mirror of
https://github.com/python/cpython.git
synced 2024-12-18 14:24:33 +08:00
a9c6e0618f
Here we are doing no more than adding the value for Py_mod_multiple_interpreters and using it for stdlib modules. We will start checking for it in gh-104206 (once PyInterpreterState.ceval.own_gil is added in gh-104204).
1734 lines
51 KiB
C
1734 lines
51 KiB
C
|
|
/* Thread module */
|
|
/* Interface to Sjoerd's portable C thread library */
|
|
|
|
#include "Python.h"
|
|
#include "pycore_interp.h" // _PyInterpreterState.threads.count
|
|
#include "pycore_moduleobject.h" // _PyModule_GetState()
|
|
#include "pycore_pylifecycle.h"
|
|
#include "pycore_pystate.h" // _PyThreadState_SetCurrent()
|
|
#include <stddef.h> // offsetof()
|
|
#include "structmember.h" // PyMemberDef
|
|
|
|
#ifdef HAVE_SIGNAL_H
|
|
# include <signal.h> // SIGINT
|
|
#endif
|
|
|
|
// ThreadError is just an alias to PyExc_RuntimeError
|
|
#define ThreadError PyExc_RuntimeError
|
|
|
|
|
|
// Forward declarations
|
|
static struct PyModuleDef thread_module;
|
|
|
|
|
|
typedef struct {
|
|
PyTypeObject *excepthook_type;
|
|
PyTypeObject *lock_type;
|
|
PyTypeObject *local_type;
|
|
PyTypeObject *local_dummy_type;
|
|
} thread_module_state;
|
|
|
|
static inline thread_module_state*
|
|
get_thread_state(PyObject *module)
|
|
{
|
|
void *state = _PyModule_GetState(module);
|
|
assert(state != NULL);
|
|
return (thread_module_state *)state;
|
|
}
|
|
|
|
|
|
/* Lock objects */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyThread_type_lock lock_lock;
|
|
PyObject *in_weakreflist;
|
|
char locked; /* for sanity checking */
|
|
} lockobject;
|
|
|
|
static int
|
|
lock_traverse(lockobject *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(Py_TYPE(self));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
lock_dealloc(lockobject *self)
|
|
{
|
|
PyObject_GC_UnTrack(self);
|
|
if (self->in_weakreflist != NULL) {
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
}
|
|
if (self->lock_lock != NULL) {
|
|
/* Unlock the lock so it's safe to free it */
|
|
if (self->locked)
|
|
PyThread_release_lock(self->lock_lock);
|
|
PyThread_free_lock(self->lock_lock);
|
|
}
|
|
PyTypeObject *tp = Py_TYPE(self);
|
|
tp->tp_free((PyObject*)self);
|
|
Py_DECREF(tp);
|
|
}
|
|
|
|
/* Helper to acquire an interruptible lock with a timeout. If the lock acquire
|
|
* is interrupted, signal handlers are run, and if they raise an exception,
|
|
* PY_LOCK_INTR is returned. Otherwise, PY_LOCK_ACQUIRED or PY_LOCK_FAILURE
|
|
* are returned, depending on whether the lock can be acquired within the
|
|
* timeout.
|
|
*/
|
|
static PyLockStatus
|
|
acquire_timed(PyThread_type_lock lock, _PyTime_t timeout)
|
|
{
|
|
_PyTime_t endtime = 0;
|
|
if (timeout > 0) {
|
|
endtime = _PyDeadline_Init(timeout);
|
|
}
|
|
|
|
PyLockStatus r;
|
|
do {
|
|
_PyTime_t microseconds;
|
|
microseconds = _PyTime_AsMicroseconds(timeout, _PyTime_ROUND_CEILING);
|
|
|
|
/* first a simple non-blocking try without releasing the GIL */
|
|
r = PyThread_acquire_lock_timed(lock, 0, 0);
|
|
if (r == PY_LOCK_FAILURE && microseconds != 0) {
|
|
Py_BEGIN_ALLOW_THREADS
|
|
r = PyThread_acquire_lock_timed(lock, microseconds, 1);
|
|
Py_END_ALLOW_THREADS
|
|
}
|
|
|
|
if (r == PY_LOCK_INTR) {
|
|
/* Run signal handlers if we were interrupted. Propagate
|
|
* exceptions from signal handlers, such as KeyboardInterrupt, by
|
|
* passing up PY_LOCK_INTR. */
|
|
if (Py_MakePendingCalls() < 0) {
|
|
return PY_LOCK_INTR;
|
|
}
|
|
|
|
/* If we're using a timeout, recompute the timeout after processing
|
|
* signals, since those can take time. */
|
|
if (timeout > 0) {
|
|
timeout = _PyDeadline_Get(endtime);
|
|
|
|
/* Check for negative values, since those mean block forever.
|
|
*/
|
|
if (timeout < 0) {
|
|
r = PY_LOCK_FAILURE;
|
|
}
|
|
}
|
|
}
|
|
} while (r == PY_LOCK_INTR); /* Retry if we were interrupted. */
|
|
|
|
return r;
|
|
}
|
|
|
|
static int
|
|
lock_acquire_parse_args(PyObject *args, PyObject *kwds,
|
|
_PyTime_t *timeout)
|
|
{
|
|
char *kwlist[] = {"blocking", "timeout", NULL};
|
|
int blocking = 1;
|
|
PyObject *timeout_obj = NULL;
|
|
const _PyTime_t unset_timeout = _PyTime_FromSeconds(-1);
|
|
|
|
*timeout = unset_timeout ;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|pO:acquire", kwlist,
|
|
&blocking, &timeout_obj))
|
|
return -1;
|
|
|
|
if (timeout_obj
|
|
&& _PyTime_FromSecondsObject(timeout,
|
|
timeout_obj, _PyTime_ROUND_TIMEOUT) < 0)
|
|
return -1;
|
|
|
|
if (!blocking && *timeout != unset_timeout ) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"can't specify a timeout for a non-blocking call");
|
|
return -1;
|
|
}
|
|
if (*timeout < 0 && *timeout != unset_timeout) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"timeout value must be positive");
|
|
return -1;
|
|
}
|
|
if (!blocking)
|
|
*timeout = 0;
|
|
else if (*timeout != unset_timeout) {
|
|
_PyTime_t microseconds;
|
|
|
|
microseconds = _PyTime_AsMicroseconds(*timeout, _PyTime_ROUND_TIMEOUT);
|
|
if (microseconds > PY_TIMEOUT_MAX) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timeout value is too large");
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
lock_PyThread_acquire_lock(lockobject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
_PyTime_t timeout;
|
|
if (lock_acquire_parse_args(args, kwds, &timeout) < 0)
|
|
return NULL;
|
|
|
|
PyLockStatus r = acquire_timed(self->lock_lock, timeout);
|
|
if (r == PY_LOCK_INTR) {
|
|
return NULL;
|
|
}
|
|
|
|
if (r == PY_LOCK_ACQUIRED)
|
|
self->locked = 1;
|
|
return PyBool_FromLong(r == PY_LOCK_ACQUIRED);
|
|
}
|
|
|
|
PyDoc_STRVAR(acquire_doc,
|
|
"acquire(blocking=True, timeout=-1) -> bool\n\
|
|
(acquire_lock() is an obsolete synonym)\n\
|
|
