mirror of
https://github.com/python/cpython.git
synced 2025-01-26 11:04:21 +08:00
55671fe047
In preparation for a per-interpreter GIL, we add PyInterpreterState.ceval.gil, set it to the shared GIL for each interpreter, and use that rather than using _PyRuntime.ceval.gil directly. Note that _PyRuntime.ceval.gil is still the actual GIL.
1024 lines
31 KiB
C
1024 lines
31 KiB
C
|
|
#include "Python.h"
|
|
#include "pycore_atomic.h" // _Py_atomic_int
|
|
#include "pycore_ceval.h" // _PyEval_SignalReceived()
|
|
#include "pycore_pyerrors.h" // _PyErr_GetRaisedException()
|
|
#include "pycore_pylifecycle.h" // _PyErr_Print()
|
|
#include "pycore_initconfig.h" // _PyStatus_OK()
|
|
#include "pycore_interp.h" // _Py_RunGC()
|
|
#include "pycore_pymem.h" // _PyMem_IsPtrFreed()
|
|
|
|
/*
|
|
Notes about the implementation:
|
|
|
|
- The GIL is just a boolean variable (locked) whose access is protected
|
|
by a mutex (gil_mutex), and whose changes are signalled by a condition
|
|
variable (gil_cond). gil_mutex is taken for short periods of time,
|
|
and therefore mostly uncontended.
|
|
|
|
- In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be
|
|
able to release the GIL on demand by another thread. A volatile boolean
|
|
variable (gil_drop_request) is used for that purpose, which is checked
|
|
at every turn of the eval loop. That variable is set after a wait of
|
|
`interval` microseconds on `gil_cond` has timed out.
|
|
|
|
[Actually, another volatile boolean variable (eval_breaker) is used
|
|
which ORs several conditions into one. Volatile booleans are
|
|
sufficient as inter-thread signalling means since Python is run
|
|
on cache-coherent architectures only.]
|
|
|
|
- A thread wanting to take the GIL will first let pass a given amount of
|
|
time (`interval` microseconds) before setting gil_drop_request. This
|
|
encourages a defined switching period, but doesn't enforce it since
|
|
opcodes can take an arbitrary time to execute.
|
|
|
|
The `interval` value is available for the user to read and modify
|
|
using the Python API `sys.{get,set}switchinterval()`.
|
|
|
|
- When a thread releases the GIL and gil_drop_request is set, that thread
|
|
ensures that another GIL-awaiting thread gets scheduled.
|
|
It does so by waiting on a condition variable (switch_cond) until
|
|
the value of last_holder is changed to something else than its
|
|
own thread state pointer, indicating that another thread was able to
|
|
take the GIL.
|
|
|
|
This is meant to prohibit the latency-adverse behaviour on multi-core
|
|
machines where one thread would speculatively release the GIL, but still
|
|
run and end up being the first to re-acquire it, making the "timeslices"
|
|
much longer than expected.
|
|
(Note: this mechanism is enabled with FORCE_SWITCHING above)
|
|
*/
|
|
|
|
// GH-89279: Force inlining by using a macro.
|
|
#if defined(_MSC_VER) && SIZEOF_INT == 4
|
|
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) (assert(sizeof((ATOMIC_VAL)->_value) == 4), *((volatile int*)&((ATOMIC_VAL)->_value)))
|
|
#else
|
|
#define _Py_atomic_load_relaxed_int32(ATOMIC_VAL) _Py_atomic_load_relaxed(ATOMIC_VAL)
|
|
#endif
|
|
|
|
/* This can set eval_breaker to 0 even though gil_drop_request became
|
|
1. We believe this is all right because the eval loop will release
|
|
the GIL eventually anyway. */
|
|
static inline void
|
|
COMPUTE_EVAL_BREAKER(PyInterpreterState *interp,
|
|
struct _ceval_runtime_state *ceval,
|
|
struct _ceval_state *ceval2)
|
|
{
|
|
_Py_atomic_store_relaxed(&ceval2->eval_breaker,
|
|
_Py_atomic_load_relaxed_int32(&ceval2->gil_drop_request)
|
|
| (_Py_atomic_load_relaxed_int32(&ceval->signals_pending)
|
|
&& _Py_ThreadCanHandleSignals(interp))
|
|
| (_Py_atomic_load_relaxed_int32(&ceval2->pending.calls_to_do)
|
|
&& _Py_ThreadCanHandlePendingCalls())
|
|
| ceval2->pending.async_exc
|
|
| _Py_atomic_load_relaxed_int32(&ceval2->gc_scheduled));
|
|
}
|
|
|
|
|
|
static inline void
|
|
SET_GIL_DROP_REQUEST(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
_Py_atomic_store_relaxed(&ceval2->gil_drop_request, 1);
|
|
_Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
|
|
}
|
|
|
|
|
|
static inline void
|
|
RESET_GIL_DROP_REQUEST(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
_Py_atomic_store_relaxed(&ceval2->gil_drop_request, 0);
|
|
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
|
|
}
|
|
|
|
|
|
static inline void
|
|
