mirror of
https://github.com/python/cpython.git
synced 2025-01-20 23:45:32 +08:00
71faefc37e
Based on patch from Hervé Coatanhay.
792 lines
26 KiB
C
792 lines
26 KiB
C
/* Authors: Gregory P. Smith & Jeffrey Yasskin */
|
|
#include "Python.h"
|
|
#if defined(HAVE_PIPE2) && !defined(_GNU_SOURCE)
|
|
# define _GNU_SOURCE
|
|
#endif
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#ifdef HAVE_SYS_TYPES_H
|
|
#include <sys/types.h>
|
|
#endif
|
|
#if defined(HAVE_SYS_STAT_H) && defined(__FreeBSD__)
|
|
#include <sys/stat.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_SYSCALL_H
|
|
#include <sys/syscall.h>
|
|
#endif
|
|
#ifdef HAVE_DIRENT_H
|
|
#include <dirent.h>
|
|
#endif
|
|
|
|
#if defined(sun)
|
|
/* readdir64 is used to work around Solaris 9 bug 6395699. */
|
|
# define readdir readdir64
|
|
# define dirent dirent64
|
|
# if !defined(HAVE_DIRFD)
|
|
/* Some versions of Solaris lack dirfd(). */
|
|
# define dirfd(dirp) ((dirp)->dd_fd)
|
|
# define HAVE_DIRFD
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(__FreeBSD__) || (defined(__APPLE__) && defined(__MACH__))
|
|
# define FD_DIR "/dev/fd"
|
|
#else
|
|
# define FD_DIR "/proc/self/fd"
|
|
#endif
|
|
|
|
#define POSIX_CALL(call) if ((call) == -1) goto error
|
|
|
|
|
|
/* Maximum file descriptor, initialized on module load. */
|
|
static long max_fd;
|
|
|
|
|
|
/* Given the gc module call gc.enable() and return 0 on success. */
|
|
static int
|
|
_enable_gc(PyObject *gc_module)
|
|
{
|
|
PyObject *result;
|
|
_Py_IDENTIFIER(enable);
|
|
|
|
result = _PyObject_CallMethodId(gc_module, &PyId_enable, NULL);
|
|
if (result == NULL)
|
|
return 1;
|
|
Py_DECREF(result);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Convert ASCII to a positive int, no libc call. no overflow. -1 on error. */
|
|
static int
|
|
_pos_int_from_ascii(char *name)
|
|
{
|
|
int num = 0;
|
|
while (*name >= '0' && *name <= '9') {
|
|
num = num * 10 + (*name - '0');
|
|
++name;
|
|
}
|
|
if (*name)
|
|
return -1; /* Non digit found, not a number. */
|
|
return num;
|
|
}
|
|
|
|
|
|
#if defined(__FreeBSD__)
|
|
/* When /dev/fd isn't mounted it is often a static directory populated
|
|
* with 0 1 2 or entries for 0 .. 63 on FreeBSD, NetBSD and OpenBSD.
|
|
* NetBSD and OpenBSD have a /proc fs available (though not necessarily
|
|
* mounted) and do not have fdescfs for /dev/fd. MacOS X has a devfs
|
|
* that properly supports /dev/fd.
