(mp)) { \
|
|
if (_PyObject_GC_MAY_BE_TRACKED(key) || \
|
|
_PyObject_GC_MAY_BE_TRACKED(value)) { \
|
|
_PyObject_GC_TRACK(mp); \
|
|
INCREASE_TRACK_COUNT \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
void
|
|
_PyDict_MaybeUntrack(PyObject *op)
|
|
{
|
|
PyDictObject *mp;
|
|
PyObject *value;
|
|
Py_ssize_t mask, i;
|
|
PyDictEntry *ep;
|
|
|
|
if (!PyDict_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op))
|
|
return;
|
|
|
|
mp = (PyDictObject *) op;
|
|
ep = mp->ma_table;
|
|
mask = mp->ma_mask;
|
|
for (i = 0; i <= mask; i++) {
|
|
if ((value = ep[i].me_value) == NULL)
|
|
continue;
|
|
if (_PyObject_GC_MAY_BE_TRACKED(value) ||
|
|
_PyObject_GC_MAY_BE_TRACKED(ep[i].me_key))
|
|
return;
|
|
}
|
|
DECREASE_TRACK_COUNT
|
|
_PyObject_GC_UNTRACK(op);
|
|
}
|
|
|
|
|
|
/*
|
|
Internal routine to insert a new item into the table.
|
|
Used both by the internal resize routine and by the public insert routine.
|
|
Eats a reference to key and one to value.
|
|
Returns -1 if an error occurred, or 0 on success.
|
|
*/
|
|
static int
|
|
insertdict(register PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value)
|
|
{
|
|
PyObject *old_value;
|
|
register PyDictEntry *ep;
|
|
typedef PyDictEntry *(*lookupfunc)(PyDictObject *, PyObject *, Py_hash_t);
|
|
|
|
assert(mp->ma_lookup != NULL);
|
|
ep = mp->ma_lookup(mp, key, hash);
|
|
if (ep == NULL) {
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
return -1;
|
|
}
|
|
MAINTAIN_TRACKING(mp, key, value);
|
|
if (ep->me_value != NULL) {
|
|
old_value = ep->me_value;
|
|
ep->me_value = value;
|
|
Py_DECREF(old_value); /* which **CAN** re-enter */
|
|
Py_DECREF(key);
|
|
}
|
|
else {
|
|
if (ep->me_key == NULL)
|
|
mp->ma_fill++;
|
|
else {
|
|
assert(ep->me_key == dummy);
|
|
Py_DECREF(dummy);
|
|
}
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
ep->me_value = value;
|
|
mp->ma_used++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
Internal routine used by dictresize() to insert an item which is
|
|
known to be absent from the dict. This routine also assumes that
|
|
the dict contains no deleted entries. Besides the performance benefit,
|
|
using insertdict() in dictresize() is dangerous (SF bug #1456209).
|
|
Note that no refcounts are changed by this routine; if needed, the caller
|
|
is responsible for incref'ing `key` and `value`.
|
|
*/
|
|
static void
|
|
insertdict_clean(register PyDictObject *mp, PyObject *key, Py_hash_t hash,
|
|
PyObject *value)
|
|
{
|
|
register size_t i;
|
|
register size_t perturb;
|
|
register size_t mask = (size_t)mp->ma_mask;
|
|
PyDictEntry *ep0 = mp->ma_table;
|
|
register PyDictEntry *ep;
|
|
|
|
MAINTAIN_TRACKING(mp, key, value);
|
|
i = (size_t)hash & mask;
|
|
ep = &ep0[i];
|
|
for (perturb = hash; ep->me_key != NULL; perturb >>= PERTURB_SHIFT) {
|
|
i = (i << 2) + i + perturb + 1;
|
|
ep = &ep0[i & mask];
|
|
}
|
|
assert(ep->me_value == NULL);
|
|
mp->ma_fill++;
|
|
ep->me_key = key;
|
|
ep->me_hash = hash;
|
|
ep->me_value = value;
|
|
mp->ma_used++;
|
|
}
|
|
|
|
/*
|
|
Restructure the table by allocating a new table and reinserting all
|
|
items again. When entries have been deleted, the new table may
|
|
actually be smaller than the old one.
|
|
*/
|
|
static int
|
|
dictresize(PyDictObject *mp, Py_ssize_t minused)
|
|
{
|
|
Py_ssize_t newsize;
|
|
PyDictEntry *oldtable, *newtable, *ep;
|
|
Py_ssize_t i;
|
|
int is_oldtable_malloced;
|
|
PyDictEntry small_copy[PyDict_MINSIZE];
|
|
|
|
assert(minused >= 0);
|
|
|
|
/* Find the smallest table size > minused. */
|
|
for (newsize = PyDict_MINSIZE;
|
|
newsize <= minused && newsize > 0;
|
|
newsize <<= 1)
|
|
;
|
|
if (newsize <= 0) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
|
|
/* Get space for a new table. */
|
|
oldtable = mp->ma_table;
|
|
assert(oldtable != NULL);
|
|
is_oldtable_malloced = oldtable != mp->ma_smalltable;
|
|
|
|
if (newsize == PyDict_MINSIZE) {
|
|
/* A large table is shrinking, or we can't get any smaller. */
|
|
newtable = mp->ma_smalltable;
|
|
if (newtable == oldtable) {
|
|
if (mp->ma_fill == mp->ma_used) {
|
|
/* No dummies, so no point doing anything. */
|
|
return 0;
|
|
}
|
|
/* We're not going to resize it, but rebuild the
|
|
table anyway to purge old dummy entries.
|
|
Subtle: This is *necessary* if fill==size,
|
|
as lookdict needs at least one virgin slot to
|
|
terminate failing searches. If fill < size, it's
|
|
merely desirable, as dummies slow searches. */
|
|
assert(mp->ma_fill > mp->ma_used);
|
|
memcpy(small_copy, oldtable, sizeof(small_copy));
|
|
oldtable = small_copy;
|
|
}
|
|
}
|
|
else {
|
|
newtable = PyMem_NEW(PyDictEntry, newsize);
|
|
if (newtable == NULL) {
|
|
PyErr_NoMemory();
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Make the dict empty, using the new table. */
|
|
assert(newtable != oldtable);
|
|
mp->ma_table = newtable;
|
|
mp->ma_mask = newsize - 1;
|
|
memset(newtable, 0, sizeof(PyDictEntry) * newsize);
|
|
mp->ma_used = 0;
|
|
i = mp->ma_fill;
|
|
mp->ma_fill = 0;
|
|
|
|
/* Copy the data over; this is refcount-neutral for active entries;
|
|
dummy entries aren't copied over, of course */
|
|
for (ep = oldtable; i > 0; ep++) {
|
|
if (ep->me_value != NULL) { /* active entry */
|
|
--i;
|
|
insertdict_clean(mp, ep->me_key, ep->me_hash, ep->me_value);
|
|
}
|
|
else if (ep->me_key != NULL) { /* dummy entry */
|
|
--i;
|
|
assert(ep->me_key == dummy);
|
|
Py_DECREF(ep->me_key);
|
|
}
|
|
/* else key == value == NULL: nothing to do */
|
|
}
|
|
|
|
if (is_oldtable_malloced)
|
|
PyMem_DEL(oldtable);
|
|
return 0;
|
|
}
|
|
|
|
/* Create a new dictionary pre-sized to hold an estimated number of elements.
|
|
Underestimates are okay because the dictionary will resize as necessary.
|
|
Overestimates just mean the dictionary will be more sparse than usual.
|
|
*/
|
|
|
|
PyObject *
|
|
_PyDict_NewPresized(Py_ssize_t minused)
|
|
{
|
|
PyObject *op = PyDict_New();
|
|
|
|
if (minused>5 && op != NULL && dictresize((PyDictObject *)op, minused) == -1) {
|
|
Py_DECREF(op);
|
|
return NULL;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
/* Note that, for historical reasons, PyDict_GetItem() suppresses all errors
|
|
* that may occur (originally dicts supported only string keys, and exceptions
|
|
* weren't possible). So, while the original intent was that a NULL return
|
|
* meant the key wasn't present, in reality it can mean that, or that an error
|
|
* (suppressed) occurred while computing the key's hash, or that some error
|
|
* (suppressed) occurred when comparing keys in the dict's internal probe
|
|
* sequence. A nasty example of the latter is when a Python-coded comparison
|
|
* function hits a stack-depth error, which can cause this to return NULL
|
|
* even if the key is present.
|
|
*/
|
|
PyObject *
|
|
PyDict_GetItem(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictEntry *ep;
|
|
PyThreadState *tstate;
|
|
if (!PyDict_Check(op))
|
|
return NULL;
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1)
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1) {
|
|
PyErr_Clear();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* We can arrive here with a NULL tstate during initialization: try
|
|
running "python -Wi" for an example related to string interning.
