cpython/Modules/sha256module.c
Mohamed Koubaa 52a2df135c
bpo-1635741: Convert _sha256 types to heap types (GH-22134)
Convert the _sha256 extension module types to heap types.
2020-09-08 11:16:14 +02:00

738 lines
22 KiB
C

/* SHA256 module */
/* This module provides an interface to NIST's SHA-256 and SHA-224 Algorithms */
/* See below for information about the original code this module was
based upon. Additional work performed by:
Andrew Kuchling (amk@amk.ca)
Greg Stein (gstein@lyra.org)
Trevor Perrin (trevp@trevp.net)
Copyright (C) 2005-2007 Gregory P. Smith (greg@krypto.org)
Licensed to PSF under a Contributor Agreement.
*/
/* SHA objects */
#include "Python.h"
#include "pycore_bitutils.h" // _Py_bswap32()
#include "structmember.h" // PyMemberDef
#include "hashlib.h"
#include "pystrhex.h"
/*[clinic input]
module _sha256
class SHA256Type "SHAobject *" "&PyType_Type"
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=71a39174d4f0a744]*/
/* Some useful types */
typedef unsigned char SHA_BYTE;
typedef uint32_t SHA_INT32; /* 32-bit integer */
/* The SHA block size and message digest sizes, in bytes */
#define SHA_BLOCKSIZE 64
#define SHA_DIGESTSIZE 32
/* The structure for storing SHA info */
typedef struct {
PyObject_HEAD
SHA_INT32 digest[8]; /* Message digest */
SHA_INT32 count_lo, count_hi; /* 64-bit bit count */
SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */
int local; /* unprocessed amount in data */
int digestsize;
} SHAobject;
#include "clinic/sha256module.c.h"
typedef struct {
PyTypeObject* sha224_type;
PyTypeObject* sha256_type;
} _sha256_state;
static inline _sha256_state*
_sha256_get_state(PyObject *module)
{
void *state = PyModule_GetState(module);
assert(state != NULL);
return (_sha256_state *)state;
}
/* When run on a little-endian CPU we need to perform byte reversal on an
array of longwords. */
#if PY_LITTLE_ENDIAN
static void longReverse(SHA_INT32 *buffer, int byteCount)
{
byteCount /= sizeof(*buffer);
for (; byteCount--; buffer++) {
*buffer = _Py_bswap32(*buffer);
}
}
#endif
static void SHAcopy(SHAobject *src, SHAobject *dest)
{
dest->local = src->local;
dest->digestsize = src->digestsize;
dest->count_lo = src->count_lo;
dest->count_hi = src->count_hi;
memcpy(dest->digest, src->digest, sizeof(src->digest));
memcpy(dest->data, src->data, sizeof(src->data));
}
/* ------------------------------------------------------------------------
*
* This code for the SHA-256 algorithm was noted as public domain. The
* original headers are pasted below.
*
* Several changes have been made to make it more compatible with the
* Python environment and desired interface.
*
*/
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@iahu.ca, http://libtom.org
*/
/* SHA256 by Tom St Denis */
/* Various logical functions */
#define ROR(x, y)\
( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S(x, n) ROR((x),(n))
#define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
static void
sha_transform(SHAobject *sha_info)
{
int i;
SHA_INT32 S[8], W[64], t0, t1;
memcpy(W, sha_info->data, sizeof(sha_info->data));
#if PY_LITTLE_ENDIAN
longReverse(W, (int)sizeof(sha_info->data));
#endif
for (i = 16; i < 64; ++i) {
W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
}
for (i = 0; i < 8; ++i) {
S[i] = sha_info->digest[i];
}
/* Compress */
#define RND(a,b,c,d,e,f,g,h,i,ki) \
t0 = h + Sigma1(e) + Ch(e, f, g) + ki + W[i]; \
t1 = Sigma0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
#undef RND
/* feedback */
for (i = 0; i < 8; i++) {
sha_info->digest[i] = sha_info->digest[i] + S[i];
}
}
/* initialize the SHA digest */
static void
sha_init(SHAobject *sha_info)
{
sha_info->digest[0] = 0x6A09E667L;
sha_info->digest[1] = 0xBB67AE85L;
sha_info->digest[2] = 0x3C6EF372L;
sha_info->digest[3] = 0xA54FF53AL;
sha_info->digest[4] = 0x510E527FL;
sha_info->digest[5] = 0x9B05688CL;
sha_info->digest[6] = 0x1F83D9ABL;
sha_info->digest[7] = 0x5BE0CD19L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
sha_info->digestsize = 32;
}
static void
sha224_init(SHAobject *sha_info)
{
sha_info->digest[0] = 0xc1059ed8L;
sha_info->digest[1] = 0x367cd507L;
sha_info->digest[2] = 0x3070dd17L;
sha_info->digest[3] = 0xf70e5939L;
sha_info->digest[4] = 0xffc00b31L;
sha_info->digest[5] = 0x68581511L;
sha_info->digest[6] = 0x64f98fa7L;