|
|
*/
|
|
static int
|
|
_is_fdescfs_mounted_on_dev_fd(void)
|
|
{
|
|
struct stat dev_stat;
|
|
struct stat dev_fd_stat;
|
|
if (stat("/dev", &dev_stat) != 0)
|
|
return 0;
|
|
if (stat(FD_DIR, &dev_fd_stat) != 0)
|
|
return 0;
|
|
if (dev_stat.st_dev == dev_fd_stat.st_dev)
|
|
return 0; /* / == /dev == /dev/fd means it is static. #fail */
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* Returns 1 if there is a problem with fd_sequence, 0 otherwise. */
|
|
static int
|
|
_sanity_check_python_fd_sequence(PyObject *fd_sequence)
|
|
{
|
|
Py_ssize_t seq_idx, seq_len = PySequence_Length(fd_sequence);
|
|
long prev_fd = -1;
|
|
for (seq_idx = 0; seq_idx < seq_len; ++seq_idx) {
|
|
PyObject* py_fd = PySequence_Fast_GET_ITEM(fd_sequence, seq_idx);
|
|
long iter_fd = PyLong_AsLong(py_fd);
|
|
if (iter_fd < 0 || iter_fd < prev_fd || iter_fd > INT_MAX) {
|
|
/* Negative, overflow, not a Long, unsorted, too big for a fd. */
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Is fd found in the sorted Python Sequence? */
|
|
static int
|
|
_is_fd_in_sorted_fd_sequence(int fd, PyObject *fd_sequence)
|
|
{
|
|
/* Binary search. */
|
|
Py_ssize_t search_min = 0;
|
|
Py_ssize_t search_max = PySequence_Length(fd_sequence) - 1;
|
|
if (search_max < 0)
|
|
return 0;
|
|
do {
|
|
long middle = (search_min + search_max) / 2;
|
|
long middle_fd = PyLong_AsLong(
|
|
PySequence_Fast_GET_ITEM(fd_sequence, middle));
|
|
if (fd == middle_fd)
|
|
return 1;
|
|
if (fd > middle_fd)
|
|
search_min = middle + 1;
|
|
else
|
|
search_max = middle - 1;
|
|
} while (search_min <= search_max);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Close all file descriptors in the range start_fd inclusive to
|
|
* end_fd exclusive except for those in py_fds_to_keep. If the
|
|
* range defined by [start_fd, end_fd) is large this will take a
|
|
* long time as it calls close() on EVERY possible fd.
|
|
*/
|
|
static void
|
|
_close_fds_by_brute_force(int start_fd, int end_fd, PyObject *py_fds_to_keep)
|
|
{
|
|
Py_ssize_t num_fds_to_keep = PySequence_Length(py_fds_to_keep);
|
|
Py_ssize_t keep_seq_idx;
|
|
int fd_num;
|
|
/* As py_fds_to_keep is sorted we can loop through the list closing
|
|
* fds inbetween any in the keep list falling within our range. */
|
|
for (keep_seq_idx = 0; keep_seq_idx < num_fds_to_keep; ++keep_seq_idx) {
|
|
PyObject* py_keep_fd = PySequence_Fast_GET_ITEM(py_fds_to_keep,
|
|
keep_seq_idx);
|
|
int keep_fd = PyLong_AsLong(py_keep_fd);
|
|
if (keep_fd < start_fd)
|
|
continue;
|
|
for (fd_num = start_fd; fd_num < keep_fd; ++fd_num) {
|
|
while (close(fd_num) < 0 && errno == EINTR);
|
|
}
|
|
start_fd = keep_fd + 1;
|
|
}
|
|
if (start_fd <= end_fd) {
|
|
for (fd_num = start_fd; fd_num < end_fd; ++fd_num) {
|
|
while (close(fd_num) < 0 && errno == EINTR);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#if defined(__linux__) && defined(HAVE_SYS_SYSCALL_H)
|
|
/* It doesn't matter if d_name has room for NAME_MAX chars; we're using this
|
|
* only to read a directory of short file descriptor number names. The kernel
|
|
* will return an error if we didn't give it enough space. Highly Unlikely.
|
|
* This structure is very old and stable: It will not change unless the kernel
|
|
* chooses to break compatibility with all existing binaries. Highly Unlikely.
|
|
*/
|
|
struct linux_dirent {
|
|
unsigned long d_ino; /* Inode number */
|
|
unsigned long d_off; /* Offset to next linux_dirent */
|
|
unsigned short d_reclen; /* Length of this linux_dirent */
|
|
char d_name[256]; /* Filename (null-terminated) */
|
|
};
|
|
|
|
/* Close all open file descriptors in the range start_fd inclusive to end_fd
|
|
* exclusive. Do not close any in the sorted py_fds_to_keep list.
|
|
*
|
|
* This version is async signal safe as it does not make any unsafe C library
|
|
* calls, malloc calls or handle any locks. It is _unfortunate_ to be forced
|
|
* to resort to making a kernel system call directly but this is the ONLY api
|
|
* available that does no harm. opendir/readdir/closedir perform memory
|
|
* allocation and locking so while they usually work they are not guaranteed
|
|
* to (especially if you have replaced your malloc implementation). A version
|
|
* of this function that uses those can be found in the _maybe_unsafe variant.
|
|
*
|
|
* This is Linux specific because that is all I am ready to test it on. It
|
|
* should be easy to add OS specific dirent or dirent64 structures and modify
|
|
* it with some cpp #define magic to work on other OSes as well if you want.