\n\
|
|
Lock the lock. Without argument, this blocks if the lock is already\n\
|
|
locked (even by the same thread), waiting for another thread to release\n\
|
|
the lock, and return True once the lock is acquired.\n\
|
|
With an argument, this will only block if the argument is true,\n\
|
|
and the return value reflects whether the lock is acquired.\n\
|
|
The blocking operation is interruptible.");
|
|
|
|
static PyObject *
|
|
lock_PyThread_release_lock(lockobject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
/* Sanity check: the lock must be locked */
|
|
if (!self->locked) {
|
|
PyErr_SetString(ThreadError, "release unlocked lock");
|
|
return NULL;
|
|
}
|
|
|
|
PyThread_release_lock(self->lock_lock);
|
|
self->locked = 0;
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(release_doc,
|
|
"release()\n\
|
|
(release_lock() is an obsolete synonym)\n\
|
|
\n\
|
|
Release the lock, allowing another thread that is blocked waiting for\n\
|
|
the lock to acquire the lock. The lock must be in the locked state,\n\
|
|
but it needn't be locked by the same thread that unlocks it.");
|
|
|
|
static PyObject *
|
|
lock_locked_lock(lockobject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return PyBool_FromLong((long)self->locked);
|
|
}
|
|
|
|
PyDoc_STRVAR(locked_doc,
|
|
"locked() -> bool\n\
|
|
(locked_lock() is an obsolete synonym)\n\
|
|
\n\
|
|
Return whether the lock is in the locked state.");
|
|
|
|
static PyObject *
|
|
lock_repr(lockobject *self)
|
|
{
|
|
return PyUnicode_FromFormat("<%s %s object at %p>",
|
|
self->locked ? "locked" : "unlocked", Py_TYPE(self)->tp_name, self);
|
|
}
|
|
|
|
#ifdef HAVE_FORK
|
|
static PyObject *
|
|
lock__at_fork_reinit(lockobject *self, PyObject *Py_UNUSED(args))
|
|
{
|
|
if (_PyThread_at_fork_reinit(&self->lock_lock) < 0) {
|
|
PyErr_SetString(ThreadError, "failed to reinitialize lock at fork");
|
|
return NULL;
|
|
}
|
|
|
|
self->locked = 0;
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
#endif /* HAVE_FORK */
|
|
|
|
|
|
static PyMethodDef lock_methods[] = {
|
|
{"acquire_lock", _PyCFunction_CAST(lock_PyThread_acquire_lock),
|
|
METH_VARARGS | METH_KEYWORDS, acquire_doc},
|
|
{"acquire", _PyCFunction_CAST(lock_PyThread_acquire_lock),
|
|
METH_VARARGS | METH_KEYWORDS, acquire_doc},
|
|
{"release_lock", (PyCFunction)lock_PyThread_release_lock,
|
|
METH_NOARGS, release_doc},
|
|
{"release", (PyCFunction)lock_PyThread_release_lock,
|
|
METH_NOARGS, release_doc},
|
|
{"locked_lock", (PyCFunction)lock_locked_lock,
|
|
METH_NOARGS, locked_doc},
|
|
{"locked", (PyCFunction)lock_locked_lock,
|
|
METH_NOARGS, locked_doc},
|
|
{"__enter__", _PyCFunction_CAST(lock_PyThread_acquire_lock),
|
|
METH_VARARGS | METH_KEYWORDS, acquire_doc},
|
|
{"__exit__", (PyCFunction)lock_PyThread_release_lock,
|
|
METH_VARARGS, release_doc},
|
|
#ifdef HAVE_FORK
|
|
{"_at_fork_reinit", (PyCFunction)lock__at_fork_reinit,
|
|
METH_NOARGS, NULL},
|
|
#endif
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
PyDoc_STRVAR(lock_doc,
|
|
"A lock object is a synchronization primitive. To create a lock,\n\
|
|
call threading.Lock(). Methods are:\n\
|
|
\n\
|
|
acquire() -- lock the lock, possibly blocking until it can be obtained\n\
|
|
release() -- unlock of the lock\n\
|
|
locked() -- test whether the lock is currently locked\n\
|
|
\n\
|
|
A lock is not owned by the thread that locked it; another thread may\n\
|
|
unlock it. A thread attempting to lock a lock that it has already locked\n\
|
|
will block until another thread unlocks it. Deadlocks may ensue.");
|
|
|
|
static PyMemberDef lock_type_members[] = {
|
|
{"__weaklistoffset__", T_PYSSIZET, offsetof(lockobject, in_weakreflist), READONLY},
|
|
{NULL},
|
|
};
|
|
|
|
static PyType_Slot lock_type_slots[] = {
|
|
{Py_tp_dealloc, (destructor)lock_dealloc},
|
|
{Py_tp_repr, (reprfunc)lock_repr},
|
|
{Py_tp_doc, (void *)lock_doc},
|
|
{Py_tp_methods, lock_methods},
|
|
{Py_tp_traverse, lock_traverse},
|
|
{Py_tp_members, lock_type_members},
|
|
{0, 0}
|
|
};
|
|
|
|
static PyType_Spec lock_type_spec = {
|
|
.name = "_thread.lock",
|
|
.basicsize = sizeof(lockobject),
|
|
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_DISALLOW_INSTANTIATION | Py_TPFLAGS_IMMUTABLETYPE),
|
|
.slots = lock_type_slots,
|
|
};
|
|
|
|
/* Recursive lock objects */
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyThread_type_lock rlock_lock;
|
|
unsigned long rlock_owner;
|
|
unsigned long rlock_count;
|
|
PyObject *in_weakreflist;
|
|
} rlockobject;
|
|
|
|
static int
|
|
rlock_traverse(rlockobject *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(Py_TYPE(self));
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
rlock_dealloc(rlockobject *self)
|
|
{
|
|
PyObject_GC_UnTrack(self);
|
|
if (self->in_weakreflist != NULL)
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
/* self->rlock_lock can be NULL if PyThread_allocate_lock() failed
|
|
in rlock_new() */
|
|
if (self->rlock_lock != NULL) {
|
|
/* Unlock the lock so it's safe to free it */
|
|
if (self->rlock_count > 0)
|
|
PyThread_release_lock(self->rlock_lock);
|
|
|
|
PyThread_free_lock(self->rlock_lock);
|
|
}
|
|
PyTypeObject *tp = Py_TYPE(self);
|
|
tp->tp_free(self);
|
|
Py_DECREF(tp);
|
|
}
|
|
|
|
static PyObject *
|
|
rlock_acquire(rlockobject *self, PyObject *args, PyObject *kwds)
|
|
{
|
|
_PyTime_t timeout;
|
|
unsigned long tid;
|
|
PyLockStatus r = PY_LOCK_ACQUIRED;
|
|
|
|
if (lock_acquire_parse_args(args, kwds, &timeout) < 0)
|
|
return NULL;
|
|
|
|
tid = PyThread_get_thread_ident();
|
|
if (self->rlock_count > 0 && tid == self->rlock_owner) {
|
|
unsigned long count = self->rlock_count + 1;
|
|
if (count <= self->rlock_count) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"Internal lock count overflowed");