sha_info->digest[7] = 0xbefa4fa4L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
sha_info->digestsize = 28;
}
/* update the SHA digest */
static void
sha_update(SHAobject *sha_info, SHA_BYTE *buffer, Py_ssize_t count)
{
Py_ssize_t i;
SHA_INT32 clo;
clo = sha_info->count_lo + ((SHA_INT32) count << 3);
if (clo < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo = clo;
sha_info->count_hi += (SHA_INT32) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += (int)i;
if (sha_info->local == SHA_BLOCKSIZE) {
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = (int)count;
}
/* finish computing the SHA digest */
static void
sha_final(unsigned char digest[SHA_DIGESTSIZE], SHAobject *sha_info)
{
int count;
SHA_INT32 lo_bit_count, hi_bit_count;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((SHA_BYTE *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8) {
memset(((SHA_BYTE *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - count);
sha_transform(sha_info);
memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
}
else {
memset(((SHA_BYTE *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 8 - count);
}
/* GJS: note that we add the hi/lo in big-endian. sha_transform will
swap these values into host-order. */
sha_info->data[56] = (hi_bit_count >> 24) & 0xff;
sha_info->data[57] = (hi_bit_count >> 16) & 0xff;
sha_info->data[58] = (hi_bit_count >> 8) & 0xff;
sha_info->data[59] = (hi_bit_count >> 0) & 0xff;
sha_info->data[60] = (lo_bit_count >> 24) & 0xff;
sha_info->data[61] = (lo_bit_count >> 16) & 0xff;
sha_info->data[62] = (lo_bit_count >> 8) & 0xff;
sha_info->data[63] = (lo_bit_count >> 0) & 0xff;
sha_transform(sha_info);
digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff);
digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff);
digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff);
digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff);
digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff);
digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff);
digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff);
digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff);
digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff);
digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff);
digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff);
digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff);
digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff);
digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff);
digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff);
digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff);
digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff);
digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff);
digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff);
digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff);
digest[20] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff);
digest[21] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff);
digest[22] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff);
digest[23] = (unsigned char) ((sha_info->digest[5] ) & 0xff);
digest[24] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff);
digest[25] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff);
digest[26] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff);
digest[27] = (unsigned char) ((sha_info->digest[6] ) & 0xff);
digest[28] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff);
digest[29] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff);
digest[30] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff);
digest[31] = (unsigned char) ((sha_info->digest[7] ) & 0xff);
}
/*
* End of copied SHA code.
*
* ------------------------------------------------------------------------
*/
static SHAobject *
newSHA224object(_sha256_state *state)
{
return (SHAobject *)PyObject_New(SHAobject, state->sha224_type);
}
static SHAobject *
newSHA256object(_sha256_state *state)
{
return (SHAobject *)PyObject_New(SHAobject, state->sha256_type);
}
/* Internal methods for a hash object */
static void
SHA_dealloc(PyObject *ptr)
{
PyTypeObject *tp = Py_TYPE(ptr);
PyObject_Del(ptr);
Py_DECREF(tp);
}
/* External methods for a hash object */
/*[clinic input]
SHA256Type.copy
cls:defining_class
Return a copy of the hash object.