|
|
*/
|
|
static void
|
|
_close_open_fd_range_safe(int start_fd, int end_fd, PyObject* py_fds_to_keep)
|
|
{
|
|
int fd_dir_fd;
|
|
if (start_fd >= end_fd)
|
|
return;
|
|
#ifdef O_CLOEXEC
|
|
fd_dir_fd = open(FD_DIR, O_RDONLY | O_CLOEXEC, 0);
|
|
#else
|
|
fd_dir_fd = open(FD_DIR, O_RDONLY, 0);
|
|
#ifdef FD_CLOEXEC
|
|
{
|
|
int old = fcntl(fd_dir_fd, F_GETFD);
|
|
if (old != -1)
|
|
fcntl(fd_dir_fd, F_SETFD, old | FD_CLOEXEC);
|
|
}
|
|
#endif
|
|
#endif
|
|
if (fd_dir_fd == -1) {
|
|
/* No way to get a list of open fds. */
|
|
_close_fds_by_brute_force(start_fd, end_fd, py_fds_to_keep);
|
|
return;
|
|
} else {
|
|
char buffer[sizeof(struct linux_dirent)];
|
|
int bytes;
|
|
while ((bytes = syscall(SYS_getdents, fd_dir_fd,
|
|
(struct linux_dirent *)buffer,
|
|
sizeof(buffer))) > 0) {
|
|
struct linux_dirent *entry;
|
|
int offset;
|
|
for (offset = 0; offset < bytes; offset += entry->d_reclen) {
|
|
int fd;
|
|
entry = (struct linux_dirent *)(buffer + offset);
|
|
if ((fd = _pos_int_from_ascii(entry->d_name)) < 0)
|
|
continue; /* Not a number. */
|
|
if (fd != fd_dir_fd && fd >= start_fd && fd < end_fd &&
|
|
!_is_fd_in_sorted_fd_sequence(fd, py_fds_to_keep)) {
|
|
while (close(fd) < 0 && errno == EINTR);
|
|
}
|
|
}
|
|
}
|
|
close(fd_dir_fd);
|
|
}
|
|
}
|
|
|
|
#define _close_open_fd_range _close_open_fd_range_safe
|
|
|
|
#else /* NOT (defined(__linux__) && defined(HAVE_SYS_SYSCALL_H)) */
|
|
|
|
|
|
/* Close all open file descriptors in the range start_fd inclusive to end_fd
|
|
* exclusive. Do not close any in the sorted py_fds_to_keep list.
|
|
*
|
|
* This function violates the strict use of async signal safe functions. :(
|
|
* It calls opendir(), readdir() and closedir(). Of these, the one most
|
|
* likely to ever cause a problem is opendir() as it performs an internal
|
|
* malloc(). Practically this should not be a problem. The Java VM makes the
|
|
* same calls between fork and exec in its own UNIXProcess_md.c implementation.
|
|
*
|
|
* readdir_r() is not used because it provides no benefit. It is typically
|
|
* implemented as readdir() followed by memcpy(). See also:
|
|
* http://womble.decadent.org.uk/readdir_r-advisory.html
|
|
*/
|
|
static void
|
|
_close_open_fd_range_maybe_unsafe(int start_fd, int end_fd,
|
|
PyObject* py_fds_to_keep)
|
|
{
|
|
DIR *proc_fd_dir;
|
|
#ifndef HAVE_DIRFD
|
|
while (_is_fd_in_sorted_fd_sequence(start_fd, py_fds_to_keep) &&
|
|
(start_fd < end_fd)) {
|
|
++start_fd;
|
|
}
|
|
if (start_fd >= end_fd)
|
|
return;
|
|
/* Close our lowest fd before we call opendir so that it is likely to
|
|
* reuse that fd otherwise we might close opendir's file descriptor in
|
|
* our loop. This trick assumes that fd's are allocated on a lowest
|
|
* available basis. */
|
|
while (close(start_fd) < 0 && errno == EINTR);
|
|
++start_fd;
|
|
#endif
|
|
if (start_fd >= end_fd)