|
|
Let's just hope that no exception occurs then... This must be
|
|
_PyThreadState_Current and not PyThreadState_GET() because in debug
|
|
mode, the latter complains if tstate is NULL. */
|
|
tstate = (PyThreadState*)_Py_atomic_load_relaxed(
|
|
&_PyThreadState_Current);
|
|
if (tstate != NULL && tstate->curexc_type != NULL) {
|
|
/* preserve the existing exception */
|
|
PyObject *err_type, *err_value, *err_tb;
|
|
PyErr_Fetch(&err_type, &err_value, &err_tb);
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
/* ignore errors */
|
|
PyErr_Restore(err_type, err_value, err_tb);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
}
|
|
else {
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL) {
|
|
PyErr_Clear();
|
|
return NULL;
|
|
}
|
|
}
|
|
return ep->me_value;
|
|
}
|
|
|
|
/* Variant of PyDict_GetItem() that doesn't suppress exceptions.
|
|
This returns NULL *with* an exception set if an exception occurred.
|
|
It returns NULL *without* an exception set if the key wasn't present.
|
|
*/
|
|
PyObject *
|
|
PyDict_GetItemWithError(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictObject*mp = (PyDictObject *)op;
|
|
PyDictEntry *ep;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1)
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
return ep->me_value;
|
|
}
|
|
|
|
/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
|
|
* dictionary if it's merely replacing the value for an existing key.
|
|
* This means that it's safe to loop over a dictionary with PyDict_Next()
|
|
* and occasionally replace a value -- but you can't insert new keys or
|
|
* remove them.
|
|
*/
|
|
int
|
|
PyDict_SetItem(register PyObject *op, PyObject *key, PyObject *value)
|
|
{
|
|
register PyDictObject *mp;
|
|
register Py_hash_t hash;
|
|
register Py_ssize_t n_used;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
assert(key);
|
|
assert(value);
|
|
mp = (PyDictObject *)op;
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1)
|
|
{
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
assert(mp->ma_fill <= mp->ma_mask); /* at least one empty slot */
|
|
n_used = mp->ma_used;
|
|
Py_INCREF(value);
|
|
Py_INCREF(key);
|
|
if (insertdict(mp, key, hash, value) != 0)
|
|
return -1;
|
|
/* If we added a key, we can safely resize. Otherwise just return!
|
|
* If fill >= 2/3 size, adjust size. Normally, this doubles or
|
|
* quaduples the size, but it's also possible for the dict to shrink
|
|
* (if ma_fill is much larger than ma_used, meaning a lot of dict
|
|
* keys have been * deleted).
|
|
*
|
|
* Quadrupling the size improves average dictionary sparseness
|
|
* (reducing collisions) at the cost of some memory and iteration
|
|
* speed (which loops over every possible entry). It also halves
|
|
* the number of expensive resize operations in a growing dictionary.
|
|
*
|
|
* Very large dictionaries (over 50K items) use doubling instead.
|
|
* This may help applications with severe memory constraints.
|
|
*/
|
|
if (!(mp->ma_used > n_used && mp->ma_fill*3 >= (mp->ma_mask+1)*2))
|
|
return 0;
|
|
return dictresize(mp, (mp->ma_used > 50000 ? 2 : 4) * mp->ma_used);
|
|
}
|
|
|
|
int
|
|
PyDict_DelItem(PyObject *op, PyObject *key)
|
|
{
|
|
register PyDictObject *mp;
|
|
register Py_hash_t hash;
|
|
register PyDictEntry *ep;
|
|
PyObject *old_value, *old_key;
|
|
|
|
if (!PyDict_Check(op)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
assert(key);
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
mp = (PyDictObject *)op;
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return -1;
|
|
if (ep->me_value == NULL) {
|
|
set_key_error(key);
|
|
return -1;
|
|
}
|
|
old_key = ep->me_key;
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
old_value = ep->me_value;
|
|
ep->me_value = NULL;
|
|
mp->ma_used--;
|
|
Py_DECREF(old_value);
|
|
Py_DECREF(old_key);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
PyDict_Clear(PyObject *op)
|
|
{
|
|
PyDictObject *mp;
|
|
PyDictEntry *ep, *table;
|
|
int table_is_malloced;
|
|
Py_ssize_t fill;
|
|
PyDictEntry small_copy[PyDict_MINSIZE];
|
|
#ifdef Py_DEBUG
|
|
Py_ssize_t i, n;
|
|
#endif
|
|
|
|
if (!PyDict_Check(op))
|
|
return;
|
|
mp = (PyDictObject *)op;
|
|
#ifdef Py_DEBUG
|
|
n = mp->ma_mask + 1;
|
|
i = 0;
|
|
#endif
|
|
|
|
table = mp->ma_table;
|
|
assert(table != NULL);
|
|
table_is_malloced = table != mp->ma_smalltable;
|
|
|
|
/* This is delicate. During the process of clearing the dict,
|
|
* decrefs can cause the dict to mutate. To avoid fatal confusion
|
|
* (voice of experience), we have to make the dict empty before
|
|
* clearing the slots, and never refer to anything via mp->xxx while
|
|
* clearing.
|
|
*/
|
|
fill = mp->ma_fill;
|
|
if (table_is_malloced)
|
|
EMPTY_TO_MINSIZE(mp);
|
|
|
|
else if (fill > 0) {
|
|
/* It's a small table with something that needs to be cleared.
|
|
* Afraid the only safe way is to copy the dict entries into
|
|
* another small table first.
|
|
*/
|
|
memcpy(small_copy, table, sizeof(small_copy));
|
|
table = small_copy;
|
|
EMPTY_TO_MINSIZE(mp);
|
|
}
|
|
/* else it's a small table that's already empty */
|
|
|
|
/* Now we can finally clear things. If C had refcounts, we could
|
|
* assert that the refcount on table is 1 now, i.e. that this function
|
|
* has unique access to it, so decref side-effects can't alter it.
|
|
*/
|
|
for (ep = table; fill > 0; ++ep) {
|
|
#ifdef Py_DEBUG
|
|
assert(i < n);
|
|
++i;
|
|
#endif
|
|
if (ep->me_key) {
|
|
--fill;
|
|
Py_DECREF(ep->me_key);
|
|
Py_XDECREF(ep->me_value);
|
|
}
|
|
#ifdef Py_DEBUG
|
|
else
|
|
assert(ep->me_value == NULL);
|
|
#endif
|
|
}
|
|
|
|
if (table_is_malloced)
|
|
PyMem_DEL(table);
|
|
}
|
|
|
|
/*
|
|
* Iterate over a dict. Use like so:
|
|
*
|
|
* Py_ssize_t i;
|
|
* PyObject *key, *value;
|
|
* i = 0; # important! i should not otherwise be changed by you
|
|
* while (PyDict_Next(yourdict, &i, &key, &value)) {
|
|
* Refer to borrowed references in key and value.
|
|
* }
|
|
*
|
|
* CAUTION: In general, it isn't safe to use PyDict_Next in a loop that
|
|
* mutates the dict. One exception: it is safe if the loop merely changes
|
|
* the values associated with the keys (but doesn't insert new keys or
|
|
* delete keys), via PyDict_SetItem().
|
|
*/
|
|
int
|
|
PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue)
|
|
{
|
|
register Py_ssize_t i;
|
|
register Py_ssize_t mask;
|
|
register PyDictEntry *ep;
|
|
|
|
if (!PyDict_Check(op))
|
|
return 0;
|
|
i = *ppos;
|
|
if (i < 0)
|
|
return 0;
|
|
ep = ((PyDictObject *)op)->ma_table;
|
|
mask = ((PyDictObject *)op)->ma_mask;
|
|
while (i <= mask && ep[i].me_value == NULL)
|
|
i++;
|
|
*ppos = i+1;
|
|
if (i > mask)
|
|
return 0;
|
|
if (pkey)
|
|
*pkey = ep[i].me_key;
|
|
if (pvalue)
|
|
*pvalue = ep[i].me_value;
|
|
return 1;
|
|
}
|
|
|
|
/* Internal version of PyDict_Next that returns a hash value in addition to the key and value.*/
|
|
int
|
|
_PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue, Py_hash_t *phash)
|
|
{
|
|
register Py_ssize_t i;
|
|
register Py_ssize_t mask;
|
|
register PyDictEntry *ep;
|
|
|
|
if (!PyDict_Check(op))
|
|
return 0;
|
|
i = *ppos;
|
|
if (i < 0)
|
|
return 0;
|
|
ep = ((PyDictObject *)op)->ma_table;
|
|
mask = ((PyDictObject *)op)->ma_mask;
|
|
while (i <= mask && ep[i].me_value == NULL)
|
|
i++;
|
|
*ppos = i+1;
|
|
if (i > mask)
|
|
return 0;
|
|
*phash = ep[i].me_hash;
|
|
if (pkey)
|
|
*pkey = ep[i].me_key;
|
|
if (pvalue)
|
|
*pvalue = ep[i].me_value;
|
|
return 1;
|
|
}
|
|
|
|
/* Methods */
|
|
|
|
static void
|
|
dict_dealloc(register PyDictObject *mp)
|
|
{
|
|
register PyDictEntry *ep;
|
|
Py_ssize_t fill = mp->ma_fill;
|
|
PyObject_GC_UnTrack(mp);
|
|
Py_TRASHCAN_SAFE_BEGIN(mp)
|
|
for (ep = mp->ma_table; fill > 0; ep++) {
|
|
if (ep->me_key) {
|
|
--fill;
|
|
Py_DECREF(ep->me_key);
|
|
Py_XDECREF(ep->me_value);
|
|
}
|
|
}
|
|
if (mp->ma_table != mp->ma_smalltable)
|
|
PyMem_DEL(mp->ma_table);
|
|
if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
|
|
free_list[numfree++] = mp;
|
|
else
|
|
Py_TYPE(mp)->tp_free((PyObject *)mp);
|
|
Py_TRASHCAN_SAFE_END(mp)
|
|
}
|
|
|
|
static PyObject *
|
|
dict_repr(PyDictObject *mp)
|
|
{
|
|
Py_ssize_t i;
|
|
PyObject *s, *temp, *colon = NULL;
|
|
PyObject *pieces = NULL, *result = NULL;
|
|
PyObject *key, *value;
|
|
|
|
i = Py_ReprEnter((PyObject *)mp);
|
|
if (i != 0) {
|
|
return i > 0 ? PyUnicode_FromString("{...}") : NULL;
|
|
}
|
|
|
|
if (mp->ma_used == 0) {
|
|
result = PyUnicode_FromString("{}");
|
|
goto Done;
|
|
}
|
|
|
|
pieces = PyList_New(0);
|
|
if (pieces == NULL)
|
|
goto Done;
|
|
|
|
colon = PyUnicode_FromString(": ");
|
|
if (colon == NULL)
|
|
goto Done;
|
|
|
|
/* Do repr() on each key+value pair, and insert ": " between them.