|
|
return NULL;
|
|
}
|
|
self->rlock_count = count;
|
|
Py_RETURN_TRUE;
|
|
}
|
|
r = acquire_timed(self->rlock_lock, timeout);
|
|
if (r == PY_LOCK_ACQUIRED) {
|
|
assert(self->rlock_count == 0);
|
|
self->rlock_owner = tid;
|
|
self->rlock_count = 1;
|
|
}
|
|
else if (r == PY_LOCK_INTR) {
|
|
return NULL;
|
|
}
|
|
|
|
return PyBool_FromLong(r == PY_LOCK_ACQUIRED);
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_acquire_doc,
|
|
"acquire(blocking=True) -> bool\n\
|
|
\n\
|
|
Lock the lock. `blocking` indicates whether we should wait\n\
|
|
for the lock to be available or not. If `blocking` is False\n\
|
|
and another thread holds the lock, the method will return False\n\
|
|
immediately. If `blocking` is True and another thread holds\n\
|
|
the lock, the method will wait for the lock to be released,\n\
|
|
take it and then return True.\n\
|
|
(note: the blocking operation is interruptible.)\n\
|
|
\n\
|
|
In all other cases, the method will return True immediately.\n\
|
|
Precisely, if the current thread already holds the lock, its\n\
|
|
internal counter is simply incremented. If nobody holds the lock,\n\
|
|
the lock is taken and its internal counter initialized to 1.");
|
|
|
|
static PyObject *
|
|
rlock_release(rlockobject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
unsigned long tid = PyThread_get_thread_ident();
|
|
|
|
if (self->rlock_count == 0 || self->rlock_owner != tid) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"cannot release un-acquired lock");
|
|
return NULL;
|
|
}
|
|
if (--self->rlock_count == 0) {
|
|
self->rlock_owner = 0;
|
|
PyThread_release_lock(self->rlock_lock);
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_release_doc,
|
|
"release()\n\
|
|
\n\
|
|
Release the lock, allowing another thread that is blocked waiting for\n\
|
|
the lock to acquire the lock. The lock must be in the locked state,\n\
|
|
and must be locked by the same thread that unlocks it; otherwise a\n\
|
|
`RuntimeError` is raised.\n\
|
|
\n\
|
|
Do note that if the lock was acquire()d several times in a row by the\n\
|
|
current thread, release() needs to be called as many times for the lock\n\
|
|
to be available for other threads.");
|
|
|
|
static PyObject *
|
|
rlock_acquire_restore(rlockobject *self, PyObject *args)
|
|
{
|
|
unsigned long owner;
|
|
unsigned long count;
|
|
int r = 1;
|
|
|
|
if (!PyArg_ParseTuple(args, "(kk):_acquire_restore", &count, &owner))
|
|
return NULL;
|
|
|
|
if (!PyThread_acquire_lock(self->rlock_lock, 0)) {
|
|
Py_BEGIN_ALLOW_THREADS
|
|
r = PyThread_acquire_lock(self->rlock_lock, 1);
|
|
Py_END_ALLOW_THREADS
|
|
}
|
|
if (!r) {
|
|
PyErr_SetString(ThreadError, "couldn't acquire lock");
|
|
return NULL;
|
|
}
|
|
assert(self->rlock_count == 0);
|
|
self->rlock_owner = owner;
|
|
self->rlock_count = count;
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_acquire_restore_doc,
|
|
"_acquire_restore(state) -> None\n\
|
|
\n\
|
|
For internal use by `threading.Condition`.");
|
|
|
|
static PyObject *
|
|
rlock_release_save(rlockobject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
unsigned long owner;
|
|
unsigned long count;
|
|
|
|
if (self->rlock_count == 0) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"cannot release un-acquired lock");
|
|
return NULL;
|
|
}
|
|
|
|
owner = self->rlock_owner;
|
|
count = self->rlock_count;
|
|
self->rlock_count = 0;
|
|
self->rlock_owner = 0;
|
|
PyThread_release_lock(self->rlock_lock);
|
|
return Py_BuildValue("kk", count, owner);
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_release_save_doc,
|
|
"_release_save() -> tuple\n\
|
|
\n\
|
|
For internal use by `threading.Condition`.");
|
|
|
|
|
|
static PyObject *
|
|
rlock_is_owned(rlockobject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
unsigned long tid = PyThread_get_thread_ident();
|
|
|
|
if (self->rlock_count > 0 && self->rlock_owner == tid) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
Py_RETURN_FALSE;
|
|
}
|
|
|
|
PyDoc_STRVAR(rlock_is_owned_doc,
|
|
"_is_owned() -> bool\n\
|
|
\n\
|
|
For internal use by `threading.Condition`.");
|
|
|
|
static PyObject *
|
|
rlock_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
|
|
{
|
|
rlockobject *self = (rlockobject *) type->tp_alloc(type, 0);
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
self->in_weakreflist = NULL;
|
|
self->rlock_owner = 0;
|
|
self->rlock_count = 0;
|
|
|
|
self->rlock_lock = PyThread_allocate_lock();
|
|
if (self->rlock_lock == NULL) {
|
|
Py_DECREF(self);
|
|
PyErr_SetString(ThreadError, "can't allocate lock");
|
|
return NULL;
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
static PyObject *
|
|
rlock_repr(rlockobject *self)
|
|
{
|
|
return PyUnicode_FromFormat("<%s %s object owner=%ld count=%lu at %p>",
|
|
self->rlock_count ? "locked" : "unlocked",
|
|
Py_TYPE(self)->tp_name, self->rlock_owner,
|
|
self->rlock_count, self);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_FORK
|
|
static PyObject *
|
|
rlock__at_fork_reinit(rlockobject *self, PyObject *Py_UNUSED(args))
|
|
{
|
|
if (_PyThread_at_fork_reinit(&self->rlock_lock) < 0) {
|
|
PyErr_SetString(ThreadError, "failed to reinitialize lock at fork");
|
|
return NULL;
|
|
}
|
|
|
|
self->rlock_owner = 0;
|
|
self->rlock_count = 0;
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
#endif /* HAVE_FORK */
|
|
|
|
|
|
static PyMethodDef rlock_methods[] = {
|
|
{"acquire", _PyCFunction_CAST(rlock_acquire),
|
|
METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc},
|
|
{"release", (PyCFunction)rlock_release,
|
|
METH_NOARGS, rlock_release_doc},
|
|
{"_is_owned", (PyCFunction)rlock_is_owned,
|
|
METH_NOARGS, rlock_is_owned_doc},