|
|
return;
|
|
|
|
#if defined(__FreeBSD__)
|
|
if (!_is_fdescfs_mounted_on_dev_fd())
|
|
proc_fd_dir = NULL;
|
|
else
|
|
#endif
|
|
proc_fd_dir = opendir(FD_DIR);
|
|
if (!proc_fd_dir) {
|
|
/* No way to get a list of open fds. */
|
|
_close_fds_by_brute_force(start_fd, end_fd, py_fds_to_keep);
|
|
} else {
|
|
struct dirent *dir_entry;
|
|
#ifdef HAVE_DIRFD
|
|
int fd_used_by_opendir = dirfd(proc_fd_dir);
|
|
#else
|
|
int fd_used_by_opendir = start_fd - 1;
|
|
#endif
|
|
errno = 0;
|
|
while ((dir_entry = readdir(proc_fd_dir))) {
|
|
int fd;
|
|
if ((fd = _pos_int_from_ascii(dir_entry->d_name)) < 0)
|
|
continue; /* Not a number. */
|
|
if (fd != fd_used_by_opendir && fd >= start_fd && fd < end_fd &&
|
|
!_is_fd_in_sorted_fd_sequence(fd, py_fds_to_keep)) {
|
|
while (close(fd) < 0 && errno == EINTR);
|
|
}
|
|
errno = 0;
|
|
}
|
|
if (errno) {
|
|
/* readdir error, revert behavior. Highly Unlikely. */
|
|
_close_fds_by_brute_force(start_fd, end_fd, py_fds_to_keep);
|
|
}
|
|
closedir(proc_fd_dir);
|
|
}
|
|
}
|
|
|
|
#define _close_open_fd_range _close_open_fd_range_maybe_unsafe
|
|
|
|
#endif /* else NOT (defined(__linux__) && defined(HAVE_SYS_SYSCALL_H)) */
|
|
|
|
|
|
/*
|
|
* This function is code executed in the child process immediately after fork
|
|
* to set things up and call exec().
|
|
*
|
|
* All of the code in this function must only use async-signal-safe functions,
|
|
* listed at `man 7 signal` or
|
|
* http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.
|
|
*
|
|
* This restriction is documented at
|
|
* http://www.opengroup.org/onlinepubs/009695399/functions/fork.html.
|
|
*/
|
|
static void
|
|
child_exec(char *const exec_array[],
|
|
char *const argv[],
|
|
char *const envp[],
|
|
const char *cwd,
|
|
int p2cread, int p2cwrite,
|
|
int c2pread, int c2pwrite,
|
|
int errread, int errwrite,
|
|
int errpipe_read, int errpipe_write,
|
|
int close_fds, int restore_signals,
|
|
int call_setsid,
|
|
PyObject *py_fds_to_keep,
|
|
PyObject *preexec_fn,
|
|
PyObject *preexec_fn_args_tuple)
|
|
{
|
|
int i, saved_errno, unused;
|
|
PyObject *result;
|
|
const char* err_msg = "";
|
|
/* Buffer large enough to hold a hex integer. We can't malloc. */
|
|
char hex_errno[sizeof(saved_errno)*2+1];
|
|
|
|
/* Close parent's pipe ends. */
|
|
if (p2cwrite != -1) {
|
|
POSIX_CALL(close(p2cwrite));
|
|
}
|
|
if (c2pread != -1) {
|
|
POSIX_CALL(close(c2pread));
|
|
}
|
|
if (errread != -1) {
|
|
POSIX_CALL(close(errread));
|
|
}
|
|
POSIX_CALL(close(errpipe_read));
|
|
|
|
/* When duping fds, if there arises a situation where one of the fds is
|
|
either 0, 1 or 2, it is possible that it is overwritten (#12607). */
|
|
if (c2pwrite == 0)
|
|
POSIX_CALL(c2pwrite = dup(c2pwrite));
|
|
if (errwrite == 0 || errwrite == 1)
|
|
POSIX_CALL(errwrite = dup(errwrite));
|
|
|
|
/* Dup fds for child.