|
|
Note that repr may mutate the dict. */
|
|
i = 0;
|
|
while (PyDict_Next((PyObject *)mp, &i, &key, &value)) {
|
|
int status;
|
|
/* Prevent repr from deleting value during key format. */
|
|
Py_INCREF(value);
|
|
s = PyObject_Repr(key);
|
|
PyUnicode_Append(&s, colon);
|
|
PyUnicode_AppendAndDel(&s, PyObject_Repr(value));
|
|
Py_DECREF(value);
|
|
if (s == NULL)
|
|
goto Done;
|
|
status = PyList_Append(pieces, s);
|
|
Py_DECREF(s); /* append created a new ref */
|
|
if (status < 0)
|
|
goto Done;
|
|
}
|
|
|
|
/* Add "{}" decorations to the first and last items. */
|
|
assert(PyList_GET_SIZE(pieces) > 0);
|
|
s = PyUnicode_FromString("{");
|
|
if (s == NULL)
|
|
goto Done;
|
|
temp = PyList_GET_ITEM(pieces, 0);
|
|
PyUnicode_AppendAndDel(&s, temp);
|
|
PyList_SET_ITEM(pieces, 0, s);
|
|
if (s == NULL)
|
|
goto Done;
|
|
|
|
s = PyUnicode_FromString("}");
|
|
if (s == NULL)
|
|
goto Done;
|
|
temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1);
|
|
PyUnicode_AppendAndDel(&temp, s);
|
|
PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp);
|
|
if (temp == NULL)
|
|
goto Done;
|
|
|
|
/* Paste them all together with ", " between. */
|
|
s = PyUnicode_FromString(", ");
|
|
if (s == NULL)
|
|
goto Done;
|
|
result = PyUnicode_Join(s, pieces);
|
|
Py_DECREF(s);
|
|
|
|
Done:
|
|
Py_XDECREF(pieces);
|
|
Py_XDECREF(colon);
|
|
Py_ReprLeave((PyObject *)mp);
|
|
return result;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dict_length(PyDictObject *mp)
|
|
{
|
|
return mp->ma_used;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_subscript(PyDictObject *mp, register PyObject *key)
|
|
{
|
|
PyObject *v;
|
|
Py_hash_t hash;
|
|
PyDictEntry *ep;
|
|
assert(mp->ma_table != NULL);
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
v = ep->me_value;
|
|
if (v == NULL) {
|
|
if (!PyDict_CheckExact(mp)) {
|
|
/* Look up __missing__ method if we're a subclass. */
|
|
PyObject *missing, *res;
|
|
static PyObject *missing_str = NULL;
|
|
missing = _PyObject_LookupSpecial((PyObject *)mp,
|
|
"__missing__",
|
|
&missing_str);
|
|
if (missing != NULL) {
|
|
res = PyObject_CallFunctionObjArgs(missing,
|
|
key, NULL);
|
|
Py_DECREF(missing);
|
|
return res;
|
|
}
|
|
else if (PyErr_Occurred())
|
|
return NULL;
|
|
}
|
|
set_key_error(key);
|
|
return NULL;
|
|
}
|
|
else
|
|
Py_INCREF(v);
|
|
return v;
|
|
}
|
|
|
|
static int
|
|
dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w)
|
|
{
|
|
if (w == NULL)
|
|
return PyDict_DelItem((PyObject *)mp, v);
|
|
else
|
|
return PyDict_SetItem((PyObject *)mp, v, w);
|
|
}
|
|
|
|
static PyMappingMethods dict_as_mapping = {
|
|
(lenfunc)dict_length, /*mp_length*/
|
|
(binaryfunc)dict_subscript, /*mp_subscript*/
|
|
(objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
|
|
};
|
|
|
|
static PyObject *
|
|
dict_keys(register PyDictObject *mp)
|
|
{
|
|
register PyObject *v;
|
|
register Py_ssize_t i, j;
|
|
PyDictEntry *ep;
|
|
Py_ssize_t mask, n;
|
|
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
ep = mp->ma_table;
|
|
mask = mp->ma_mask;
|
|
for (i = 0, j = 0; i <= mask; i++) {
|
|
if (ep[i].me_value != NULL) {
|
|
PyObject *key = ep[i].me_key;
|
|
Py_INCREF(key);
|
|
PyList_SET_ITEM(v, j, key);
|
|
j++;
|
|
}
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_values(register PyDictObject *mp)
|
|
{
|
|
register PyObject *v;
|
|
register Py_ssize_t i, j;
|
|
PyDictEntry *ep;
|
|
Py_ssize_t mask, n;
|
|
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
ep = mp->ma_table;
|
|
mask = mp->ma_mask;
|
|
for (i = 0, j = 0; i <= mask; i++) {
|
|
if (ep[i].me_value != NULL) {
|
|
PyObject *value = ep[i].me_value;
|
|
Py_INCREF(value);
|
|
PyList_SET_ITEM(v, j, value);
|
|
j++;
|
|
}
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_items(register PyDictObject *mp)
|
|
{
|
|
register PyObject *v;
|
|
register Py_ssize_t i, j, n;
|
|
Py_ssize_t mask;
|
|
PyObject *item, *key, *value;
|
|
PyDictEntry *ep;
|
|
|
|
/* Preallocate the list of tuples, to avoid allocations during
|
|
* the loop over the items, which could trigger GC, which
|
|
* could resize the dict. :-(
|
|
*/
|
|
again:
|
|
n = mp->ma_used;
|
|
v = PyList_New(n);
|
|
if (v == NULL)
|
|
return NULL;
|
|
for (i = 0; i < n; i++) {
|
|
item = PyTuple_New(2);
|
|
if (item == NULL) {
|
|
Py_DECREF(v);
|
|
return NULL;
|
|
}
|
|
PyList_SET_ITEM(v, i, item);
|
|
}
|
|
if (n != mp->ma_used) {
|
|
/* Durnit. The allocations caused the dict to resize.
|
|
* Just start over, this shouldn't normally happen.