[clinic start generated code]*/
static PyObject *
SHA256Type_copy_impl(SHAobject *self, PyTypeObject *cls)
/*[clinic end generated code: output=9273f92c382be12f input=3137146fcb88e212]*/
{
SHAobject *newobj;
_sha256_state *state = PyType_GetModuleState(cls);
if (Py_IS_TYPE(self, state->sha256_type)) {
if ( (newobj = newSHA256object(state)) == NULL) {
return NULL;
}
} else {
if ( (newobj = newSHA224object(state))==NULL) {
return NULL;
}
}
SHAcopy(self, newobj);
return (PyObject *)newobj;
}
/*[clinic input]
SHA256Type.digest
Return the digest value as a bytes object.
[clinic start generated code]*/
static PyObject *
SHA256Type_digest_impl(SHAobject *self)
/*[clinic end generated code: output=46616a5e909fbc3d input=f1f4cfea5cbde35c]*/
{
unsigned char digest[SHA_DIGESTSIZE];
SHAobject temp;
SHAcopy(self, &temp);
sha_final(digest, &temp);
return PyBytes_FromStringAndSize((const char *)digest, self->digestsize);
}
/*[clinic input]
SHA256Type.hexdigest
Return the digest value as a string of hexadecimal digits.
[clinic start generated code]*/
static PyObject *
SHA256Type_hexdigest_impl(SHAobject *self)
/*[clinic end generated code: output=725f8a7041ae97f3 input=0cc4c714693010d1]*/
{
unsigned char digest[SHA_DIGESTSIZE];
SHAobject temp;
/* Get the raw (binary) digest value */
SHAcopy(self, &temp);
sha_final(digest, &temp);
return _Py_strhex((const char *)digest, self->digestsize);
}
/*[clinic input]
SHA256Type.update
obj: object
/
Update this hash object's state with the provided string.
[clinic start generated code]*/
static PyObject *
SHA256Type_update(SHAobject *self, PyObject *obj)
/*[clinic end generated code: output=0967fb2860c66af7 input=b2d449d5b30f0f5a]*/
{
Py_buffer buf;
GET_BUFFER_VIEW_OR_ERROUT(obj, &buf);
sha_update(self, buf.buf, buf.len);
PyBuffer_Release(&buf);
Py_RETURN_NONE;
}
static PyMethodDef SHA_methods[] = {
SHA256TYPE_COPY_METHODDEF
SHA256TYPE_DIGEST_METHODDEF
SHA256TYPE_HEXDIGEST_METHODDEF
SHA256TYPE_UPDATE_METHODDEF
{NULL, NULL} /* sentinel */
};
static PyObject *
SHA256_get_block_size(PyObject *self, void *closure)
{
return PyLong_FromLong(SHA_BLOCKSIZE);
}
static PyObject *
SHA256_get_name(PyObject *self, void *closure)
{
if (((SHAobject *)self)->digestsize == 32)
return PyUnicode_FromStringAndSize("sha256", 6);
else
return PyUnicode_FromStringAndSize("sha224", 6);
}
static PyGetSetDef SHA_getseters[] = {
{"block_size",
(getter)SHA256_get_block_size, NULL,
NULL,
NULL},
{"name",
(getter)SHA256_get_name, NULL,
NULL,
NULL},
{NULL} /* Sentinel */
};
static PyMemberDef SHA_members[] = {
{"digest_size", T_INT, offsetof(SHAobject, digestsize), READONLY, NULL},
{NULL} /* Sentinel */
};
static PyType_Slot sha256_types_slots[] = {
{Py_tp_dealloc, SHA_dealloc},
{Py_tp_methods, SHA_methods},
{Py_tp_members, SHA_members},
{Py_tp_getset, SHA_getseters},
{0,0}
};
static PyType_Spec sha224_type_spec = {
.name = "_sha256.sha224",
.basicsize = sizeof(SHAobject),
.flags = Py_TPFLAGS_DEFAULT,
.slots = sha256_types_slots
};
static PyType_Spec sha256_type_spec = {
.name = "_sha256.sha256",
.basicsize = sizeof(SHAobject),
.flags = Py_TPFLAGS_DEFAULT,
.slots = sha256_types_slots
};
/* The single module-level function: new() */
/*[clinic input]
_sha256.sha256
string: object(c_default="NULL") = b''
*
usedforsecurity: bool = True
Return a new SHA-256 hash object; optionally initialized with a string.