|
|
{"_acquire_restore", (PyCFunction)rlock_acquire_restore,
|
|
METH_VARARGS, rlock_acquire_restore_doc},
|
|
{"_release_save", (PyCFunction)rlock_release_save,
|
|
METH_NOARGS, rlock_release_save_doc},
|
|
{"__enter__", _PyCFunction_CAST(rlock_acquire),
|
|
METH_VARARGS | METH_KEYWORDS, rlock_acquire_doc},
|
|
{"__exit__", (PyCFunction)rlock_release,
|
|
METH_VARARGS, rlock_release_doc},
|
|
#ifdef HAVE_FORK
|
|
{"_at_fork_reinit", (PyCFunction)rlock__at_fork_reinit,
|
|
METH_NOARGS, NULL},
|
|
#endif
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
static PyMemberDef rlock_type_members[] = {
|
|
{"__weaklistoffset__", T_PYSSIZET, offsetof(rlockobject, in_weakreflist), READONLY},
|
|
{NULL},
|
|
};
|
|
|
|
static PyType_Slot rlock_type_slots[] = {
|
|
{Py_tp_dealloc, (destructor)rlock_dealloc},
|
|
{Py_tp_repr, (reprfunc)rlock_repr},
|
|
{Py_tp_methods, rlock_methods},
|
|
{Py_tp_alloc, PyType_GenericAlloc},
|
|
{Py_tp_new, rlock_new},
|
|
{Py_tp_members, rlock_type_members},
|
|
{Py_tp_traverse, rlock_traverse},
|
|
{0, 0},
|
|
};
|
|
|
|
static PyType_Spec rlock_type_spec = {
|
|
.name = "_thread.RLock",
|
|
.basicsize = sizeof(rlockobject),
|
|
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
|
|
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE),
|
|
.slots = rlock_type_slots,
|
|
};
|
|
|
|
static lockobject *
|
|
newlockobject(PyObject *module)
|
|
{
|
|
thread_module_state *state = get_thread_state(module);
|
|
|
|
PyTypeObject *type = state->lock_type;
|
|
lockobject *self = (lockobject *)type->tp_alloc(type, 0);
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
self->lock_lock = PyThread_allocate_lock();
|
|
self->locked = 0;
|
|
self->in_weakreflist = NULL;
|
|
|
|
if (self->lock_lock == NULL) {
|
|
Py_DECREF(self);
|
|
PyErr_SetString(ThreadError, "can't allocate lock");
|
|
return NULL;
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Thread-local objects */
|
|
|
|
/* Quick overview:
|
|
|
|
We need to be able to reclaim reference cycles as soon as possible
|
|
(both when a thread is being terminated, or a thread-local object
|
|
becomes unreachable from user data). Constraints:
|
|
- it must not be possible for thread-state dicts to be involved in
|
|
reference cycles (otherwise the cyclic GC will refuse to consider
|
|
objects referenced from a reachable thread-state dict, even though
|
|
local_dealloc would clear them)
|
|
- the death of a thread-state dict must still imply destruction of the
|
|
corresponding local dicts in all thread-local objects.
|
|
|
|
Our implementation uses small "localdummy" objects in order to break
|
|
the reference chain. These trivial objects are hashable (using the
|
|
default scheme of identity hashing) and weakrefable.
|
|
Each thread-state holds a separate localdummy for each local object
|
|
(as a /strong reference/),
|
|
and each thread-local object holds a dict mapping /weak references/
|
|
of localdummies to local dicts.
|
|
|
|
Therefore:
|
|
- only the thread-state dict holds a strong reference to the dummies
|
|
- only the thread-local object holds a strong reference to the local dicts
|
|
- only outside objects (application- or library-level) hold strong
|
|
references to the thread-local objects
|
|
- as soon as a thread-state dict is destroyed, the weakref callbacks of all
|
|
dummies attached to that thread are called, and destroy the corresponding
|
|
local dicts from thread-local objects
|
|
- as soon as a thread-local object is destroyed, its local dicts are
|
|
destroyed and its dummies are manually removed from all thread states
|
|
- the GC can do its work correctly when a thread-local object is dangling,
|
|
without any interference from the thread-state dicts
|
|
|
|
As an additional optimization, each localdummy holds a borrowed reference
|
|
to the corresponding localdict. This borrowed reference is only used
|
|
by the thread-local object which has created the localdummy, which should
|
|
guarantee that the localdict still exists when accessed.
|
|
*/
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyObject *localdict; /* Borrowed reference! */
|
|
PyObject *weakreflist; /* List of weak references to self */
|
|
} localdummyobject;
|
|
|
|
static void
|
|
localdummy_dealloc(localdummyobject *self)
|
|
{
|
|
if (self->weakreflist != NULL)
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
PyTypeObject *tp = Py_TYPE(self);
|
|
tp->tp_free((PyObject*)self);
|
|
Py_DECREF(tp);
|
|
}
|
|
|
|
static PyMemberDef local_dummy_type_members[] = {
|
|
{"__weaklistoffset__", T_PYSSIZET, offsetof(localdummyobject, weakreflist), READONLY},
|
|
{NULL},
|
|
};
|
|
|
|
static PyType_Slot local_dummy_type_slots[] = {
|
|
{Py_tp_dealloc, (destructor)localdummy_dealloc},
|
|
{Py_tp_doc, "Thread-local dummy"},
|
|
{Py_tp_members, local_dummy_type_members},
|
|
{0, 0}
|
|
};
|
|
|
|
static PyType_Spec local_dummy_type_spec = {
|
|
.name = "_thread._localdummy",
|
|
.basicsize = sizeof(localdummyobject),
|
|
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION |
|
|
Py_TPFLAGS_IMMUTABLETYPE),
|
|
.slots = local_dummy_type_slots,
|
|
};
|
|
|
|
|
|
typedef struct {
|
|
PyObject_HEAD
|
|
PyObject *key;
|
|
PyObject *args;
|
|
PyObject *kw;
|
|
PyObject *weakreflist; /* List of weak references to self */
|
|
/* A {localdummy weakref -> localdict} dict */
|
|
PyObject *dummies;
|
|
/* The callback for weakrefs to localdummies */
|
|
PyObject *wr_callback;
|
|
} localobject;
|
|
|
|
/* Forward declaration */
|
|
static PyObject *_ldict(localobject *self, thread_module_state *state);
|
|
static PyObject *_localdummy_destroyed(PyObject *meth_self, PyObject *dummyweakref);
|
|
|
|
/* Create and register the dummy for the current thread.