|
|
*/
|
|
Py_DECREF(v);
|
|
goto again;
|
|
}
|
|
/* Nothing we do below makes any function calls. */
|
|
ep = mp->ma_table;
|
|
mask = mp->ma_mask;
|
|
for (i = 0, j = 0; i <= mask; i++) {
|
|
if ((value=ep[i].me_value) != NULL) {
|
|
key = ep[i].me_key;
|
|
item = PyList_GET_ITEM(v, j);
|
|
Py_INCREF(key);
|
|
PyTuple_SET_ITEM(item, 0, key);
|
|
Py_INCREF(value);
|
|
PyTuple_SET_ITEM(item, 1, value);
|
|
j++;
|
|
}
|
|
}
|
|
assert(j == n);
|
|
return v;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_fromkeys(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *seq;
|
|
PyObject *value = Py_None;
|
|
PyObject *it; /* iter(seq) */
|
|
PyObject *key;
|
|
PyObject *d;
|
|
int status;
|
|
|
|
if (!PyArg_UnpackTuple(args, "fromkeys", 1, 2, &seq, &value))
|
|
return NULL;
|
|
|
|
d = PyObject_CallObject(cls, NULL);
|
|
if (d == NULL)
|
|
return NULL;
|
|
|
|
if (PyDict_CheckExact(d) && PyDict_CheckExact(seq)) {
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
PyObject *oldvalue;
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key;
|
|
Py_hash_t hash;
|
|
|
|
if (dictresize(mp, Py_SIZE(seq))) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
while (_PyDict_Next(seq, &pos, &key, &oldvalue, &hash)) {
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
if (insertdict(mp, key, hash, value)) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
if (PyDict_CheckExact(d) && PyAnySet_CheckExact(seq)) {
|
|
PyDictObject *mp = (PyDictObject *)d;
|
|
Py_ssize_t pos = 0;
|
|
PyObject *key;
|
|
Py_hash_t hash;
|
|
|
|
if (dictresize(mp, PySet_GET_SIZE(seq))) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
while (_PySet_NextEntry(seq, &pos, &key, &hash)) {
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
if (insertdict(mp, key, hash, value)) {
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
it = PyObject_GetIter(seq);
|
|
if (it == NULL){
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
if (PyDict_CheckExact(d)) {
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
status = PyDict_SetItem(d, key, value);
|
|
Py_DECREF(key);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
} else {
|
|
while ((key = PyIter_Next(it)) != NULL) {
|
|
status = PyObject_SetItem(d, key, value);
|
|
Py_DECREF(key);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
}
|
|
|
|
if (PyErr_Occurred())
|
|
goto Fail;
|
|
Py_DECREF(it);
|
|
return d;
|
|
|
|
Fail:
|
|
Py_DECREF(it);
|
|
Py_DECREF(d);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
dict_update_common(PyObject *self, PyObject *args, PyObject *kwds, char *methname)
|
|
{
|
|
PyObject *arg = NULL;
|
|
int result = 0;
|
|
|
|
if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg))
|
|
result = -1;
|
|
|
|
else if (arg != NULL) {
|
|
_Py_IDENTIFIER(keys);
|
|
if (_PyObject_HasAttrId(arg, &PyId_keys))
|
|
result = PyDict_Merge(self, arg, 1);
|
|
else
|
|
result = PyDict_MergeFromSeq2(self, arg, 1);
|
|
}
|
|
if (result == 0 && kwds != NULL) {
|
|
if (PyArg_ValidateKeywordArguments(kwds))
|
|
result = PyDict_Merge(self, kwds, 1);
|
|
else
|
|
result = -1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_update(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
if (dict_update_common(self, args, kwds, "update") != -1)
|
|
Py_RETURN_NONE;
|
|
return NULL;
|
|
}
|
|
|
|
/* Update unconditionally replaces existing items.
|
|
Merge has a 3rd argument 'override'; if set, it acts like Update,
|
|
otherwise it leaves existing items unchanged.
|
|
|
|
PyDict_{Update,Merge} update/merge from a mapping object.
|
|
|
|
PyDict_MergeFromSeq2 updates/merges from any iterable object
|
|
producing iterable objects of length 2.
|
|
*/
|
|
|
|
int
|
|
PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override)
|
|
{
|
|
PyObject *it; /* iter(seq2) */
|
|
Py_ssize_t i; /* index into seq2 of current element */
|
|
PyObject *item; /* seq2[i] */
|
|
PyObject *fast; /* item as a 2-tuple or 2-list */
|
|
|
|
assert(d != NULL);
|
|
assert(PyDict_Check(d));
|
|
assert(seq2 != NULL);
|
|
|
|
it = PyObject_GetIter(seq2);
|
|
if (it == NULL)
|
|
return -1;
|
|
|
|
for (i = 0; ; ++i) {
|
|
PyObject *key, *value;
|
|
Py_ssize_t n;
|
|
|
|
fast = NULL;
|
|
item = PyIter_Next(it);
|
|
if (item == NULL) {
|
|
if (PyErr_Occurred())
|
|
goto Fail;
|
|
break;
|
|
}
|
|
|
|
/* Convert item to sequence, and verify length 2. */
|
|
fast = PySequence_Fast(item, "");
|
|
if (fast == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_TypeError))
|
|
PyErr_Format(PyExc_TypeError,
|
|
"cannot convert dictionary update "
|
|
"sequence element #%zd to a sequence",
|
|
i);
|
|
goto Fail;
|
|
}
|
|
n = PySequence_Fast_GET_SIZE(fast);
|
|
if (n != 2) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"dictionary update sequence element #%zd "
|
|
"has length %zd; 2 is required",
|
|
i, n);
|
|
goto Fail;
|
|
}
|
|
|
|
/* Update/merge with this (key, value) pair. */
|
|
key = PySequence_Fast_GET_ITEM(fast, 0);
|
|
value = PySequence_Fast_GET_ITEM(fast, 1);
|
|
if (override || PyDict_GetItem(d, key) == NULL) {
|
|
int status = PyDict_SetItem(d, key, value);
|
|
if (status < 0)
|
|
goto Fail;
|
|
}
|
|
Py_DECREF(fast);
|
|
Py_DECREF(item);
|
|
}
|
|
|
|
i = 0;
|
|
goto Return;
|
|
Fail:
|
|
Py_XDECREF(item);
|
|
Py_XDECREF(fast);
|
|
i = -1;
|
|
Return:
|
|
Py_DECREF(it);
|
|
return Py_SAFE_DOWNCAST(i, Py_ssize_t, int);
|
|
}
|
|
|
|
int
|
|
PyDict_Update(PyObject *a, PyObject *b)
|
|
{
|
|
return PyDict_Merge(a, b, 1);
|
|
}
|
|
|
|
int
|
|
PyDict_Merge(PyObject *a, PyObject *b, int override)
|
|
{
|
|
register PyDictObject *mp, *other;
|
|
register Py_ssize_t i;
|
|
PyDictEntry *entry;
|
|
|
|
/* We accept for the argument either a concrete dictionary object,
|
|
* or an abstract "mapping" object. For the former, we can do
|
|
* things quite efficiently. For the latter, we only require that
|
|
* PyMapping_Keys() and PyObject_GetItem() be supported.
|
|
*/
|
|
if (a == NULL || !PyDict_Check(a) || b == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
mp = (PyDictObject*)a;
|
|
if (PyDict_Check(b)) {
|
|
other = (PyDictObject*)b;
|
|
if (other == mp || other->ma_used == 0)
|
|
/* a.update(a) or a.update({}); nothing to do */
|
|
return 0;
|
|
if (mp->ma_used == 0)
|
|
/* Since the target dict is empty, PyDict_GetItem()
|
|
* always returns NULL. Setting override to 1
|
|
* skips the unnecessary test.
|
|
*/
|
|
override = 1;
|
|
/* Do one big resize at the start, rather than
|
|
* incrementally resizing as we insert new items. Expect
|
|
* that there will be no (or few) overlapping keys.
|
|
*/
|
|
if ((mp->ma_fill + other->ma_used)*3 >= (mp->ma_mask+1)*2) {
|
|
if (dictresize(mp, (mp->ma_used + other->ma_used)*2) != 0)
|
|
return -1;
|
|
}
|
|
for (i = 0; i <= other->ma_mask; i++) {
|
|
entry = &other->ma_table[i];
|
|
if (entry->me_value != NULL &&
|
|
(override ||
|
|
PyDict_GetItem(a, entry->me_key) == NULL)) {
|
|
Py_INCREF(entry->me_key);
|
|
Py_INCREF(entry->me_value);
|
|
if (insertdict(mp, entry->me_key,
|
|
entry->me_hash,
|
|
entry->me_value) != 0)
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Do it the generic, slower way */
|
|
PyObject *keys = PyMapping_Keys(b);
|
|
PyObject *iter;
|
|
PyObject *key, *value;
|
|
int status;
|
|
|
|
if (keys == NULL)
|
|
/* Docstring says this is equivalent to E.keys() so
|
|
* if E doesn't have a .keys() method we want
|
|
* AttributeError to percolate up. Might as well
|
|
* do the same for any other error.