|
|
dup2() removes the CLOEXEC flag but we must do it ourselves if dup2()
|
|
would be a no-op (issue #10806). */
|
|
if (p2cread == 0) {
|
|
int old = fcntl(p2cread, F_GETFD);
|
|
if (old != -1)
|
|
fcntl(p2cread, F_SETFD, old & ~FD_CLOEXEC);
|
|
} else if (p2cread != -1) {
|
|
POSIX_CALL(dup2(p2cread, 0)); /* stdin */
|
|
}
|
|
if (c2pwrite == 1) {
|
|
int old = fcntl(c2pwrite, F_GETFD);
|
|
if (old != -1)
|
|
fcntl(c2pwrite, F_SETFD, old & ~FD_CLOEXEC);
|
|
} else if (c2pwrite != -1) {
|
|
POSIX_CALL(dup2(c2pwrite, 1)); /* stdout */
|
|
}
|
|
if (errwrite == 2) {
|
|
int old = fcntl(errwrite, F_GETFD);
|
|
if (old != -1)
|
|
fcntl(errwrite, F_SETFD, old & ~FD_CLOEXEC);
|
|
} else if (errwrite != -1) {
|
|
POSIX_CALL(dup2(errwrite, 2)); /* stderr */
|
|
}
|
|
|
|
/* Close pipe fds. Make sure we don't close the same fd more than */
|
|
/* once, or standard fds. */
|
|
if (p2cread > 2) {
|
|
POSIX_CALL(close(p2cread));
|
|
}
|
|
if (c2pwrite > 2 && c2pwrite != p2cread) {
|
|
POSIX_CALL(close(c2pwrite));
|
|
}
|
|
if (errwrite != c2pwrite && errwrite != p2cread && errwrite > 2) {
|
|
POSIX_CALL(close(errwrite));
|
|
}
|
|
|
|
if (close_fds) {
|
|
int local_max_fd = max_fd;
|
|
#if defined(__NetBSD__)
|
|
local_max_fd = fcntl(0, F_MAXFD);
|
|
if (local_max_fd < 0)
|
|
local_max_fd = max_fd;
|
|
#endif
|
|
/* TODO HP-UX could use pstat_getproc() if anyone cares about it. */
|
|
_close_open_fd_range(3, local_max_fd, py_fds_to_keep);
|
|
}
|
|
|
|
if (cwd)
|
|
POSIX_CALL(chdir(cwd));
|
|
|
|
if (restore_signals)
|
|
_Py_RestoreSignals();
|
|
|
|
#ifdef HAVE_SETSID
|
|
if (call_setsid)
|
|
POSIX_CALL(setsid());
|
|
#endif
|
|
|
|
if (preexec_fn != Py_None && preexec_fn_args_tuple) {
|
|
/* This is where the user has asked us to deadlock their program. */
|
|
result = PyObject_Call(preexec_fn, preexec_fn_args_tuple, NULL);
|
|
if (result == NULL) {
|
|
/* Stringifying the exception or traceback would involve
|
|
* memory allocation and thus potential for deadlock.
|
|
* We've already faced potential deadlock by calling back
|
|
* into Python in the first place, so it probably doesn't
|
|
* matter but we avoid it to minimize the possibility. */
|
|
err_msg = "Exception occurred in preexec_fn.";
|
|
errno = 0; /* We don't want to report an OSError. */
|
|
goto error;
|
|
}
|
|
/* Py_DECREF(result); - We're about to exec so why bother? */
|
|
}
|
|
|
|
/* This loop matches the Lib/os.py _execvpe()'s PATH search when */
|
|
/* given the executable_list generated by Lib/subprocess.py. */
|
|
saved_errno = 0;
|
|
for (i = 0; exec_array[i] != NULL; ++i) {
|
|
const char *executable = exec_array[i];
|
|
if (envp) {
|
|
execve(executable, argv, envp);
|
|
} else {
|
|
execv(executable, argv);
|
|
}
|
|
if (errno != ENOENT && errno != ENOTDIR && saved_errno == 0) {
|
|
saved_errno = errno;
|
|
}
|
|
}
|
|
/* Report the first exec error, not the last. */
|
|
if (saved_errno)
|
|
errno = saved_errno;
|
|
|
|
error:
|
|
saved_errno = errno;
|
|
/* Report the posix error to our parent process. */
|
|
/* We ignore all write() return values as the total size of our writes is
|
|
* less than PIPEBUF and we cannot do anything about an error anyways. */
|
|
if (saved_errno) {
|
|
char *cur;
|
|
unused = write(errpipe_write, "OSError:", 8);
|
|
cur = hex_errno + sizeof(hex_errno);
|
|
while (saved_errno != 0 && cur > hex_errno) {
|
|
*--cur = "0123456789ABCDEF"[saved_errno % 16];
|
|
saved_errno /= 16;
|
|
}
|
|
unused = write(errpipe_write, cur, hex_errno + sizeof(hex_errno) - cur);
|
|
unused = write(errpipe_write, ":", 1);
|
|
/* We can't call strerror(saved_errno). It is not async signal safe.