SIGNAL_PENDING_CALLS(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
_Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 1);
|
|
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
|
|
}
|
|
|
|
|
|
static inline void
|
|
UNSIGNAL_PENDING_CALLS(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
_Py_atomic_store_relaxed(&ceval2->pending.calls_to_do, 0);
|
|
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
|
|
}
|
|
|
|
|
|
static inline void
|
|
SIGNAL_PENDING_SIGNALS(PyInterpreterState *interp, int force)
|
|
{
|
|
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
_Py_atomic_store_relaxed(&ceval->signals_pending, 1);
|
|
if (force) {
|
|
_Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
|
|
}
|
|
else {
|
|
/* eval_breaker is not set to 1 if thread_can_handle_signals() is false */
|
|
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
UNSIGNAL_PENDING_SIGNALS(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
_Py_atomic_store_relaxed(&ceval->signals_pending, 0);
|
|
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
|
|
}
|
|
|
|
|
|
static inline void
|
|
SIGNAL_ASYNC_EXC(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
ceval2->pending.async_exc = 1;
|
|
_Py_atomic_store_relaxed(&ceval2->eval_breaker, 1);
|
|
}
|
|
|
|
|
|
static inline void
|
|
UNSIGNAL_ASYNC_EXC(PyInterpreterState *interp)
|
|
{
|
|
struct _ceval_runtime_state *ceval = &interp->runtime->ceval;
|
|
struct _ceval_state *ceval2 = &interp->ceval;
|
|
ceval2->pending.async_exc = 0;
|
|
COMPUTE_EVAL_BREAKER(interp, ceval, ceval2);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/* Ensure that tstate is valid */
|
|
static int
|
|
is_tstate_valid(PyThreadState *tstate)
|
|
{
|
|
assert(!_PyMem_IsPtrFreed(tstate));
|
|
assert(!_PyMem_IsPtrFreed(tstate->interp));
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Implementation of the Global Interpreter Lock (GIL).
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
|
|
#include "pycore_atomic.h"
|
|
|
|
|
|
#include "condvar.h"
|
|
|
|
#define MUTEX_INIT(mut) \
|
|
if (PyMUTEX_INIT(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_INIT(" #mut ") failed"); };
|
|
#define MUTEX_FINI(mut) \
|
|
if (PyMUTEX_FINI(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_FINI(" #mut ") failed"); };
|
|
#define MUTEX_LOCK(mut) \
|
|
if (PyMUTEX_LOCK(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_LOCK(" #mut ") failed"); };
|
|
#define MUTEX_UNLOCK(mut) \
|
|
if (PyMUTEX_UNLOCK(&(mut))) { \
|
|
Py_FatalError("PyMUTEX_UNLOCK(" #mut ") failed"); };
|
|
|
|
#define COND_INIT(cond) \
|
|
if (PyCOND_INIT(&(cond))) { \
|
|
Py_FatalError("PyCOND_INIT(" #cond ") failed"); };
|
|
#define COND_FINI(cond) \
|
|
if (PyCOND_FINI(&(cond))) { \
|
|
Py_FatalError("PyCOND_FINI(" #cond ") failed"); };
|
|
#define COND_SIGNAL(cond) \
|
|
if (PyCOND_SIGNAL(&(cond))) { \
|
|
Py_FatalError("PyCOND_SIGNAL(" #cond ") failed"); };
|
|
#define COND_WAIT(cond, mut) \
|
|
if (PyCOND_WAIT(&(cond), &(mut))) { \
|
|
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); };
|
|
#define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \
|
|
{ \
|
|
int r = PyCOND_TIMEDWAIT(&(cond), &(mut), (microseconds)); \
|
|
if (r < 0) \
|
|
Py_FatalError("PyCOND_WAIT(" #cond ") failed"); \
|
|
if (r) /* 1 == timeout, 2 == impl. can't say, so assume timeout */ \
|
|
timeout_result = 1; \
|
|
else \
|
|
timeout_result = 0; \
|
|
} \
|
|
|
|
|
|
#define DEFAULT_INTERVAL 5000
|
|
|
|
static void _gil_initialize(struct _gil_runtime_state *gil)
|
|
{
|
|
_Py_atomic_int uninitialized = {-1};
|
|
gil->locked = uninitialized;
|
|
gil->interval = DEFAULT_INTERVAL;
|
|
}
|
|
|
|
static int gil_created(struct _gil_runtime_state *gil)
|
|
{
|
|
if (gil == NULL) {
|
|
return 0;
|
|
}
|
|
return (_Py_atomic_load_explicit(&gil->locked, _Py_memory_order_acquire) >= 0);
|
|
}
|
|
|
|
static void create_gil(struct _gil_runtime_state *gil)
|
|
{
|
|
MUTEX_INIT(gil->mutex);
|
|
#ifdef FORCE_SWITCHING
|
|
MUTEX_INIT(gil->switch_mutex);
|
|
#endif
|
|
COND_INIT(gil->cond);
|
|
#ifdef FORCE_SWITCHING
|
|
COND_INIT(gil->switch_cond);
|
|
#endif
|
|
_Py_atomic_store_relaxed(&gil->last_holder, 0);
|
|
_Py_ANNOTATE_RWLOCK_CREATE(&gil->locked);
|
|
_Py_atomic_store_explicit(&gil->locked, 0, _Py_memory_order_release);
|
|
}
|
|
|
|
static void destroy_gil(struct _gil_runtime_state *gil)
|
|
{
|
|
/* some pthread-like implementations tie the mutex to the cond
|
|
* and must have the cond destroyed first.