|
|
*/
|
|
return -1;
|
|
|
|
iter = PyObject_GetIter(keys);
|
|
Py_DECREF(keys);
|
|
if (iter == NULL)
|
|
return -1;
|
|
|
|
for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) {
|
|
if (!override && PyDict_GetItem(a, key) != NULL) {
|
|
Py_DECREF(key);
|
|
continue;
|
|
}
|
|
value = PyObject_GetItem(b, key);
|
|
if (value == NULL) {
|
|
Py_DECREF(iter);
|
|
Py_DECREF(key);
|
|
return -1;
|
|
}
|
|
status = PyDict_SetItem(a, key, value);
|
|
Py_DECREF(key);
|
|
Py_DECREF(value);
|
|
if (status < 0) {
|
|
Py_DECREF(iter);
|
|
return -1;
|
|
}
|
|
}
|
|
Py_DECREF(iter);
|
|
if (PyErr_Occurred())
|
|
/* Iterator completed, via error */
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_copy(register PyDictObject *mp)
|
|
{
|
|
return PyDict_Copy((PyObject*)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Copy(PyObject *o)
|
|
{
|
|
PyObject *copy;
|
|
|
|
if (o == NULL || !PyDict_Check(o)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
copy = PyDict_New();
|
|
if (copy == NULL)
|
|
return NULL;
|
|
if (PyDict_Merge(copy, o, 1) == 0)
|
|
return copy;
|
|
Py_DECREF(copy);
|
|
return NULL;
|
|
}
|
|
|
|
Py_ssize_t
|
|
PyDict_Size(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return -1;
|
|
}
|
|
return ((PyDictObject *)mp)->ma_used;
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Keys(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_keys((PyDictObject *)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Values(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_values((PyDictObject *)mp);
|
|
}
|
|
|
|
PyObject *
|
|
PyDict_Items(PyObject *mp)
|
|
{
|
|
if (mp == NULL || !PyDict_Check(mp)) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
return dict_items((PyDictObject *)mp);
|
|
}
|
|
|
|
/* Return 1 if dicts equal, 0 if not, -1 if error.
|
|
* Gets out as soon as any difference is detected.
|
|
* Uses only Py_EQ comparison.
|
|
*/
|
|
static int
|
|
dict_equal(PyDictObject *a, PyDictObject *b)
|
|
{
|
|
Py_ssize_t i;
|
|
|
|
if (a->ma_used != b->ma_used)
|
|
/* can't be equal if # of entries differ */
|
|
return 0;
|
|
|
|
/* Same # of entries -- check all of 'em. Exit early on any diff. */
|
|
for (i = 0; i <= a->ma_mask; i++) {
|
|
PyObject *aval = a->ma_table[i].me_value;
|
|
if (aval != NULL) {
|
|
int cmp;
|
|
PyObject *bval;
|
|
PyObject *key = a->ma_table[i].me_key;
|
|
/* temporarily bump aval's refcount to ensure it stays
|
|
alive until we're done with it */
|
|
Py_INCREF(aval);
|
|
/* ditto for key */
|
|
Py_INCREF(key);
|
|
bval = PyDict_GetItemWithError((PyObject *)b, key);
|
|
Py_DECREF(key);
|
|
if (bval == NULL) {
|
|
Py_DECREF(aval);
|
|
if (PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
cmp = PyObject_RichCompareBool(aval, bval, Py_EQ);
|
|
Py_DECREF(aval);
|
|
if (cmp <= 0) /* error or not equal */
|
|
return cmp;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_richcompare(PyObject *v, PyObject *w, int op)
|
|
{
|
|
int cmp;
|
|
PyObject *res;
|
|
|
|
if (!PyDict_Check(v) || !PyDict_Check(w)) {
|
|
res = Py_NotImplemented;
|
|
}
|
|
else if (op == Py_EQ || op == Py_NE) {
|
|
cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w);
|
|
if (cmp < 0)
|
|
return NULL;
|
|
res = (cmp == (op == Py_EQ)) ? Py_True : Py_False;
|
|
}
|
|
else
|
|
res = Py_NotImplemented;
|
|
Py_INCREF(res);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_contains(register PyDictObject *mp, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictEntry *ep;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
return PyBool_FromLong(ep->me_value != NULL);
|
|
}
|
|
|
|
static PyObject *
|
|
dict_get(register PyDictObject *mp, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *failobj = Py_None;
|
|
PyObject *val = NULL;
|
|
Py_hash_t hash;
|
|
PyDictEntry *ep;
|
|
|
|
if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &failobj))
|
|
return NULL;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
val = ep->me_value;
|
|
if (val == NULL)
|
|
val = failobj;
|
|
Py_INCREF(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
dict_setdefault(register PyDictObject *mp, PyObject *args)
|
|
{
|
|
PyObject *key;
|
|
PyObject *failobj = Py_None;
|
|
PyObject *val = NULL;
|
|
Py_hash_t hash;
|
|
PyDictEntry *ep;
|
|
|
|
if (!PyArg_UnpackTuple(args, "setdefault", 1, 2, &key, &failobj))
|
|
return NULL;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
val = ep->me_value;
|
|
if (val == NULL) {
|
|
val = failobj;
|
|
if (PyDict_SetItem((PyObject*)mp, key, failobj))
|
|
val = NULL;
|
|
}
|
|
Py_XINCREF(val);
|
|
return val;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
dict_clear(register PyDictObject *mp)
|
|
{
|
|
PyDict_Clear((PyObject *)mp);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_pop(PyDictObject *mp, PyObject *args)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictEntry *ep;
|
|
PyObject *old_value, *old_key;
|
|
PyObject *key, *deflt = NULL;
|
|
|
|
if(!PyArg_UnpackTuple(args, "pop", 1, 2, &key, &deflt))
|
|
return NULL;
|
|
if (mp->ma_used == 0) {
|
|
if (deflt) {
|
|
Py_INCREF(deflt);
|
|
return deflt;
|
|
}
|
|
set_key_error(key);
|
|
return NULL;
|
|
}
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return NULL;
|
|
}
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
if (ep == NULL)
|
|
return NULL;
|
|
if (ep->me_value == NULL) {
|
|
if (deflt) {
|
|
Py_INCREF(deflt);
|
|
return deflt;
|
|
}
|
|
set_key_error(key);
|
|
return NULL;
|
|
}
|
|
old_key = ep->me_key;
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
old_value = ep->me_value;
|
|
ep->me_value = NULL;
|
|
mp->ma_used--;
|
|
Py_DECREF(old_key);
|
|
return old_value;
|
|
}
|
|
|
|
static PyObject *
|
|
dict_popitem(PyDictObject *mp)
|
|
{
|
|
Py_hash_t i = 0;
|
|
PyDictEntry *ep;
|
|
PyObject *res;
|
|
|
|
/* Allocate the result tuple before checking the size. Believe it
|
|
* or not, this allocation could trigger a garbage collection which
|
|
* could empty the dict, so if we checked the size first and that
|
|
* happened, the result would be an infinite loop (searching for an
|
|
* entry that no longer exists). Note that the usual popitem()
|
|
* idiom is "while d: k, v = d.popitem()". so needing to throw the
|
|
* tuple away if the dict *is* empty isn't a significant
|
|
* inefficiency -- possible, but unlikely in practice.
|
|
*/
|
|
res = PyTuple_New(2);
|
|
if (res == NULL)
|
|
return NULL;
|
|
if (mp->ma_used == 0) {
|
|
Py_DECREF(res);
|
|
PyErr_SetString(PyExc_KeyError,
|
|
"popitem(): dictionary is empty");
|
|
return NULL;
|
|
}
|
|
/* Set ep to "the first" dict entry with a value. We abuse the hash
|
|
* field of slot 0 to hold a search finger:
|
|
* If slot 0 has a value, use slot 0.
|
|
* Else slot 0 is being used to hold a search finger,
|
|
* and we use its hash value as the first index to look.
|
|
*/
|
|
ep = &mp->ma_table[0];
|
|
if (ep->me_value == NULL) {
|
|
i = ep->me_hash;
|
|
/* The hash field may be a real hash value, or it may be a
|
|
* legit search finger, or it may be a once-legit search
|
|
* finger that's out of bounds now because it wrapped around
|
|
* or the table shrunk -- simply make sure it's in bounds now.