|
|
Returns a borrowed reference of the corresponding local dict */
|
|
static PyObject *
|
|
_local_create_dummy(localobject *self, thread_module_state *state)
|
|
{
|
|
PyObject *ldict = NULL, *wr = NULL;
|
|
localdummyobject *dummy = NULL;
|
|
PyTypeObject *type = state->local_dummy_type;
|
|
|
|
PyObject *tdict = PyThreadState_GetDict();
|
|
if (tdict == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"Couldn't get thread-state dictionary");
|
|
goto err;
|
|
}
|
|
|
|
ldict = PyDict_New();
|
|
if (ldict == NULL) {
|
|
goto err;
|
|
}
|
|
dummy = (localdummyobject *) type->tp_alloc(type, 0);
|
|
if (dummy == NULL) {
|
|
goto err;
|
|
}
|
|
dummy->localdict = ldict;
|
|
wr = PyWeakref_NewRef((PyObject *) dummy, self->wr_callback);
|
|
if (wr == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* As a side-effect, this will cache the weakref's hash before the
|
|
dummy gets deleted */
|
|
int r = PyDict_SetItem(self->dummies, wr, ldict);
|
|
if (r < 0) {
|
|
goto err;
|
|
}
|
|
Py_CLEAR(wr);
|
|
r = PyDict_SetItem(tdict, self->key, (PyObject *) dummy);
|
|
if (r < 0) {
|
|
goto err;
|
|
}
|
|
Py_CLEAR(dummy);
|
|
|
|
Py_DECREF(ldict);
|
|
return ldict;
|
|
|
|
err:
|
|
Py_XDECREF(ldict);
|
|
Py_XDECREF(wr);
|
|
Py_XDECREF(dummy);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
local_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
static PyMethodDef wr_callback_def = {
|
|
"_localdummy_destroyed", (PyCFunction) _localdummy_destroyed, METH_O
|
|
};
|
|
|
|
if (type->tp_init == PyBaseObject_Type.tp_init) {
|
|
int rc = 0;
|
|
if (args != NULL)
|
|
rc = PyObject_IsTrue(args);
|
|
if (rc == 0 && kw != NULL)
|
|
rc = PyObject_IsTrue(kw);
|
|
if (rc != 0) {
|
|
if (rc > 0) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"Initialization arguments are not supported");
|
|
}
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
PyObject *module = PyType_GetModuleByDef(type, &thread_module);
|
|
thread_module_state *state = get_thread_state(module);
|
|
|
|
localobject *self = (localobject *)type->tp_alloc(type, 0);
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
self->args = Py_XNewRef(args);
|
|
self->kw = Py_XNewRef(kw);
|
|
self->key = PyUnicode_FromFormat("thread.local.%p", self);
|
|
if (self->key == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
self->dummies = PyDict_New();
|
|
if (self->dummies == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
/* We use a weak reference to self in the callback closure
|
|
in order to avoid spurious reference cycles */
|
|
PyObject *wr = PyWeakref_NewRef((PyObject *) self, NULL);
|
|
if (wr == NULL) {
|
|
goto err;
|
|
}
|
|
self->wr_callback = PyCFunction_NewEx(&wr_callback_def, wr, NULL);
|
|
Py_DECREF(wr);
|
|
if (self->wr_callback == NULL) {
|
|
goto err;
|
|
}
|
|
if (_local_create_dummy(self, state) == NULL) {
|
|
goto err;
|
|
}
|
|
return (PyObject *)self;
|
|
|
|
err:
|
|
Py_DECREF(self);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
local_traverse(localobject *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(Py_TYPE(self));
|
|
Py_VISIT(self->args);
|
|
Py_VISIT(self->kw);
|
|
Py_VISIT(self->dummies);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
local_clear(localobject *self)
|
|
{
|
|
Py_CLEAR(self->args);
|
|
Py_CLEAR(self->kw);
|
|
Py_CLEAR(self->dummies);
|
|
Py_CLEAR(self->wr_callback);
|
|
/* Remove all strong references to dummies from the thread states */
|
|
if (self->key) {
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
HEAD_LOCK(runtime);
|
|
PyThreadState *tstate = PyInterpreterState_ThreadHead(interp);
|
|
HEAD_UNLOCK(runtime);
|
|
while (tstate) {
|
|
if (tstate->dict) {
|
|
PyObject *v = _PyDict_Pop(tstate->dict, self->key, Py_None);
|
|
if (v != NULL) {
|
|
Py_DECREF(v);
|
|
}
|
|
else {
|
|
PyErr_Clear();
|
|
}
|
|
}
|
|
HEAD_LOCK(runtime);
|
|
tstate = PyThreadState_Next(tstate);
|
|
HEAD_UNLOCK(runtime);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
local_dealloc(localobject *self)
|
|
{
|
|
/* Weakrefs must be invalidated right now, otherwise they can be used
|
|
from code called below, which is very dangerous since Py_REFCNT(self) == 0 */
|
|
if (self->weakreflist != NULL) {
|
|
PyObject_ClearWeakRefs((PyObject *) self);
|
|
}
|
|
|
|
PyObject_GC_UnTrack(self);
|
|
|
|
local_clear(self);
|
|
Py_XDECREF(self->key);
|
|
|
|
PyTypeObject *tp = Py_TYPE(self);
|
|
tp->tp_free((PyObject*)self);
|
|
Py_DECREF(tp);
|
|
}
|
|
|
|
/* Returns a borrowed reference to the local dict, creating it if necessary */
|
|
static PyObject *
|
|
_ldict(localobject *self, thread_module_state *state)
|
|
{
|
|
PyObject *tdict = PyThreadState_GetDict();
|
|
if (tdict == NULL) {
|
|
PyErr_SetString(PyExc_SystemError,
|
|
"Couldn't get thread-state dictionary");
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *ldict;
|
|
PyObject *dummy = PyDict_GetItemWithError(tdict, self->key);
|
|
if (dummy == NULL) {
|
|
if (PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
ldict = _local_create_dummy(self, state);
|
|
if (ldict == NULL)
|
|
return NULL;
|
|
|
|
if (Py_TYPE(self)->tp_init != PyBaseObject_Type.tp_init &&
|
|
Py_TYPE(self)->tp_init((PyObject*)self,
|
|
self->args, self->kw) < 0) {