|
|
*/
|
|
COND_FINI(gil->cond);
|
|
MUTEX_FINI(gil->mutex);
|
|
#ifdef FORCE_SWITCHING
|
|
COND_FINI(gil->switch_cond);
|
|
MUTEX_FINI(gil->switch_mutex);
|
|
#endif
|
|
_Py_atomic_store_explicit(&gil->locked, -1,
|
|
_Py_memory_order_release);
|
|
_Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
static void recreate_gil(struct _gil_runtime_state *gil)
|
|
{
|
|
_Py_ANNOTATE_RWLOCK_DESTROY(&gil->locked);
|
|
/* XXX should we destroy the old OS resources here? */
|
|
create_gil(gil);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
drop_gil(struct _ceval_state *ceval, PyThreadState *tstate)
|
|
{
|
|
struct _gil_runtime_state *gil = ceval->gil;
|
|
if (!_Py_atomic_load_relaxed(&gil->locked)) {
|
|
Py_FatalError("drop_gil: GIL is not locked");
|
|
}
|
|
|
|
/* tstate is allowed to be NULL (early interpreter init) */
|
|
if (tstate != NULL) {
|
|
/* Sub-interpreter support: threads might have been switched
|
|
under our feet using PyThreadState_Swap(). Fix the GIL last
|
|
holder variable so that our heuristics work. */
|
|
_Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
|
|
}
|
|
|
|
MUTEX_LOCK(gil->mutex);
|
|
_Py_ANNOTATE_RWLOCK_RELEASED(&gil->locked, /*is_write=*/1);
|
|
_Py_atomic_store_relaxed(&gil->locked, 0);
|
|
COND_SIGNAL(gil->cond);
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
|
|
#ifdef FORCE_SWITCHING
|
|
if (_Py_atomic_load_relaxed(&ceval->gil_drop_request) && tstate != NULL) {
|
|
MUTEX_LOCK(gil->switch_mutex);
|
|
/* Not switched yet => wait */
|
|
if (((PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) == tstate)
|
|
{
|
|
assert(is_tstate_valid(tstate));
|
|
RESET_GIL_DROP_REQUEST(tstate->interp);
|
|
/* NOTE: if COND_WAIT does not atomically start waiting when
|
|
releasing the mutex, another thread can run through, take
|
|
the GIL and drop it again, and reset the condition
|
|
before we even had a chance to wait for it. */
|
|
COND_WAIT(gil->switch_cond, gil->switch_mutex);
|
|
}
|
|
MUTEX_UNLOCK(gil->switch_mutex);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Check if a Python thread must exit immediately, rather than taking the GIL
|
|
if Py_Finalize() has been called.
|
|
|
|
When this function is called by a daemon thread after Py_Finalize() has been
|
|
called, the GIL does no longer exist.
|
|
|
|
tstate must be non-NULL. */
|
|
static inline int
|
|
tstate_must_exit(PyThreadState *tstate)
|
|
{
|
|
/* bpo-39877: Access _PyRuntime directly rather than using
|
|
tstate->interp->runtime to support calls from Python daemon threads.
|
|
After Py_Finalize() has been called, tstate can be a dangling pointer:
|
|
point to PyThreadState freed memory. */
|
|
PyThreadState *finalizing = _PyRuntimeState_GetFinalizing(&_PyRuntime);
|
|
return (finalizing != NULL && finalizing != tstate);
|
|
}
|
|
|
|
|
|
/* Take the GIL.
|
|
|
|
The function saves errno at entry and restores its value at exit.
|
|
|
|
tstate must be non-NULL. */
|
|
static void
|
|
take_gil(PyThreadState *tstate)
|
|
{
|
|
int err = errno;
|
|
|
|
assert(tstate != NULL);
|
|
|
|
if (tstate_must_exit(tstate)) {
|
|
/* bpo-39877: If Py_Finalize() has been called and tstate is not the
|
|
thread which called Py_Finalize(), exit immediately the thread.