|
|
*/
|
|
if (i > mp->ma_mask || i < 1)
|
|
i = 1; /* skip slot 0 */
|
|
while ((ep = &mp->ma_table[i])->me_value == NULL) {
|
|
i++;
|
|
if (i > mp->ma_mask)
|
|
i = 1;
|
|
}
|
|
}
|
|
PyTuple_SET_ITEM(res, 0, ep->me_key);
|
|
PyTuple_SET_ITEM(res, 1, ep->me_value);
|
|
Py_INCREF(dummy);
|
|
ep->me_key = dummy;
|
|
ep->me_value = NULL;
|
|
mp->ma_used--;
|
|
assert(mp->ma_table[0].me_value == NULL);
|
|
mp->ma_table[0].me_hash = i + 1; /* next place to start */
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
dict_traverse(PyObject *op, visitproc visit, void *arg)
|
|
{
|
|
Py_ssize_t i = 0;
|
|
PyObject *pk;
|
|
PyObject *pv;
|
|
|
|
while (PyDict_Next(op, &i, &pk, &pv)) {
|
|
Py_VISIT(pk);
|
|
Py_VISIT(pv);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
dict_tp_clear(PyObject *op)
|
|
{
|
|
PyDict_Clear(op);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *dictiter_new(PyDictObject *, PyTypeObject *);
|
|
|
|
static PyObject *
|
|
dict_sizeof(PyDictObject *mp)
|
|
{
|
|
Py_ssize_t res;
|
|
|
|
res = sizeof(PyDictObject);
|
|
if (mp->ma_table != mp->ma_smalltable)
|
|
res = res + (mp->ma_mask + 1) * sizeof(PyDictEntry);
|
|
return PyLong_FromSsize_t(res);
|
|
}
|
|
|
|
PyDoc_STRVAR(contains__doc__,
|
|
"D.__contains__(k) -> True if D has a key k, else False");
|
|
|
|
PyDoc_STRVAR(getitem__doc__, "x.__getitem__(y) <==> x[y]");
|
|
|
|
PyDoc_STRVAR(sizeof__doc__,
|
|
"D.__sizeof__() -> size of D in memory, in bytes");
|
|
|
|
PyDoc_STRVAR(get__doc__,
|
|
"D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.");
|
|
|
|
PyDoc_STRVAR(setdefault_doc__,
|
|
"D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D");
|
|
|
|
PyDoc_STRVAR(pop__doc__,
|
|
"D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\n\
|
|
If key is not found, d is returned if given, otherwise KeyError is raised");
|
|
|
|
PyDoc_STRVAR(popitem__doc__,
|
|
"D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\
|
|
2-tuple; but raise KeyError if D is empty.");
|
|
|
|
PyDoc_STRVAR(update__doc__,
|
|
"D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\n"
|
|
"If E present and has a .keys() method, does: for k in E: D[k] = E[k]\n\
|
|
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v\n\
|
|
In either case, this is followed by: for k in F: D[k] = F[k]");
|
|
|
|
PyDoc_STRVAR(fromkeys__doc__,
|
|
"dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.\n\
|
|
v defaults to None.");
|
|
|
|
PyDoc_STRVAR(clear__doc__,
|
|
"D.clear() -> None. Remove all items from D.");
|
|
|
|
PyDoc_STRVAR(copy__doc__,
|
|
"D.copy() -> a shallow copy of D");
|
|
|
|
/* Forward */
|
|
static PyObject *dictkeys_new(PyObject *);
|
|
static PyObject *dictitems_new(PyObject *);
|
|
static PyObject *dictvalues_new(PyObject *);
|
|
|
|
PyDoc_STRVAR(keys__doc__,
|
|
"D.keys() -> a set-like object providing a view on D's keys");
|
|
PyDoc_STRVAR(items__doc__,
|
|
"D.items() -> a set-like object providing a view on D's items");
|
|
PyDoc_STRVAR(values__doc__,
|
|
"D.values() -> an object providing a view on D's values");
|
|
|
|
static PyMethodDef mapp_methods[] = {
|
|
{"__contains__",(PyCFunction)dict_contains, METH_O | METH_COEXIST,
|
|
contains__doc__},
|
|
{"__getitem__", (PyCFunction)dict_subscript, METH_O | METH_COEXIST,
|
|
getitem__doc__},
|
|
{"__sizeof__", (PyCFunction)dict_sizeof, METH_NOARGS,
|
|
sizeof__doc__},
|
|
{"get", (PyCFunction)dict_get, METH_VARARGS,
|
|
get__doc__},
|
|
{"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS,
|
|
setdefault_doc__},
|
|
{"pop", (PyCFunction)dict_pop, METH_VARARGS,
|
|
pop__doc__},
|
|
{"popitem", (PyCFunction)dict_popitem, METH_NOARGS,
|
|
popitem__doc__},
|
|
{"keys", (PyCFunction)dictkeys_new, METH_NOARGS,
|
|
keys__doc__},
|
|
{"items", (PyCFunction)dictitems_new, METH_NOARGS,
|
|
items__doc__},
|
|
{"values", (PyCFunction)dictvalues_new, METH_NOARGS,
|
|
values__doc__},
|
|
{"update", (PyCFunction)dict_update, METH_VARARGS | METH_KEYWORDS,
|
|
update__doc__},
|
|
{"fromkeys", (PyCFunction)dict_fromkeys, METH_VARARGS | METH_CLASS,
|
|
fromkeys__doc__},
|
|
{"clear", (PyCFunction)dict_clear, METH_NOARGS,
|
|
clear__doc__},
|
|
{"copy", (PyCFunction)dict_copy, METH_NOARGS,
|
|
copy__doc__},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
/* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */
|
|
int
|
|
PyDict_Contains(PyObject *op, PyObject *key)
|
|
{
|
|
Py_hash_t hash;
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictEntry *ep;
|
|
|
|
if (!PyUnicode_CheckExact(key) ||
|
|
(hash = ((PyASCIIObject *) key)->hash) == -1) {
|
|
hash = PyObject_Hash(key);
|
|
if (hash == -1)
|
|
return -1;
|
|
}
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
return ep == NULL ? -1 : (ep->me_value != NULL);
|
|
}
|
|
|
|
/* Internal version of PyDict_Contains used when the hash value is already known */
|
|
int
|
|
_PyDict_Contains(PyObject *op, PyObject *key, Py_hash_t hash)
|
|
{
|
|
PyDictObject *mp = (PyDictObject *)op;
|
|
PyDictEntry *ep;
|
|
|
|
ep = (mp->ma_lookup)(mp, key, hash);
|
|
return ep == NULL ? -1 : (ep->me_value != NULL);
|
|
}
|
|
|
|
/* Hack to implement "key in dict" */
|
|
static PySequenceMethods dict_as_sequence = {
|
|
0, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
PyDict_Contains, /* sq_contains */
|
|
0, /* sq_inplace_concat */
|
|
0, /* sq_inplace_repeat */
|
|
};
|
|
|
|
static PyObject *
|
|
dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
PyObject *self;
|
|
|
|
assert(type != NULL && type->tp_alloc != NULL);
|
|
self = type->tp_alloc(type, 0);
|
|
if (self != NULL) {
|
|
PyDictObject *d = (PyDictObject *)self;
|
|
/* It's guaranteed that tp->alloc zeroed out the struct. */
|
|
assert(d->ma_table == NULL && d->ma_fill == 0 && d->ma_used == 0);
|
|
INIT_NONZERO_DICT_SLOTS(d);
|
|
d->ma_lookup = lookdict_unicode;
|
|
/* The object has been implicitly tracked by tp_alloc */
|
|
if (type == &PyDict_Type)
|
|
_PyObject_GC_UNTRACK(d);
|
|
#ifdef SHOW_CONVERSION_COUNTS
|
|
++created;
|
|
#endif
|
|
#ifdef SHOW_TRACK_COUNT
|
|
if (_PyObject_GC_IS_TRACKED(d))
|
|
count_tracked++;
|
|
else
|
|
count_untracked++;
|
|
#endif
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static int
|
|
dict_init(PyObject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
return dict_update_common(self, args, kwds, "dict");
|
|
}
|
|
|
|
static PyObject *
|
|
dict_iter(PyDictObject *dict)
|
|
{
|
|
return dictiter_new(dict, &PyDictIterKey_Type);
|
|
}
|
|
|
|
PyDoc_STRVAR(dictionary_doc,
|
|
"dict() -> new empty dictionary\n"
|
|
"dict(mapping) -> new dictionary initialized from a mapping object's\n"
|
|
" (key, value) pairs\n"
|
|
"dict(iterable) -> new dictionary initialized as if via:\n"
|
|
" d = {}\n"
|
|
" for k, v in iterable:\n"
|
|
" d[k] = v\n"
|
|
"dict(**kwargs) -> new dictionary initialized with the name=value pairs\n"
|
|
" in the keyword argument list. For example: dict(one=1, two=2)");
|
|
|
|
PyTypeObject PyDict_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict",
|
|
sizeof(PyDictObject),
|
|
0,
|
|
(destructor)dict_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dict_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&dict_as_sequence, /* tp_as_sequence */
|
|
&dict_as_mapping, /* tp_as_mapping */
|
|
PyObject_HashNotImplemented, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS, /* tp_flags */
|
|
dictionary_doc, /* tp_doc */
|
|
dict_traverse, /* tp_traverse */
|
|
dict_tp_clear, /* tp_clear */
|
|
dict_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dict_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