|
|
* The parent process will look the error message up. */
|
|
} else {
|
|
unused = write(errpipe_write, "RuntimeError:0:", 15);
|
|
unused = write(errpipe_write, err_msg, strlen(err_msg));
|
|
}
|
|
if (unused) return; /* silly? yes! avoids gcc compiler warning. */
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
subprocess_fork_exec(PyObject* self, PyObject *args)
|
|
{
|
|
PyObject *gc_module = NULL;
|
|
PyObject *executable_list, *py_close_fds, *py_fds_to_keep;
|
|
PyObject *env_list, *preexec_fn;
|
|
PyObject *process_args, *converted_args = NULL, *fast_args = NULL;
|
|
PyObject *preexec_fn_args_tuple = NULL;
|
|
int p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite;
|
|
int errpipe_read, errpipe_write, close_fds, restore_signals;
|
|
int call_setsid;
|
|
PyObject *cwd_obj, *cwd_obj2;
|
|
const char *cwd;
|
|
pid_t pid;
|
|
int need_to_reenable_gc = 0;
|
|
char *const *exec_array, *const *argv = NULL, *const *envp = NULL;
|
|
Py_ssize_t arg_num;
|
|
|
|
if (!PyArg_ParseTuple(
|
|
args, "OOOOOOiiiiiiiiiiO:fork_exec",
|
|
&process_args, &executable_list, &py_close_fds, &py_fds_to_keep,
|
|
&cwd_obj, &env_list,
|
|
&p2cread, &p2cwrite, &c2pread, &c2pwrite,
|
|
&errread, &errwrite, &errpipe_read, &errpipe_write,
|
|
&restore_signals, &call_setsid, &preexec_fn))
|
|
return NULL;
|
|
|
|
close_fds = PyObject_IsTrue(py_close_fds);
|
|
if (close_fds && errpipe_write < 3) { /* precondition */
|
|
PyErr_SetString(PyExc_ValueError, "errpipe_write must be >= 3");
|
|
return NULL;
|
|
}
|
|
if (PySequence_Length(py_fds_to_keep) < 0) {
|
|
PyErr_SetString(PyExc_ValueError, "cannot get length of fds_to_keep");
|
|
return NULL;
|
|
}
|
|
if (_sanity_check_python_fd_sequence(py_fds_to_keep)) {
|
|
PyErr_SetString(PyExc_ValueError, "bad value(s) in fds_to_keep");
|
|
return NULL;
|
|
}
|
|
|
|
/* We need to call gc.disable() when we'll be calling preexec_fn */
|
|
if (preexec_fn != Py_None) {
|
|
PyObject *result;
|
|
_Py_IDENTIFIER(isenabled);
|
|
_Py_IDENTIFIER(disable);
|
|
|
|
gc_module = PyImport_ImportModule("gc");
|
|
if (gc_module == NULL)
|
|
return NULL;
|
|
result = _PyObject_CallMethodId(gc_module, &PyId_isenabled, NULL);
|
|
if (result == NULL) {
|
|
Py_DECREF(gc_module);
|
|
return NULL;
|
|
}
|
|
need_to_reenable_gc = PyObject_IsTrue(result);
|
|
Py_DECREF(result);
|
|
if (need_to_reenable_gc == -1) {
|
|
Py_DECREF(gc_module);
|
|
return NULL;
|
|
}
|
|
result = _PyObject_CallMethodId(gc_module, &PyId_disable, NULL);
|
|
if (result == NULL) {
|
|
Py_DECREF(gc_module);
|
|
return NULL;
|
|
}
|
|
Py_DECREF(result);
|
|
}
|
|
|
|
exec_array = _PySequence_BytesToCharpArray(executable_list);
|
|
if (!exec_array)
|
|
return NULL;
|
|
|
|
/* Convert args and env into appropriate arguments for exec() */
|
|
/* These conversions are done in the parent process to avoid allocating
|
|
or freeing memory in the child process. */
|
|
if (process_args != Py_None) {
|
|
Py_ssize_t num_args;
|
|
/* Equivalent to: */
|
|
/* tuple(PyUnicode_FSConverter(arg) for arg in process_args) */
|
|
fast_args = PySequence_Fast(process_args, "argv must be a tuple");
|
|
num_args = PySequence_Fast_GET_SIZE(fast_args);