|
|
|
|
This code path can be reached by a daemon thread after Py_Finalize()
|
|
completes. In this case, tstate is a dangling pointer: points to
|
|
PyThreadState freed memory. */
|
|
PyThread_exit_thread();
|
|
}
|
|
|
|
assert(is_tstate_valid(tstate));
|
|
PyInterpreterState *interp = tstate->interp;
|
|
struct _ceval_state *ceval = &interp->ceval;
|
|
struct _gil_runtime_state *gil = ceval->gil;
|
|
|
|
/* Check that _PyEval_InitThreads() was called to create the lock */
|
|
assert(gil_created(gil));
|
|
|
|
MUTEX_LOCK(gil->mutex);
|
|
|
|
if (!_Py_atomic_load_relaxed(&gil->locked)) {
|
|
goto _ready;
|
|
}
|
|
|
|
int drop_requested = 0;
|
|
while (_Py_atomic_load_relaxed(&gil->locked)) {
|
|
unsigned long saved_switchnum = gil->switch_number;
|
|
|
|
unsigned long interval = (gil->interval >= 1 ? gil->interval : 1);
|
|
int timed_out = 0;
|
|
COND_TIMED_WAIT(gil->cond, gil->mutex, interval, timed_out);
|
|
|
|
/* If we timed out and no switch occurred in the meantime, it is time
|
|
to ask the GIL-holding thread to drop it. */
|
|
if (timed_out &&
|
|
_Py_atomic_load_relaxed(&gil->locked) &&
|
|
gil->switch_number == saved_switchnum)
|
|
{
|
|
if (tstate_must_exit(tstate)) {
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
// gh-96387: If the loop requested a drop request in a previous
|
|
// iteration, reset the request. Otherwise, drop_gil() can
|
|
// block forever waiting for the thread which exited. Drop
|
|
// requests made by other threads are also reset: these threads
|
|
// may have to request again a drop request (iterate one more
|
|
// time).
|
|
if (drop_requested) {
|
|
RESET_GIL_DROP_REQUEST(interp);
|
|
}
|
|
PyThread_exit_thread();
|
|
}
|
|
assert(is_tstate_valid(tstate));
|
|
|
|
SET_GIL_DROP_REQUEST(interp);
|
|
drop_requested = 1;
|
|
}
|
|
}
|
|
|
|
_ready:
|
|
#ifdef FORCE_SWITCHING
|
|
/* This mutex must be taken before modifying gil->last_holder:
|
|
see drop_gil(). */
|
|
MUTEX_LOCK(gil->switch_mutex);
|
|
#endif
|
|
/* We now hold the GIL */
|
|
_Py_atomic_store_relaxed(&gil->locked, 1);
|
|
_Py_ANNOTATE_RWLOCK_ACQUIRED(&gil->locked, /*is_write=*/1);
|
|
|
|
if (tstate != (PyThreadState*)_Py_atomic_load_relaxed(&gil->last_holder)) {
|
|
_Py_atomic_store_relaxed(&gil->last_holder, (uintptr_t)tstate);
|
|
++gil->switch_number;
|
|
}
|
|
|
|
#ifdef FORCE_SWITCHING
|
|
COND_SIGNAL(gil->switch_cond);
|
|
MUTEX_UNLOCK(gil->switch_mutex);
|
|
#endif
|
|
|
|
if (tstate_must_exit(tstate)) {
|
|
/* bpo-36475: If Py_Finalize() has been called and tstate is not
|
|
the thread which called Py_Finalize(), exit immediately the
|
|
thread.
|
|
|
|
This code path can be reached by a daemon thread which was waiting
|
|
in take_gil() while the main thread called
|
|
wait_for_thread_shutdown() from Py_Finalize(). */
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
drop_gil(ceval, tstate);
|
|
PyThread_exit_thread();
|
|
}
|
|
assert(is_tstate_valid(tstate));
|
|
|
|
if (_Py_atomic_load_relaxed(&ceval->gil_drop_request)) {
|
|
RESET_GIL_DROP_REQUEST(interp);
|
|
}
|
|
else {
|
|
/* bpo-40010: eval_breaker should be recomputed to be set to 1 if there
|
|
is a pending signal: signal received by another thread which cannot
|
|
handle signals.