mapp_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
dict_init, /* tp_init */
|
|
PyType_GenericAlloc, /* tp_alloc */
|
|
dict_new, /* tp_new */
|
|
PyObject_GC_Del, /* tp_free */
|
|
};
|
|
|
|
/* For backward compatibility with old dictionary interface */
|
|
|
|
PyObject *
|
|
PyDict_GetItemString(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv, *rv;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return NULL;
|
|
rv = PyDict_GetItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
PyDict_SetItemString(PyObject *v, const char *key, PyObject *item)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
PyUnicode_InternInPlace(&kv); /* XXX Should we really? */
|
|
err = PyDict_SetItem(v, kv, item);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
PyDict_DelItemString(PyObject *v, const char *key)
|
|
{
|
|
PyObject *kv;
|
|
int err;
|
|
kv = PyUnicode_FromString(key);
|
|
if (kv == NULL)
|
|
return -1;
|
|
err = PyDict_DelItem(v, kv);
|
|
Py_DECREF(kv);
|
|
return err;
|
|
}
|
|
|
|
/* Dictionary iterator types */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyDictObject *di_dict; /* Set to NULL when iterator is exhausted */
|
|
Py_ssize_t di_used;
|
|
Py_ssize_t di_pos;
|
|
PyObject* di_result; /* reusable result tuple for iteritems */
|
|
Py_ssize_t len;
|
|
} dictiterobject;
|
|
|
|
static PyObject *
|
|
dictiter_new(PyDictObject *dict, PyTypeObject *itertype)
|
|
{
|
|
dictiterobject *di;
|
|
di = PyObject_GC_New(dictiterobject, itertype);
|
|
if (di == NULL)
|
|
return NULL;
|
|
Py_INCREF(dict);
|
|
di->di_dict = dict;
|
|
di->di_used = dict->ma_used;
|
|
di->di_pos = 0;
|
|
di->len = dict->ma_used;
|
|
if (itertype == &PyDictIterItem_Type) {
|
|
di->di_result = PyTuple_Pack(2, Py_None, Py_None);
|
|
if (di->di_result == NULL) {
|
|
Py_DECREF(di);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
di->di_result = NULL;
|
|
_PyObject_GC_TRACK(di);
|
|
return (PyObject *)di;
|
|
}
|
|
|
|
static void
|
|
dictiter_dealloc(dictiterobject *di)
|
|
{
|
|
Py_XDECREF(di->di_dict);
|
|
Py_XDECREF(di->di_result);
|
|
PyObject_GC_Del(di);
|
|
}
|
|
|
|
static int
|
|
dictiter_traverse(dictiterobject *di, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(di->di_dict);
|
|
Py_VISIT(di->di_result);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
dictiter_len(dictiterobject *di)
|
|
{
|
|
Py_ssize_t len = 0;
|
|
if (di->di_dict != NULL && di->di_used == di->di_dict->ma_used)
|
|
len = di->len;
|
|
return PyLong_FromSize_t(len);
|
|
}
|
|
|
|
PyDoc_STRVAR(length_hint_doc,
|
|
"Private method returning an estimate of len(list(it)).");
|
|
|
|
static PyMethodDef dictiter_methods[] = {
|
|
{"__length_hint__", (PyCFunction)dictiter_len, METH_NOARGS,
|
|
length_hint_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static PyObject *dictiter_iternextkey(dictiterobject *di)
|
|
{
|
|
PyObject *key;
|
|
register Py_ssize_t i, mask;
|
|
register PyDictEntry *ep;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
if (i < 0)
|
|
goto fail;
|
|
ep = d->ma_table;
|
|
mask = d->ma_mask;
|
|
while (i <= mask && ep[i].me_value == NULL)
|
|
i++;
|
|
di->di_pos = i+1;
|
|
if (i > mask)
|
|
goto fail;
|
|
di->len--;
|
|
key = ep[i].me_key;
|
|
Py_INCREF(key);
|
|
return key;
|
|
|
|
fail:
|
|
Py_DECREF(d);
|
|
di->di_dict = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterKey_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_keyiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternextkey, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *dictiter_iternextvalue(dictiterobject *di)
|
|
{
|
|
PyObject *value;
|
|
register Py_ssize_t i, mask;
|
|
register PyDictEntry *ep;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
mask = d->ma_mask;
|
|
if (i < 0 || i > mask)
|
|
goto fail;
|
|
ep = d->ma_table;
|
|
while ((value=ep[i].me_value) == NULL) {
|
|
i++;
|
|
if (i > mask)
|
|
goto fail;
|
|
}
|
|
di->di_pos = i+1;
|
|
di->len--;
|
|
Py_INCREF(value);
|
|
return value;
|
|
|
|
fail:
|
|
Py_DECREF(d);
|
|
di->di_dict = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterValue_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_valueiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternextvalue, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *dictiter_iternextitem(dictiterobject *di)
|
|
{
|
|
PyObject *key, *value, *result = di->di_result;
|
|
register Py_ssize_t i, mask;
|
|
register PyDictEntry *ep;
|
|
PyDictObject *d = di->di_dict;
|
|
|
|
if (d == NULL)
|
|
return NULL;
|
|
assert (PyDict_Check(d));
|
|
|
|
if (di->di_used != d->ma_used) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"dictionary changed size during iteration");
|
|
di->di_used = -1; /* Make this state sticky */
|
|
return NULL;
|
|
}
|
|
|
|
i = di->di_pos;
|
|
if (i < 0)
|
|
goto fail;
|
|
ep = d->ma_table;
|
|
mask = d->ma_mask;
|
|
while (i <= mask && ep[i].me_value == NULL)
|
|
i++;
|
|
di->di_pos = i+1;
|
|
if (i > mask)
|
|
goto fail;
|
|
|
|
if (result->ob_refcnt == 1) {
|
|
Py_INCREF(result);
|
|
Py_DECREF(PyTuple_GET_ITEM(result, 0));
|
|
Py_DECREF(PyTuple_GET_ITEM(result, 1));
|
|
} else {
|
|
result = PyTuple_New(2);
|
|
if (result == NULL)
|
|
return NULL;
|
|
}
|
|
di->len--;
|
|
key = ep[i].me_key;
|
|
value = ep[i].me_value;
|
|
Py_INCREF(key);
|
|
Py_INCREF(value);
|
|
PyTuple_SET_ITEM(result, 0, key);
|
|
PyTuple_SET_ITEM(result, 1, value);
|
|
return result;
|
|
|
|
fail:
|
|
Py_DECREF(d);
|
|
di->di_dict = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
PyTypeObject PyDictIterItem_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_itemiterator", /* tp_name */
|
|
sizeof(dictiterobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictiter_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictiter_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
PyObject_SelfIter, /* tp_iter */
|
|
(iternextfunc)dictiter_iternextitem, /* tp_iternext */
|
|
dictiter_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
|
|
/***********************************************/
|
|
/* View objects for keys(), items(), values(). */
|
|
/***********************************************/
|
|
|
|
/* The instance lay-out is the same for all three; but the type differs. */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyDictObject *dv_dict;
|
|
} dictviewobject;
|
|
|
|
|
|
static void
|
|
dictview_dealloc(dictviewobject *dv)
|
|
{
|
|
Py_XDECREF(dv->dv_dict);
|
|
PyObject_GC_Del(dv);
|
|
}
|
|
|
|
static int
|
|
dictview_traverse(dictviewobject *dv, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(dv->dv_dict);
|
|
return 0;
|
|
}
|
|
|
|
static Py_ssize_t
|
|
dictview_len(dictviewobject *dv)
|
|
{
|
|
Py_ssize_t len = 0;
|
|
if (dv->dv_dict != NULL)
|
|
len = dv->dv_dict->ma_used;
|
|
return len;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_new(PyObject *dict, PyTypeObject *type)
|
|
{
|
|
dictviewobject *dv;
|
|
if (dict == NULL) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
if (!PyDict_Check(dict)) {
|
|
/* XXX Get rid of this restriction later */
|
|
PyErr_Format(PyExc_TypeError,
|
|
"%s() requires a dict argument, not '%s'",
|
|
type->tp_name, dict->ob_type->tp_name);
|
|
return NULL;
|
|
}
|
|
dv = PyObject_GC_New(dictviewobject, type);
|
|
if (dv == NULL)
|
|
return NULL;
|
|
Py_INCREF(dict);
|
|
dv->dv_dict = (PyDictObject *)dict;
|
|
_PyObject_GC_TRACK(dv);
|
|
return (PyObject *)dv;
|
|
}
|
|
|
|
/* TODO(guido): The views objects are not complete:
|
|
|
|
* support more set operations
|
|
* support arbitrary mappings?