|
|
converted_args = PyTuple_New(num_args);
|
|
if (converted_args == NULL)
|
|
goto cleanup;
|
|
for (arg_num = 0; arg_num < num_args; ++arg_num) {
|
|
PyObject *borrowed_arg, *converted_arg;
|
|
borrowed_arg = PySequence_Fast_GET_ITEM(fast_args, arg_num);
|
|
if (PyUnicode_FSConverter(borrowed_arg, &converted_arg) == 0)
|
|
goto cleanup;
|
|
PyTuple_SET_ITEM(converted_args, arg_num, converted_arg);
|
|
}
|
|
|
|
argv = _PySequence_BytesToCharpArray(converted_args);
|
|
Py_CLEAR(converted_args);
|
|
Py_CLEAR(fast_args);
|
|
if (!argv)
|
|
goto cleanup;
|
|
}
|
|
|
|
if (env_list != Py_None) {
|
|
envp = _PySequence_BytesToCharpArray(env_list);
|
|
if (!envp)
|
|
goto cleanup;
|
|
}
|
|
|
|
if (preexec_fn != Py_None) {
|
|
preexec_fn_args_tuple = PyTuple_New(0);
|
|
if (!preexec_fn_args_tuple)
|
|
goto cleanup;
|
|
_PyImport_AcquireLock();
|
|
}
|
|
|
|
if (cwd_obj != Py_None) {
|
|
if (PyUnicode_FSConverter(cwd_obj, &cwd_obj2) == 0)
|
|
goto cleanup;
|
|
cwd = PyBytes_AsString(cwd_obj2);
|
|
} else {
|
|
cwd = NULL;
|
|
cwd_obj2 = NULL;
|
|
}
|
|
|
|
pid = fork();
|
|
if (pid == 0) {
|
|
/* Child process */
|
|
/*
|
|
* Code from here to _exit() must only use async-signal-safe functions,
|
|
* listed at `man 7 signal` or
|
|
* http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html.
|
|
*/
|
|
|
|
if (preexec_fn != Py_None) {
|
|
/* We'll be calling back into Python later so we need to do this.
|
|
* This call may not be async-signal-safe but neither is calling
|
|
* back into Python. The user asked us to use hope as a strategy
|
|
* to avoid deadlock... */
|
|
PyOS_AfterFork();
|
|
}
|
|
|
|
child_exec(exec_array, argv, envp, cwd,
|
|
p2cread, p2cwrite, c2pread, c2pwrite,
|
|
errread, errwrite, errpipe_read, errpipe_write,
|
|
close_fds, restore_signals, call_setsid,
|
|
py_fds_to_keep, preexec_fn, preexec_fn_args_tuple);
|
|
_exit(255);
|
|
return NULL; /* Dead code to avoid a potential compiler warning. */
|
|
}
|
|
Py_XDECREF(cwd_obj2);
|
|
|
|
if (pid == -1) {
|
|
/* Capture the errno exception before errno can be clobbered. */
|
|
PyErr_SetFromErrno(PyExc_OSError);
|
|
}
|
|
if (preexec_fn != Py_None &&
|
|
_PyImport_ReleaseLock() < 0 && !PyErr_Occurred()) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"not holding the import lock");
|
|
}
|
|
|
|
/* Parent process */
|
|
if (envp)
|
|
_Py_FreeCharPArray(envp);
|
|
if (argv)
|
|
_Py_FreeCharPArray(argv);
|
|
_Py_FreeCharPArray(exec_array);
|
|
|
|
/* Reenable gc in the parent process (or if fork failed). */
|
|
if (need_to_reenable_gc && _enable_gc(gc_module)) {
|
|
Py_XDECREF(gc_module);
|
|
return NULL;
|
|
}
|
|
Py_XDECREF(preexec_fn_args_tuple);
|
|
Py_XDECREF(gc_module);
|
|
|
|
if (pid == -1)
|
|
return NULL; /* fork() failed. Exception set earlier. */
|
|
|
|
return PyLong_FromPid(pid);
|
|
|
|
cleanup:
|
|
if (envp)
|
|
_Py_FreeCharPArray(envp);
|
|
if (argv)
|
|
_Py_FreeCharPArray(argv);
|
|
_Py_FreeCharPArray(exec_array);
|
|
Py_XDECREF(converted_args);
|
|
Py_XDECREF(fast_args);
|
|
Py_XDECREF(preexec_fn_args_tuple);
|
|
|
|
/* Reenable gc if it was disabled. */
|
|
if (need_to_reenable_gc)
|
|
_enable_gc(gc_module);