|
|
/* we need to get rid of ldict from thread so
|
|
we create a new one the next time we do an attr
|
|
access */
|
|
PyDict_DelItem(tdict, self->key);
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
assert(Py_IS_TYPE(dummy, state->local_dummy_type));
|
|
ldict = ((localdummyobject *) dummy)->localdict;
|
|
}
|
|
|
|
return ldict;
|
|
}
|
|
|
|
static int
|
|
local_setattro(localobject *self, PyObject *name, PyObject *v)
|
|
{
|
|
PyObject *module = PyType_GetModuleByDef(Py_TYPE(self), &thread_module);
|
|
thread_module_state *state = get_thread_state(module);
|
|
|
|
PyObject *ldict = _ldict(self, state);
|
|
if (ldict == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
int r = PyObject_RichCompareBool(name, &_Py_ID(__dict__), Py_EQ);
|
|
if (r == -1) {
|
|
return -1;
|
|
}
|
|
if (r == 1) {
|
|
PyErr_Format(PyExc_AttributeError,
|
|
"'%.100s' object attribute '%U' is read-only",
|
|
Py_TYPE(self)->tp_name, name);
|
|
return -1;
|
|
}
|
|
|
|
return _PyObject_GenericSetAttrWithDict((PyObject *)self, name, v, ldict);
|
|
}
|
|
|
|
static PyObject *local_getattro(localobject *, PyObject *);
|
|
|
|
static PyMemberDef local_type_members[] = {
|
|
{"__weaklistoffset__", T_PYSSIZET, offsetof(localobject, weakreflist), READONLY},
|
|
{NULL},
|
|
};
|
|
|
|
static PyType_Slot local_type_slots[] = {
|
|
{Py_tp_dealloc, (destructor)local_dealloc},
|
|
{Py_tp_getattro, (getattrofunc)local_getattro},
|
|
{Py_tp_setattro, (setattrofunc)local_setattro},
|
|
{Py_tp_doc, "Thread-local data"},
|
|
{Py_tp_traverse, (traverseproc)local_traverse},
|
|
{Py_tp_clear, (inquiry)local_clear},
|
|
{Py_tp_new, local_new},
|
|
{Py_tp_members, local_type_members},
|
|
{0, 0}
|
|
};
|
|
|
|
static PyType_Spec local_type_spec = {
|
|
.name = "_thread._local",
|
|
.basicsize = sizeof(localobject),
|
|
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_IMMUTABLETYPE),
|
|
.slots = local_type_slots,
|
|
};
|
|
|
|
static PyObject *
|
|
local_getattro(localobject *self, PyObject *name)
|
|
{
|
|
PyObject *module = PyType_GetModuleByDef(Py_TYPE(self), &thread_module);
|
|
thread_module_state *state = get_thread_state(module);
|
|
|
|
PyObject *ldict = _ldict(self, state);
|
|
if (ldict == NULL)
|
|
return NULL;
|
|
|
|
int r = PyObject_RichCompareBool(name, &_Py_ID(__dict__), Py_EQ);
|
|
if (r == 1) {
|
|
return Py_NewRef(ldict);
|
|
}
|
|
if (r == -1) {
|
|
return NULL;
|
|
}
|
|
|
|
if (!Py_IS_TYPE(self, state->local_type)) {
|
|
/* use generic lookup for subtypes */
|
|
return _PyObject_GenericGetAttrWithDict((PyObject *)self, name,
|
|
ldict, 0);
|
|
}
|
|
|
|
/* Optimization: just look in dict ourselves */
|
|
PyObject *value = PyDict_GetItemWithError(ldict, name);
|
|
if (value != NULL) {
|
|
return Py_NewRef(value);
|
|
}
|
|
if (PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Fall back on generic to get __class__ and __dict__ */
|
|
return _PyObject_GenericGetAttrWithDict(
|
|
(PyObject *)self, name, ldict, 0);
|
|
}
|
|
|
|
/* Called when a dummy is destroyed. */
|
|
static PyObject *
|
|
_localdummy_destroyed(PyObject *localweakref, PyObject *dummyweakref)
|
|
{
|
|
assert(PyWeakref_CheckRef(localweakref));
|
|
PyObject *obj = PyWeakref_GET_OBJECT(localweakref);
|
|
if (obj == Py_None) {
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* If the thread-local object is still alive and not being cleared,
|
|
remove the corresponding local dict */
|
|
localobject *self = (localobject *)Py_NewRef(obj);
|
|
if (self->dummies != NULL) {
|
|
PyObject *ldict;
|
|
ldict = PyDict_GetItemWithError(self->dummies, dummyweakref);
|
|
if (ldict != NULL) {
|
|
PyDict_DelItem(self->dummies, dummyweakref);
|
|
}
|
|
if (PyErr_Occurred())
|
|
PyErr_WriteUnraisable(obj);
|
|
}
|
|
Py_DECREF(obj);
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* Module functions */
|
|
|
|
struct bootstate {
|
|
PyInterpreterState *interp;
|
|
PyObject *func;
|
|
PyObject *args;
|
|
PyObject *kwargs;
|
|
PyThreadState *tstate;
|
|
_PyRuntimeState *runtime;
|
|
};
|
|
|
|
|
|
static void
|
|
thread_bootstate_free(struct bootstate *boot)
|
|
{
|
|
Py_DECREF(boot->func);
|
|
Py_DECREF(boot->args);
|
|
Py_XDECREF(boot->kwargs);
|
|
PyMem_Free(boot);
|
|
}
|
|
|
|
|
|
static void
|
|
thread_run(void *boot_raw)
|
|
{
|
|
struct bootstate *boot = (struct bootstate *) boot_raw;
|
|
PyThreadState *tstate;
|
|
|
|
tstate = boot->tstate;
|
|
_PyThreadState_Bind(tstate);
|
|
PyEval_AcquireThread(tstate);
|
|
tstate->interp->threads.count++;
|
|
|
|
PyObject *res = PyObject_Call(boot->func, boot->args, boot->kwargs);
|
|
if (res == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_SystemExit))
|
|
/* SystemExit is ignored silently */
|
|
PyErr_Clear();
|
|
else {
|
|
_PyErr_WriteUnraisableMsg("in thread started by", boot->func);
|
|
}
|
|
}
|
|
else {
|
|
Py_DECREF(res);
|
|
}
|
|
|
|
thread_bootstate_free(boot);
|
|
tstate->interp->threads.count--;
|
|
PyThreadState_Clear(tstate);
|
|
_PyThreadState_DeleteCurrent(tstate);
|
|
|
|
// bpo-44434: Don't call explicitly PyThread_exit_thread(). On Linux with
|
|
// the glibc, pthread_exit() can abort the whole process if dlopen() fails
|
|
// to open the libgcc_s.so library (ex: EMFILE error).