|
|
|
|
Note: RESET_GIL_DROP_REQUEST() calls COMPUTE_EVAL_BREAKER(). */
|
|
COMPUTE_EVAL_BREAKER(interp, &_PyRuntime.ceval, ceval);
|
|
}
|
|
|
|
/* Don't access tstate if the thread must exit */
|
|
if (tstate->async_exc != NULL) {
|
|
_PyEval_SignalAsyncExc(tstate->interp);
|
|
}
|
|
|
|
MUTEX_UNLOCK(gil->mutex);
|
|
|
|
errno = err;
|
|
}
|
|
|
|
void _PyEval_SetSwitchInterval(unsigned long microseconds)
|
|
{
|
|
/* XXX per-interpreter GIL */
|
|
PyInterpreterState *interp = _PyInterpreterState_Main();
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
assert(gil != NULL);
|
|
gil->interval = microseconds;
|
|
}
|
|
|
|
unsigned long _PyEval_GetSwitchInterval(void)
|
|
{
|
|
/* XXX per-interpreter GIL */
|
|
PyInterpreterState *interp = _PyInterpreterState_Main();
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
assert(gil != NULL);
|
|
return gil->interval;
|
|
}
|
|
|
|
|
|
int
|
|
_PyEval_ThreadsInitialized(void)
|
|
{
|
|
/* XXX per-interpreter GIL */
|
|
PyInterpreterState *interp = _PyInterpreterState_Main();
|
|
if (interp == NULL) {
|
|
return 0;
|
|
}
|
|
struct _gil_runtime_state *gil = interp->ceval.gil;
|
|
return gil_created(gil);
|
|
}
|
|
|
|
int
|
|
PyEval_ThreadsInitialized(void)
|
|
{
|
|
return _PyEval_ThreadsInitialized();
|
|
}
|
|
|
|
PyStatus
|
|
_PyEval_InitGIL(PyThreadState *tstate)
|
|
{
|
|
assert(tstate->interp->ceval.gil == NULL);
|
|
|
|
/* XXX per-interpreter GIL */
|
|
struct _gil_runtime_state *gil = &tstate->interp->runtime->ceval.gil;
|
|
if (!_Py_IsMainInterpreter(tstate->interp)) {
|
|
/* Currently, the GIL is shared by all interpreters,
|
|
and only the main interpreter is responsible to create
|
|
and destroy it. */
|
|
assert(gil_created(gil));
|
|
tstate->interp->ceval.gil = gil;
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
assert(!gil_created(gil));
|
|
|
|
PyThread_init_thread();
|
|
create_gil(gil);
|
|
assert(gil_created(gil));
|
|
tstate->interp->ceval.gil = gil;
|
|
take_gil(tstate);
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
void
|
|
_PyEval_FiniGIL(PyInterpreterState *interp)
|
|
{
|
|
if (interp->ceval.gil == NULL) {
|
|
/* It was already finalized (or hasn't been initialized yet). */
|
|
return;
|
|
}
|
|
|
|
/* XXX per-interpreter GIL */
|
|
struct _gil_runtime_state *gil = &interp->runtime->ceval.gil;
|
|
if (!_Py_IsMainInterpreter(interp)) {
|
|
/* Currently, the GIL is shared by all interpreters,
|
|
and only the main interpreter is responsible to create
|
|
and destroy it. */
|
|
assert(interp->ceval.gil == gil);
|
|
interp->ceval.gil = NULL;
|
|
return;
|
|
}
|
|
|
|
if (!gil_created(gil)) {
|
|
/* First Py_InitializeFromConfig() call: the GIL doesn't exist
|
|
yet: do nothing. */
|
|
return;
|
|
}
|
|
|
|
destroy_gil(gil);
|
|
assert(!gil_created(gil));
|
|
interp->ceval.gil = NULL;
|
|
}
|
|
|
|
void
|
|
PyEval_InitThreads(void)
|
|
{
|
|
/* Do nothing: kept for backward compatibility */
|
|
}
|
|
|
|
void
|
|
_PyEval_Fini(void)
|
|
{
|
|
#ifdef Py_STATS
|
|
_Py_PrintSpecializationStats(1);
|
|
#endif
|
|
}
|
|
void
|
|
PyEval_AcquireLock(void)
|
|
{
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
|
|
take_gil(tstate);
|
|
}
|
|
|
|
void
|
|
PyEval_ReleaseLock(void)
|
|
{
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
/* This function must succeed when the current thread state is NULL.
|
|
We therefore avoid PyThreadState_Get() which dumps a fatal error
|
|
in debug mode. */
|
|
struct _ceval_state *ceval = &tstate->interp->ceval;
|
|
drop_gil(ceval, tstate);
|
|
}
|
|
|
|
void
|
|
_PyEval_ReleaseLock(PyThreadState *tstate)
|
|
{
|
|
struct _ceval_state *ceval = &tstate->interp->ceval;
|
|
drop_gil(ceval, tstate);
|
|
}
|
|
|
|
void
|
|
PyEval_AcquireThread(PyThreadState *tstate)
|
|
{
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
|
|
take_gil(tstate);
|
|
|
|
if (_PyThreadState_Swap(tstate->interp->runtime, tstate) != NULL) {
|
|
Py_FatalError("non-NULL old thread state");
|
|
}
|
|
}
|
|
|
|
void
|
|
PyEval_ReleaseThread(PyThreadState *tstate)
|
|
{
|
|
assert(is_tstate_valid(tstate));
|
|
|
|
_PyRuntimeState *runtime = tstate->interp->runtime;
|
|
PyThreadState *new_tstate = _PyThreadState_Swap(runtime, NULL);
|
|
if (new_tstate != tstate) {
|
|
Py_FatalError("wrong thread state");
|
|
}
|
|
struct _ceval_state *ceval = &tstate->interp->ceval;
|
|
drop_gil(ceval, tstate);
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