|
|
Py_XDECREF(gc_module);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
PyDoc_STRVAR(subprocess_fork_exec_doc,
|
|
"fork_exec(args, executable_list, close_fds, cwd, env,\n\
|
|
p2cread, p2cwrite, c2pread, c2pwrite,\n\
|
|
errread, errwrite, errpipe_read, errpipe_write,\n\
|
|
restore_signals, call_setsid, preexec_fn)\n\
|
|
\n\
|
|
Forks a child process, closes parent file descriptors as appropriate in the\n\
|
|
child and dups the few that are needed before calling exec() in the child\n\
|
|
process.\n\
|
|
\n\
|
|
The preexec_fn, if supplied, will be called immediately before exec.\n\
|
|
WARNING: preexec_fn is NOT SAFE if your application uses threads.\n\
|
|
It may trigger infrequent, difficult to debug deadlocks.\n\
|
|
\n\
|
|
If an error occurs in the child process before the exec, it is\n\
|
|
serialized and written to the errpipe_write fd per subprocess.py.\n\
|
|
\n\
|
|
Returns: the child process's PID.\n\
|
|
\n\
|
|
Raises: Only on an error in the parent process.\n\
|
|
");
|
|
|
|
PyDoc_STRVAR(subprocess_cloexec_pipe_doc,
|
|
"cloexec_pipe() -> (read_end, write_end)\n\n\
|
|
Create a pipe whose ends have the cloexec flag set.");
|
|
|
|
static PyObject *
|
|
subprocess_cloexec_pipe(PyObject *self, PyObject *noargs)
|
|
{
|
|
int fds[2];
|
|
int res;
|
|
#ifdef HAVE_PIPE2
|
|
Py_BEGIN_ALLOW_THREADS
|
|
res = pipe2(fds, O_CLOEXEC);
|
|
Py_END_ALLOW_THREADS
|
|
if (res != 0 && errno == ENOSYS)
|
|
{
|
|
{
|
|
#endif
|
|
/* We hold the GIL which offers some protection from other code calling
|
|
* fork() before the CLOEXEC flags have been set but we can't guarantee
|
|
* anything without pipe2(). */
|
|
long oldflags;
|
|
|
|
res = pipe(fds);
|
|
|
|
if (res == 0) {
|
|
oldflags = fcntl(fds[0], F_GETFD, 0);
|
|
if (oldflags < 0) res = oldflags;
|
|
}
|
|
if (res == 0)
|
|
res = fcntl(fds[0], F_SETFD, oldflags | FD_CLOEXEC);
|
|
|
|
if (res == 0) {
|
|
oldflags = fcntl(fds[1], F_GETFD, 0);
|
|
if (oldflags < 0) res = oldflags;
|
|
}
|
|
if (res == 0)
|
|
res = fcntl(fds[1], F_SETFD, oldflags | FD_CLOEXEC);
|
|
#ifdef HAVE_PIPE2
|
|
}
|
|
}
|
|
#endif
|
|
if (res != 0)
|
|
return PyErr_SetFromErrno(PyExc_OSError);
|
|
return Py_BuildValue("(ii)", fds[0], fds[1]);
|
|
}
|
|
|
|
/* module level code ********************************************************/
|
|
|
|
PyDoc_STRVAR(module_doc,
|
|
"A POSIX helper for the subprocess module.");
|
|
|
|
|
|
static PyMethodDef module_methods[] = {
|
|
{"fork_exec", subprocess_fork_exec, METH_VARARGS, subprocess_fork_exec_doc},
|
|
{"cloexec_pipe", subprocess_cloexec_pipe, METH_NOARGS, subprocess_cloexec_pipe_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
static struct PyModuleDef _posixsubprocessmodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"_posixsubprocess",
|
|
module_doc,
|
|
-1, /* No memory is needed. */
|
|
module_methods,
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__posixsubprocess(void)
|
|
{
|
|
#ifdef _SC_OPEN_MAX
|
|
max_fd = sysconf(_SC_OPEN_MAX);
|
|
if (max_fd == -1)
|
|
#endif
|
|
max_fd = 256; /* Matches Lib/subprocess.py */
|
|
|
|
return PyModule_Create(&_posixsubprocessmodule);
|
|
}
|