|
|
}
|
|
|
|
static PyObject *
|
|
thread_daemon_threads_allowed(PyObject *module, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_Get();
|
|
if (interp->feature_flags & Py_RTFLAGS_DAEMON_THREADS) {
|
|
Py_RETURN_TRUE;
|
|
}
|
|
else {
|
|
Py_RETURN_FALSE;
|
|
}
|
|
}
|
|
|
|
PyDoc_STRVAR(daemon_threads_allowed_doc,
|
|
"daemon_threads_allowed()\n\
|
|
\n\
|
|
Return True if daemon threads are allowed in the current interpreter,\n\
|
|
and False otherwise.\n");
|
|
|
|
static PyObject *
|
|
thread_PyThread_start_new_thread(PyObject *self, PyObject *fargs)
|
|
{
|
|
_PyRuntimeState *runtime = &_PyRuntime;
|
|
PyObject *func, *args, *kwargs = NULL;
|
|
|
|
if (!PyArg_UnpackTuple(fargs, "start_new_thread", 2, 3,
|
|
&func, &args, &kwargs))
|
|
return NULL;
|
|
if (!PyCallable_Check(func)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"first arg must be callable");
|
|
return NULL;
|
|
}
|
|
if (!PyTuple_Check(args)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"2nd arg must be a tuple");
|
|
return NULL;
|
|
}
|
|
if (kwargs != NULL && !PyDict_Check(kwargs)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"optional 3rd arg must be a dictionary");
|
|
return NULL;
|
|
}
|
|
|
|
if (PySys_Audit("_thread.start_new_thread", "OOO",
|
|
func, args, kwargs ? kwargs : Py_None) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
if (!_PyInterpreterState_HasFeature(interp, Py_RTFLAGS_THREADS)) {
|
|
PyErr_SetString(PyExc_RuntimeError,
|
|
"thread is not supported for isolated subinterpreters");
|
|
return NULL;
|
|
}
|
|
|
|
struct bootstate *boot = PyMem_NEW(struct bootstate, 1);
|
|
if (boot == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
boot->interp = _PyInterpreterState_GET();
|
|
boot->tstate = _PyThreadState_New(boot->interp);
|
|
if (boot->tstate == NULL) {
|
|
PyMem_Free(boot);
|
|
if (!PyErr_Occurred()) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
return NULL;
|
|
}
|
|
boot->runtime = runtime;
|
|
boot->func = Py_NewRef(func);
|
|
boot->args = Py_NewRef(args);
|
|
boot->kwargs = Py_XNewRef(kwargs);
|
|
|
|
unsigned long ident = PyThread_start_new_thread(thread_run, (void*) boot);
|
|
if (ident == PYTHREAD_INVALID_THREAD_ID) {
|
|
PyErr_SetString(ThreadError, "can't start new thread");
|
|
PyThreadState_Clear(boot->tstate);
|
|
thread_bootstate_free(boot);
|
|
return NULL;
|
|
}
|
|
return PyLong_FromUnsignedLong(ident);
|
|
}
|
|
|
|
PyDoc_STRVAR(start_new_doc,
|
|
"start_new_thread(function, args[, kwargs])\n\
|
|
(start_new() is an obsolete synonym)\n\
|
|
\n\
|
|
Start a new thread and return its identifier. The thread will call the\n\
|
|
function with positional arguments from the tuple args and keyword arguments\n\
|
|
taken from the optional dictionary kwargs. The thread exits when the\n\
|
|
function returns; the return value is ignored. The thread will also exit\n\
|
|
when the function raises an unhandled exception; a stack trace will be\n\
|
|
printed unless the exception is SystemExit.\n");
|
|
|
|
static PyObject *
|
|
thread_PyThread_exit_thread(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyErr_SetNone(PyExc_SystemExit);
|
|
return NULL;
|
|
}
|
|
|
|
PyDoc_STRVAR(exit_doc,
|
|
"exit()\n\
|
|
(exit_thread() is an obsolete synonym)\n\
|
|
\n\
|
|
This is synonymous to ``raise SystemExit''. It will cause the current\n\
|
|
thread to exit silently unless the exception is caught.");
|
|
|
|
static PyObject *
|
|
thread_PyThread_interrupt_main(PyObject *self, PyObject *args)
|
|
{
|
|
int signum = SIGINT;
|
|
if (!PyArg_ParseTuple(args, "|i:signum", &signum)) {
|
|
return NULL;
|
|
}
|
|
|
|
if (PyErr_SetInterruptEx(signum)) {
|
|
PyErr_SetString(PyExc_ValueError, "signal number out of range");
|
|
return NULL;
|
|
}
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(interrupt_doc,
|
|
"interrupt_main(signum=signal.SIGINT, /)\n\
|
|
\n\
|
|
Simulate the arrival of the given signal in the main thread,\n\
|
|
where the corresponding signal handler will be executed.\n\
|
|
If *signum* is omitted, SIGINT is assumed.\n\
|
|
A subthread can use this function to interrupt the main thread.\n\
|
|
\n\
|
|
Note: the default signal handler for SIGINT raises ``KeyboardInterrupt``."
|
|
);
|
|
|
|
static lockobject *newlockobject(PyObject *module);
|
|
|
|
static PyObject *
|
|
thread_PyThread_allocate_lock(PyObject *module, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return (PyObject *) newlockobject(module);
|
|
}
|
|
|
|
PyDoc_STRVAR(allocate_doc,
|
|
"allocate_lock() -> lock object\n\
|
|
(allocate() is an obsolete synonym)\n\
|
|
\n\
|
|
Create a new lock object. See help(type(threading.Lock())) for\n\
|
|
information about locks.");
|
|
|
|
static PyObject *
|
|
thread_get_ident(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
unsigned long ident = PyThread_get_thread_ident();
|
|
if (ident == PYTHREAD_INVALID_THREAD_ID) {
|
|
PyErr_SetString(ThreadError, "no current thread ident");
|
|
return NULL;
|
|
}
|
|
return PyLong_FromUnsignedLong(ident);
|
|
}
|
|
|
|
PyDoc_STRVAR(get_ident_doc,
|
|
"get_ident() -> integer\n\
|
|
\n\
|
|
Return a non-zero integer that uniquely identifies the current thread\n\
|
|
amongst other threads that exist simultaneously.\n\
|
|
This may be used to identify per-thread resources.\n\
|
|
Even though on some platforms threads identities may appear to be\n\
|
|
allocated consecutive numbers starting at 1, this behavior should not\n\
|
|
be relied upon, and the number should be seen purely as a magic cookie.\n\
|
|
A thread's identity may be reused for another thread after it exits.");
|
|
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
static PyObject *
|
|
thread_get_native_id(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
unsigned long native_id = PyThread_get_thread_native_id();
|
|
return PyLong_FromUnsignedLong(native_id);
|
|
}
|
|
|
|
PyDoc_STRVAR(get_native_id_doc,
|
|
"get_native_id() -> integer\n\
|
|
\n\
|
|
Return a non-negative integer identifying the thread as reported\n\
|
|
by the OS (kernel). This may be used to uniquely identify a\n\
|
|
particular thread within a system.");
|
|
#endif
|
|
|
|
static PyObject *
|
|
thread__count(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
return PyLong_FromLong(interp->threads.count);
|
|
}
|
|
|
|
PyDoc_STRVAR(_count_doc,
|
|
"_count() -> integer\n\
|
|
\n\
|
|
\
|
|
Return the number of currently running Python threads, excluding\n\
|
|
the main thread. The returned number comprises all threads created\n\
|
|
through `start_new_thread()` as well as `threading.Thread`, and not\n\
|
|
yet finished.\n\
|
|
\n\
|
|
This function is meant for internal and specialized purposes only.\n\
|
|
In most applications `threading.enumerate()` should be used instead.");