/* This function is called from PyOS_AfterFork_Child to destroy all threads
|
|
which are not running in the child process, and clear internal locks
|
|
which might be held by those threads. */
|
|
PyStatus
|
|
_PyEval_ReInitThreads(PyThreadState *tstate)
|
|
{
|
|
assert(tstate->interp == _PyInterpreterState_Main());
|
|
|
|
struct _gil_runtime_state *gil = tstate->interp->ceval.gil;
|
|
if (!gil_created(gil)) {
|
|
return _PyStatus_OK();
|
|
}
|
|
recreate_gil(gil);
|
|
|
|
take_gil(tstate);
|
|
|
|
struct _pending_calls *pending = &tstate->interp->ceval.pending;
|
|
if (_PyThread_at_fork_reinit(&pending->lock) < 0) {
|
|
return _PyStatus_ERR("Can't reinitialize pending calls lock");
|
|
}
|
|
|
|
/* Destroy all threads except the current one */
|
|
_PyThreadState_DeleteExcept(tstate);
|
|
return _PyStatus_OK();
|
|
}
|
|
#endif
|
|
|
|
/* This function is used to signal that async exceptions are waiting to be
|
|
raised. */
|
|
|
|
void
|
|
_PyEval_SignalAsyncExc(PyInterpreterState *interp)
|
|
{
|
|
SIGNAL_ASYNC_EXC(interp);
|
|
}
|
|
|
|
PyThreadState *
|
|
PyEval_SaveThread(void)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
PyThreadState *tstate = _PyThreadState_Swap(runtime, NULL);
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
|
|
struct _ceval_state *ceval = &tstate->interp->ceval;
|
|
assert(gil_created(ceval->gil));
|
|
drop_gil(ceval, tstate);
|
|
return tstate;
|
|
}
|
|
|
|
void
|
|
PyEval_RestoreThread(PyThreadState *tstate)
|
|
{
|
|
_Py_EnsureTstateNotNULL(tstate);
|
|
|
|
take_gil(tstate);
|
|
|
|
_PyThreadState_Swap(tstate->interp->runtime, tstate);
|
|
}
|
|
|
|
|
|
/* Mechanism whereby asynchronously executing callbacks (e.g. UNIX
|
|
signal handlers or Mac I/O completion routines) can schedule calls
|
|
to a function to be called synchronously.
|
|
The synchronous function is called with one void* argument.
|
|
It should return 0 for success or -1 for failure -- failure should
|
|
be accompanied by an exception.
|
|
|
|
If registry succeeds, the registry function returns 0; if it fails
|
|
(e.g. due to too many pending calls) it returns -1 (without setting
|
|
an exception condition).
|
|
|
|
Note that because registry may occur from within signal handlers,
|
|
or other asynchronous events, calling malloc() is unsafe!
|
|
|
|
Any thread can schedule pending calls, but only the main thread
|
|
will execute them.
|
|
There is no facility to schedule calls to a particular thread, but
|
|
that should be easy to change, should that ever be required. In
|
|
that case, the static variables here should go into the python
|
|
threadstate.
|
|
*/
|
|
|
|
void
|
|
_PyEval_SignalReceived(PyInterpreterState *interp)
|
|
{
|
|
#ifdef MS_WINDOWS
|
|
// bpo-42296: On Windows, _PyEval_SignalReceived() is called from a signal
|
|
// handler which can run in a thread different than the Python thread, in
|
|
// which case _Py_ThreadCanHandleSignals() is wrong. Ignore
|
|
// _Py_ThreadCanHandleSignals() and always set eval_breaker to 1.
|
|
//
|
|
// The next eval_frame_handle_pending() call will call
|
|
// _Py_ThreadCanHandleSignals() to recompute eval_breaker.
|
|
int force = 1;
|
|
#else
|
|
int force = 0;
|
|
#endif
|
|
/* bpo-30703: Function called when the C signal handler of Python gets a
|
|
signal. We cannot queue a callback using _PyEval_AddPendingCall() since
|
|
that function is not async-signal-safe. */
|
|
SIGNAL_PENDING_SIGNALS(interp, force);
|
|
}
|
|
|
|
/* Push one item onto the queue while holding the lock. */
|
|
static int
|
|
_push_pending_call(struct _pending_calls *pending,
|
|
int (*func)(void *), void *arg)
|
|
{
|
|
int i = pending->last;
|
|
int j = (i + 1) % NPENDINGCALLS;
|
|
if (j == pending->first) {
|
|
return -1; /* Queue full */
|
|
}
|
|
pending->calls[i].func = func;
|
|
pending->calls[i].arg = arg;
|
|
pending->last = j;
|
|
return 0;
|
|
}
|
|
|
|
/* Pop one item off the queue while holding the lock. */
|
|
static void
|
|
_pop_pending_call(struct _pending_calls *pending,
|
|
int (**func)(void *), void **arg)
|
|
{
|
|
int i = pending->first;
|
|
if (i == pending->last) {
|
|
return; /* Queue empty */
|
|
}
|
|
|
|
*func = pending->calls[i].func;
|
|
*arg = pending->calls[i].arg;
|
|
pending->first = (i + 1) % NPENDINGCALLS;
|
|
}
|
|
|
|
/* This implementation is thread-safe. It allows
|
|
scheduling to be made from any thread, and even from an executing
|
|
callback.