[clinic start generated code]*/
static PyObject *
_sha256_sha256_impl(PyObject *module, PyObject *string, int usedforsecurity)
/*[clinic end generated code: output=a1de327e8e1185cf input=9be86301aeb14ea5]*/
{
Py_buffer buf;
if (string) {
GET_BUFFER_VIEW_OR_ERROUT(string, &buf);
}
_sha256_state *state = PyModule_GetState(module);
SHAobject *new;
if ((new = newSHA256object(state)) == NULL) {
if (string) {
PyBuffer_Release(&buf);
}
return NULL;
}
sha_init(new);
if (PyErr_Occurred()) {
Py_DECREF(new);
if (string) {
PyBuffer_Release(&buf);
}
return NULL;
}
if (string) {
sha_update(new, buf.buf, buf.len);
PyBuffer_Release(&buf);
}
return (PyObject *)new;
}
/*[clinic input]
_sha256.sha224
string: object(c_default="NULL") = b''
*
usedforsecurity: bool = True
Return a new SHA-224 hash object; optionally initialized with a string.
[clinic start generated code]*/
static PyObject *
_sha256_sha224_impl(PyObject *module, PyObject *string, int usedforsecurity)
/*[clinic end generated code: output=08be6b36569bc69c input=9fcfb46e460860ac]*/
{
Py_buffer buf;
if (string) {
GET_BUFFER_VIEW_OR_ERROUT(string, &buf);
}
_sha256_state *state = PyModule_GetState(module);
SHAobject *new;
if ((new = newSHA224object(state)) == NULL) {
if (string) {
PyBuffer_Release(&buf);
}
return NULL;
}
sha224_init(new);
if (PyErr_Occurred()) {
Py_DECREF(new);
if (string) {
PyBuffer_Release(&buf);
}
return NULL;
}
if (string) {
sha_update(new, buf.buf, buf.len);
PyBuffer_Release(&buf);
}
return (PyObject *)new;
}
/* List of functions exported by this module */
static struct PyMethodDef SHA_functions[] = {
_SHA256_SHA256_METHODDEF
_SHA256_SHA224_METHODDEF
{NULL, NULL} /* Sentinel */
};
static int
_sha256_traverse(PyObject *module, visitproc visit, void *arg)
{
_sha256_state *state = _sha256_get_state(module);
Py_VISIT(state->sha224_type);
Py_VISIT(state->sha256_type);
return 0;
}
static int
_sha256_clear(PyObject *module)
{
_sha256_state *state = _sha256_get_state(module);
Py_CLEAR(state->sha224_type);
Py_CLEAR(state->sha256_type);
return 0;
}
static void
_sha256_free(void *module)
{
_sha256_clear((PyObject *)module);
}
static int sha256_exec(PyObject *module)
{
_sha256_state *state = _sha256_get_state(module);
state->sha224_type = (PyTypeObject *)PyType_FromModuleAndSpec(
module, &sha224_type_spec, NULL);
if (state->sha224_type == NULL) {
return -1;
}
state->sha256_type = (PyTypeObject *)PyType_FromModuleAndSpec(
module, &sha256_type_spec, NULL);
if (state->sha256_type == NULL) {
return -1;
}
Py_INCREF((PyObject *)state->sha224_type);
if (PyModule_AddObject(module, "SHA224Type", (PyObject *)state->sha224_type) < 0) {
Py_DECREF((PyObject *)state->sha224_type);
return -1;
}
Py_INCREF((PyObject *)state->sha256_type);
if (PyModule_AddObject(module, "SHA256Type", (PyObject *)state->sha256_type) < 0) {
Py_DECREF((PyObject *)state->sha256_type);
return -1;
}
return 0;
}
static PyModuleDef_Slot _sha256_slots[] = {
{Py_mod_exec, sha256_exec},
{0, NULL}
};
static struct PyModuleDef _sha256module = {
PyModuleDef_HEAD_INIT,
.m_name = "_sha256",
.m_size = sizeof(_sha256_state),
.m_methods = SHA_functions,
.m_slots = _sha256_slots,
.m_traverse = _sha256_traverse,
.m_clear = _sha256_clear,
.m_free = _sha256_free
};
/* Initialize this module. */
PyMODINIT_FUNC
PyInit__sha256(void)
{
return PyModuleDef_Init(&_sha256module);
}