|
|
- either these should be static or exported in dictobject.h
|
|
- if public then they should probably be in builtins
|
|
*/
|
|
|
|
/* Return 1 if self is a subset of other, iterating over self;
|
|
0 if not; -1 if an error occurred. */
|
|
static int
|
|
all_contained_in(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *iter = PyObject_GetIter(self);
|
|
int ok = 1;
|
|
|
|
if (iter == NULL)
|
|
return -1;
|
|
for (;;) {
|
|
PyObject *next = PyIter_Next(iter);
|
|
if (next == NULL) {
|
|
if (PyErr_Occurred())
|
|
ok = -1;
|
|
break;
|
|
}
|
|
ok = PySequence_Contains(other, next);
|
|
Py_DECREF(next);
|
|
if (ok <= 0)
|
|
break;
|
|
}
|
|
Py_DECREF(iter);
|
|
return ok;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
Py_ssize_t len_self, len_other;
|
|
int ok;
|
|
PyObject *result;
|
|
|
|
assert(self != NULL);
|
|
assert(PyDictViewSet_Check(self));
|
|
assert(other != NULL);
|
|
|
|
if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
len_self = PyObject_Size(self);
|
|
if (len_self < 0)
|
|
return NULL;
|
|
len_other = PyObject_Size(other);
|
|
if (len_other < 0)
|
|
return NULL;
|
|
|
|
ok = 0;
|
|
switch(op) {
|
|
|
|
case Py_NE:
|
|
case Py_EQ:
|
|
if (len_self == len_other)
|
|
ok = all_contained_in(self, other);
|
|
if (op == Py_NE && ok >= 0)
|
|
ok = !ok;
|
|
break;
|
|
|
|
case Py_LT:
|
|
if (len_self < len_other)
|
|
ok = all_contained_in(self, other);
|
|
break;
|
|
|
|
case Py_LE:
|
|
if (len_self <= len_other)
|
|
ok = all_contained_in(self, other);
|
|
break;
|
|
|
|
case Py_GT:
|
|
if (len_self > len_other)
|
|
ok = all_contained_in(other, self);
|
|
break;
|
|
|
|
case Py_GE:
|
|
if (len_self >= len_other)
|
|
ok = all_contained_in(other, self);
|
|
break;
|
|
|
|
}
|
|
if (ok < 0)
|
|
return NULL;
|
|
result = ok ? Py_True : Py_False;
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
dictview_repr(dictviewobject *dv)
|
|
{
|
|
PyObject *seq;
|
|
PyObject *result;
|
|
|
|
seq = PySequence_List((PyObject *)dv);
|
|
if (seq == NULL)
|
|
return NULL;
|
|
|
|
result = PyUnicode_FromFormat("%s(%R)", Py_TYPE(dv)->tp_name, seq);
|
|
Py_DECREF(seq);
|
|
return result;
|
|
}
|
|
|
|
/*** dict_keys ***/
|
|
|
|
static PyObject *
|
|
dictkeys_iter(dictviewobject *dv)
|
|
{
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterKey_Type);
|
|
}
|
|
|
|
static int
|
|
dictkeys_contains(dictviewobject *dv, PyObject *obj)
|
|
{
|
|
if (dv->dv_dict == NULL)
|
|
return 0;
|
|
return PyDict_Contains((PyObject *)dv->dv_dict, obj);
|
|
}
|
|
|
|
static PySequenceMethods dictkeys_as_sequence = {
|
|
(lenfunc)dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)dictkeys_contains, /* sq_contains */
|
|
};
|
|
|
|
static PyObject*
|
|
dictviews_sub(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(difference_update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_difference_update, "O", other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_and(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(intersection_update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_intersection_update, "O", other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_or(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_update, "O", other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyObject*
|
|
dictviews_xor(PyObject* self, PyObject *other)
|
|
{
|
|
PyObject *result = PySet_New(self);
|
|
PyObject *tmp;
|
|
_Py_IDENTIFIER(symmetric_difference_update);
|
|
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
tmp = _PyObject_CallMethodId(result, &PyId_symmetric_difference_update, "O",
|
|
other);
|
|
if (tmp == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
Py_DECREF(tmp);
|
|
return result;
|
|
}
|
|
|
|
static PyNumberMethods dictviews_as_number = {
|
|
0, /*nb_add*/
|
|
(binaryfunc)dictviews_sub, /*nb_subtract*/
|
|
0, /*nb_multiply*/
|
|
0, /*nb_remainder*/
|
|
0, /*nb_divmod*/
|
|
0, /*nb_power*/
|
|
0, /*nb_negative*/
|
|
0, /*nb_positive*/
|
|
0, /*nb_absolute*/
|
|
0, /*nb_bool*/
|
|
0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
0, /*nb_rshift*/
|
|
(binaryfunc)dictviews_and, /*nb_and*/
|
|
(binaryfunc)dictviews_xor, /*nb_xor*/
|
|
(binaryfunc)dictviews_or, /*nb_or*/
|
|
};
|
|
|
|
static PyObject*
|
|
dictviews_isdisjoint(PyObject *self, PyObject *other)
|
|
{
|
|
PyObject *it;
|
|
PyObject *item = NULL;
|
|
|
|
if (self == other) {
|
|
if (dictview_len((dictviewobject *)self) == 0)
|
|
Py_RETURN_TRUE;
|
|
else
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
/* Iterate over the shorter object (only if other is a set,
|
|
* because PySequence_Contains may be expensive otherwise): */
|
|
if (PyAnySet_Check(other) || PyDictViewSet_Check(other)) {
|
|
Py_ssize_t len_self = dictview_len((dictviewobject *)self);
|
|
Py_ssize_t len_other = PyObject_Size(other);
|
|
if (len_other == -1)
|
|
return NULL;
|
|
|
|
if ((len_other > len_self)) {
|
|
PyObject *tmp = other;
|
|
other = self;
|
|
self = tmp;
|
|
}
|
|
}
|
|
|
|
it = PyObject_GetIter(other);
|
|
if (it == NULL)
|
|
return NULL;
|
|
|
|
while ((item = PyIter_Next(it)) != NULL) {
|
|
int contains = PySequence_Contains(self, item);
|
|
Py_DECREF(item);
|
|
if (contains == -1) {
|
|
Py_DECREF(it);
|
|
return NULL;
|
|
}
|
|
|
|
if (contains) {
|
|
Py_DECREF(it);
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
Py_DECREF(it);
|
|
if (PyErr_Occurred())
|
|
return NULL; /* PyIter_Next raised an exception. */
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyDoc_STRVAR(isdisjoint_doc,
|
|
"Return True if the view and the given iterable have a null intersection.");
|
|
|
|
static PyMethodDef dictkeys_methods[] = {
|
|
{"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O,
|
|
isdisjoint_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictKeys_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_keys", /* tp_name */
|
|
sizeof(dictviewobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dictview_repr, /* tp_repr */
|
|
&dictviews_as_number, /* tp_as_number */
|
|
&dictkeys_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
dictview_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictkeys_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictkeys_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
dictkeys_new(PyObject *dict)
|
|
{
|
|
return dictview_new(dict, &PyDictKeys_Type);
|
|
}
|
|
|
|
/*** dict_items ***/
|
|
|
|
static PyObject *
|
|
dictitems_iter(dictviewobject *dv)
|
|
{
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterItem_Type);
|
|
}
|
|
|
|
static int
|
|
dictitems_contains(dictviewobject *dv, PyObject *obj)
|
|
{
|
|
PyObject *key, *value, *found;
|
|
if (dv->dv_dict == NULL)
|
|
return 0;
|
|
if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2)
|
|
return 0;
|
|
key = PyTuple_GET_ITEM(obj, 0);
|
|
value = PyTuple_GET_ITEM(obj, 1);
|
|
found = PyDict_GetItem((PyObject *)dv->dv_dict, key);
|
|
if (found == NULL) {
|
|
if (PyErr_Occurred())
|
|
return -1;
|
|
return 0;
|
|
}
|
|
return PyObject_RichCompareBool(value, found, Py_EQ);
|
|
}
|
|
|
|
static PySequenceMethods dictitems_as_sequence = {
|
|
(lenfunc)dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)dictitems_contains, /* sq_contains */
|
|
};
|
|
|
|
static PyMethodDef dictitems_methods[] = {
|
|
{"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O,
|
|
isdisjoint_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictItems_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_items", /* tp_name */
|
|
sizeof(dictviewobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dictview_repr, /* tp_repr */
|
|
&dictviews_as_number, /* tp_as_number */
|
|
&dictitems_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
dictview_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictitems_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictitems_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
dictitems_new(PyObject *dict)
|
|
{
|
|
return dictview_new(dict, &PyDictItems_Type);
|
|
}
|
|
|
|
/*** dict_values ***/
|
|
|
|
static PyObject *
|
|
dictvalues_iter(dictviewobject *dv)
|
|
{
|
|
if (dv->dv_dict == NULL) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
return dictiter_new(dv->dv_dict, &PyDictIterValue_Type);
|
|
}
|
|
|
|
static PySequenceMethods dictvalues_as_sequence = {
|
|
(lenfunc)dictview_len, /* sq_length */
|
|
0, /* sq_concat */
|
|
0, /* sq_repeat */
|
|
0, /* sq_item */
|
|
0, /* sq_slice */
|
|
0, /* sq_ass_item */
|
|
0, /* sq_ass_slice */
|
|
(objobjproc)0, /* sq_contains */
|
|
};
|
|
|
|
static PyMethodDef dictvalues_methods[] = {
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyTypeObject PyDictValues_Type = {
|
|
PyVarObject_HEAD_INIT(&PyType_Type, 0)
|
|
"dict_values", /* tp_name */
|
|
sizeof(dictviewobject), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
/* methods */
|
|
(destructor)dictview_dealloc, /* tp_dealloc */
|
|
0, /* tp_print */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_reserved */
|
|
(reprfunc)dictview_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
&dictvalues_as_sequence, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */
|
|
0, /* tp_doc */
|
|
(traverseproc)dictview_traverse, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
(getiterfunc)dictvalues_iter, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
dictvalues_methods, /* tp_methods */
|
|
0,
|
|
};
|
|
|
|
static PyObject *
|
|
dictvalues_new(PyObject *dict)
|
|
{
|
|
return dictview_new(dict, &PyDictValues_Type);
|
|
}
|