|
|
*/
|
|
|
|
int
|
|
_PyEval_AddPendingCall(PyInterpreterState *interp,
|
|
int (*func)(void *), void *arg)
|
|
{
|
|
struct _pending_calls *pending = &interp->ceval.pending;
|
|
/* Ensure that _PyEval_InitState() was called
|
|
and that _PyEval_FiniState() is not called yet. */
|
|
assert(pending->lock != NULL);
|
|
|
|
PyThread_acquire_lock(pending->lock, WAIT_LOCK);
|
|
int result = _push_pending_call(pending, func, arg);
|
|
PyThread_release_lock(pending->lock);
|
|
|
|
/* signal main loop */
|
|
SIGNAL_PENDING_CALLS(interp);
|
|
return result;
|
|
}
|
|
|
|
int
|
|
Py_AddPendingCall(int (*func)(void *), void *arg)
|
|
{
|
|
/* Best-effort to support subinterpreters and calls with the GIL released.
|
|
|
|
First attempt _PyThreadState_GET() since it supports subinterpreters.
|
|
|
|
If the GIL is released, _PyThreadState_GET() returns NULL . In this
|
|
case, use PyGILState_GetThisThreadState() which works even if the GIL
|
|
is released.
|
|
|
|
Sadly, PyGILState_GetThisThreadState() doesn't support subinterpreters:
|
|
see bpo-10915 and bpo-15751.
|
|
|
|
Py_AddPendingCall() doesn't require the caller to hold the GIL. */
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
if (tstate == NULL) {
|
|
tstate = PyGILState_GetThisThreadState();
|
|
}
|
|
|
|
PyInterpreterState *interp;
|
|
if (tstate != NULL) {
|
|
interp = tstate->interp;
|
|
}
|
|
else {
|
|
/* Last resort: use the main interpreter */
|
|
interp = _PyInterpreterState_Main();
|
|
}
|
|
return _PyEval_AddPendingCall(interp, func, arg);
|
|
}
|
|
|
|
static int
|
|
handle_signals(PyThreadState *tstate)
|
|
{
|
|
assert(is_tstate_valid(tstate));
|
|
if (!_Py_ThreadCanHandleSignals(tstate->interp)) {
|
|
return 0;
|
|
}
|
|
|
|
UNSIGNAL_PENDING_SIGNALS(tstate->interp);
|
|
if (_PyErr_CheckSignalsTstate(tstate) < 0) {
|
|
/* On failure, re-schedule a call to handle_signals(). */
|
|
SIGNAL_PENDING_SIGNALS(tstate->interp, 0);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
make_pending_calls(PyInterpreterState *interp)
|
|
{
|
|
/* only execute pending calls on main thread */
|
|
if (!_Py_ThreadCanHandlePendingCalls()) {
|
|
return 0;
|
|
}
|
|
|
|
/* don't perform recursive pending calls */
|
|
if (interp->ceval.pending.busy) {
|
|
return 0;
|
|
}
|
|
interp->ceval.pending.busy = 1;
|
|
|
|
/* unsignal before starting to call callbacks, so that any callback
|
|
added in-between re-signals */
|
|
UNSIGNAL_PENDING_CALLS(interp);
|
|
int res = 0;
|
|
|
|
/* perform a bounded number of calls, in case of recursion */
|
|
struct _pending_calls *pending = &interp->ceval.pending;
|
|
for (int i=0; i<NPENDINGCALLS; i++) {
|
|
int (*func)(void *) = NULL;
|
|
void *arg = NULL;
|
|
|
|
/* pop one item off the queue while holding the lock */
|
|
PyThread_acquire_lock(pending->lock, WAIT_LOCK);
|
|
_pop_pending_call(pending, &func, &arg);
|
|
PyThread_release_lock(pending->lock);
|
|
|
|
/* having released the lock, perform the callback */
|
|
if (func == NULL) {
|
|
break;
|
|
}
|
|
res = func(arg);
|
|
if (res) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
interp->ceval.pending.busy = 0;
|
|
return res;
|
|
|
|
error:
|
|
interp->ceval.pending.busy = 0;
|
|
SIGNAL_PENDING_CALLS(interp);
|
|
return res;
|
|
}
|
|
|
|
void
|
|
_Py_FinishPendingCalls(PyThreadState *tstate)
|
|
{
|
|
assert(PyGILState_Check());
|
|
assert(is_tstate_valid(tstate));
|
|
|
|
struct _pending_calls *pending = &tstate->interp->ceval.pending;
|
|
|
|
if (!_Py_atomic_load_relaxed_int32(&(pending->calls_to_do))) {
|
|
return;
|
|
}
|
|
|
|
if (make_pending_calls(tstate->interp) < 0) {
|
|
PyObject *exc = _PyErr_GetRaisedException(tstate);
|
|
PyErr_BadInternalCall();
|
|
_PyErr_ChainExceptions1(exc);
|
|
_PyErr_Print(tstate);
|
|
}
|
|
}
|
|
|
|
/* Py_MakePendingCalls() is a simple wrapper for the sake
|
|
of backward-compatibility. */
|
|
int
|
|
Py_MakePendingCalls(void)
|
|
{
|
|
assert(PyGILState_Check());
|
|
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
assert(is_tstate_valid(tstate));
|
|
|
|
/* Python signal handler doesn't really queue a callback: it only signals
|
|
that a signal was received, see _PyEval_SignalReceived(). */
|
|
int res = handle_signals(tstate);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
res = make_pending_calls(tstate->interp);
|
|
if (res != 0) {
|
|
return res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The interpreter's recursion limit */
|
|
|
|
void
|
|
_PyEval_InitRuntimeState(struct _ceval_runtime_state *ceval)
|
|
{
|
|
/* XXX per-interpreter GIL */
|
|
_gil_initialize(&ceval->gil);
|
|
}
|
|
|
|
void
|
|
_PyEval_InitState(struct _ceval_state *ceval, PyThread_type_lock pending_lock)
|
|
{
|
|
struct _pending_calls *pending = &ceval->pending;
|
|
assert(pending->lock == NULL);
|
|
|
|
pending->lock = pending_lock;
|
|
}
|
|
|
|
void
|
|
_PyEval_FiniState(struct _ceval_state *ceval)
|
|
{
|
|
struct _pending_calls *pending = &ceval->pending;
|
|
if (pending->lock != NULL) {
|
|
PyThread_free_lock(pending->lock);
|
|
pending->lock = NULL;
|
|
}
|
|
}
|
|
|
|
/* Handle signals, pending calls, GIL drop request
|
|
and asynchronous exception */
|
|
int
|
|
_Py_HandlePending(PyThreadState *tstate)
|
|
{
|
|
_PyRuntimeState * const runtime = &_PyRuntime;
|
|
struct _ceval_runtime_state *ceval = &runtime->ceval;
|
|
struct _ceval_state *interp_ceval_state = &tstate->interp->ceval;
|
|
|
|
/* Pending signals */
|
|
if (_Py_atomic_load_relaxed_int32(&ceval->signals_pending)) {
|
|
if (handle_signals(tstate) != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Pending calls */
|
|
if (_Py_atomic_load_relaxed_int32(&interp_ceval_state->pending.calls_to_do)) {
|
|
if (make_pending_calls(tstate->interp) != 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* GC scheduled to run */
|
|
if (_Py_atomic_load_relaxed_int32(&interp_ceval_state->gc_scheduled)) {
|
|
_Py_atomic_store_relaxed(&interp_ceval_state->gc_scheduled, 0);
|
|
COMPUTE_EVAL_BREAKER(tstate->interp, ceval, interp_ceval_state);
|
|
_Py_RunGC(tstate);
|
|
}
|
|
|
|
/* GIL drop request */
|
|
if (_Py_atomic_load_relaxed_int32(&interp_ceval_state->gil_drop_request)) {
|
|
/* Give another thread a chance */
|
|
if (_PyThreadState_Swap(runtime, NULL) != tstate) {
|
|
Py_FatalError("tstate mix-up");
|
|
}
|
|
drop_gil(interp_ceval_state, tstate);
|
|
|
|
/* Other threads may run now */
|
|
|
|
take_gil(tstate);
|
|
|
|
if (_PyThreadState_Swap(runtime, tstate) != NULL) {
|
|
Py_FatalError("orphan tstate");
|
|
}
|
|
}
|
|
|
|
/* Check for asynchronous exception. */
|
|
if (tstate->async_exc != NULL) {
|
|
PyObject *exc = tstate->async_exc;
|
|
tstate->async_exc = NULL;
|
|
UNSIGNAL_ASYNC_EXC(tstate->interp);
|
|
_PyErr_SetNone(tstate, exc);
|
|
Py_DECREF(exc);
|
|
return -1;
|
|
}
|
|
|
|
|
|
// It is possible that some of the conditions that trigger the eval breaker
|
|
// are called in a different thread than the Python thread. An example of
|
|
// this is bpo-42296: On Windows, _PyEval_SignalReceived() can be called in
|
|
// a different thread than the Python thread, in which case
|
|
// _Py_ThreadCanHandleSignals() is wrong. Recompute eval_breaker in the
|
|
// current Python thread with the correct _Py_ThreadCanHandleSignals()
|
|
// value. It prevents to interrupt the eval loop at every instruction if
|
|
// the current Python thread cannot handle signals (if
|
|
// _Py_ThreadCanHandleSignals() is false).
|
|
COMPUTE_EVAL_BREAKER(tstate->interp, ceval, interp_ceval_state);
|
|
|
|
return 0;
|
|
}
|
|
|