|
|
|
|
static void
|
|
release_sentinel(void *wr_raw)
|
|
{
|
|
PyObject *wr = _PyObject_CAST(wr_raw);
|
|
/* Tricky: this function is called when the current thread state
|
|
is being deleted. Therefore, only simple C code can safely
|
|
execute here. */
|
|
PyObject *obj = PyWeakref_GET_OBJECT(wr);
|
|
lockobject *lock;
|
|
if (obj != Py_None) {
|
|
lock = (lockobject *) obj;
|
|
if (lock->locked) {
|
|
PyThread_release_lock(lock->lock_lock);
|
|
lock->locked = 0;
|
|
}
|
|
}
|
|
/* Deallocating a weakref with a NULL callback only calls
|
|
PyObject_GC_Del(), which can't call any Python code. */
|
|
Py_DECREF(wr);
|
|
}
|
|
|
|
static PyObject *
|
|
thread__set_sentinel(PyObject *module, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyObject *wr;
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
lockobject *lock;
|
|
|
|
if (tstate->on_delete_data != NULL) {
|
|
/* We must support the re-creation of the lock from a
|
|
fork()ed child. */
|
|
assert(tstate->on_delete == &release_sentinel);
|
|
wr = (PyObject *) tstate->on_delete_data;
|
|
tstate->on_delete = NULL;
|
|
tstate->on_delete_data = NULL;
|
|
Py_DECREF(wr);
|
|
}
|
|
lock = newlockobject(module);
|
|
if (lock == NULL)
|
|
return NULL;
|
|
/* The lock is owned by whoever called _set_sentinel(), but the weakref
|
|
hangs to the thread state. */
|
|
wr = PyWeakref_NewRef((PyObject *) lock, NULL);
|
|
if (wr == NULL) {
|
|
Py_DECREF(lock);
|
|
return NULL;
|
|
}
|
|
tstate->on_delete_data = (void *) wr;
|
|
tstate->on_delete = &release_sentinel;
|
|
return (PyObject *) lock;
|
|
}
|
|
|
|
PyDoc_STRVAR(_set_sentinel_doc,
|
|
"_set_sentinel() -> lock\n\
|
|
\n\
|
|
Set a sentinel lock that will be released when the current thread\n\
|
|
state is finalized (after it is untied from the interpreter).\n\
|
|
\n\
|
|
This is a private API for the threading module.");
|
|
|
|
static PyObject *
|
|
thread_stack_size(PyObject *self, PyObject *args)
|
|
{
|
|
size_t old_size;
|
|
Py_ssize_t new_size = 0;
|
|
int rc;
|
|
|
|
if (!PyArg_ParseTuple(args, "|n:stack_size", &new_size))
|
|
return NULL;
|
|
|
|
if (new_size < 0) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"size must be 0 or a positive value");
|
|
return NULL;
|
|
}
|
|
|
|
old_size = PyThread_get_stacksize();
|
|
|
|
rc = PyThread_set_stacksize((size_t) new_size);
|
|
if (rc == -1) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"size not valid: %zd bytes",
|
|
new_size);
|
|
return NULL;
|
|
}
|
|
if (rc == -2) {
|
|
PyErr_SetString(ThreadError,
|
|
"setting stack size not supported");
|
|
return NULL;
|
|
}
|
|
|
|
return PyLong_FromSsize_t((Py_ssize_t) old_size);
|
|
}
|
|
|
|
PyDoc_STRVAR(stack_size_doc,
|
|
"stack_size([size]) -> size\n\
|
|
\n\
|
|
Return the thread stack size used when creating new threads. The\n\
|
|
optional size argument specifies the stack size (in bytes) to be used\n\
|
|
for subsequently created threads, and must be 0 (use platform or\n\
|
|
configured default) or a positive integer value of at least 32,768 (32k).\n\
|
|
If changing the thread stack size is unsupported, a ThreadError\n\
|
|
exception is raised. If the specified size is invalid, a ValueError\n\
|
|
exception is raised, and the stack size is unmodified. 32k bytes\n\
|
|
currently the minimum supported stack size value to guarantee\n\
|
|
sufficient stack space for the interpreter itself.\n\
|
|
\n\
|
|
Note that some platforms may have particular restrictions on values for\n\
|
|
the stack size, such as requiring a minimum stack size larger than 32 KiB or\n\
|
|
requiring allocation in multiples of the system memory page size\n\
|
|
- platform documentation should be referred to for more information\n\
|
|
(4 KiB pages are common; using multiples of 4096 for the stack size is\n\
|
|
the suggested approach in the absence of more specific information).");
|
|
|
|
static int
|
|
thread_excepthook_file(PyObject *file, PyObject *exc_type, PyObject *exc_value,
|
|
PyObject *exc_traceback, PyObject *thread)
|
|
{
|
|
/* print(f"Exception in thread {thread.name}:", file=file) */
|
|
if (PyFile_WriteString("Exception in thread ", file) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
PyObject *name = NULL;
|
|
if (thread != Py_None) {
|
|
if (_PyObject_LookupAttr(thread, &_Py_ID(name), &name) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (name != NULL) {
|
|
if (PyFile_WriteObject(name, file, Py_PRINT_RAW) < 0) {
|
|
Py_DECREF(name);
|
|
return -1;
|
|
}
|
|
Py_DECREF(name);
|
|
}
|
|
else {
|
|
unsigned long ident = PyThread_get_thread_ident();
|
|
PyObject *str = PyUnicode_FromFormat("%lu", ident);
|
|
if (str != NULL) {
|
|
if (PyFile_WriteObject(str, file, Py_PRINT_RAW) < 0) {
|
|
Py_DECREF(str);
|
|
return -1;
|
|
}
|
|
Py_DECREF(str);
|
|
}
|
|
else {
|
|
PyErr_Clear();
|
|
|
|
if (PyFile_WriteString("<failed to get thread name>", file) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PyFile_WriteString(":\n", file) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* Display the traceback */
|
|
_PyErr_Display(file, exc_type, exc_value, exc_traceback);
|
|
|
|
/* Call file.flush() */
|
|
PyObject *res = PyObject_CallMethodNoArgs(file, &_Py_ID(flush));
|
|
if (!res) {
|
|
return -1;
|
|
}
|
|
Py_DECREF(res);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
PyDoc_STRVAR(ExceptHookArgs__doc__,
|
|
"ExceptHookArgs\n\
|
|
\n\
|
|
Type used to pass arguments to threading.excepthook.");
|
|
|
|
static PyStructSequence_Field ExceptHookArgs_fields[] = {
|
|
{"exc_type", "Exception type"},
|
|
{"exc_value", "Exception value"},
|
|
{"exc_traceback", "Exception traceback"},
|
|
{"thread", "Thread"},
|
|
{0}
|
|
};
|
|
|
|
static PyStructSequence_Desc ExceptHookArgs_desc = {
|
|
.name = "_thread._ExceptHookArgs",
|
|
.doc = ExceptHookArgs__doc__,
|
|
.fields = ExceptHookArgs_fields,
|
|
.n_in_sequence = 4
|
|
};
|
|
|
|
|
|
static PyObject *
|
|
thread_excepthook(PyObject *module, PyObject *args)
|
|
{
|
|
thread_module_state *state = get_thread_state(module);
|
|
|
|
if (!Py_IS_TYPE(args, state->excepthook_type)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"_thread.excepthook argument type "
|
|
"must be ExceptHookArgs");
|
|
return NULL;
|
|
}
|
|
|
|
/* Borrowed reference */
|
|
PyObject *exc_type = PyStructSequence_GET_ITEM(args, 0);
|
|
if (exc_type == PyExc_SystemExit) {
|
|
/* silently ignore SystemExit */
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
/* Borrowed references */
|
|
PyObject *exc_value = PyStructSequence_GET_ITEM(args, 1);
|
|
PyObject *exc_tb = PyStructSequence_GET_ITEM(args, 2);
|
|
PyObject *thread = PyStructSequence_GET_ITEM(args, 3);
|
|
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
PyObject *file = _PySys_GetAttr(tstate, &_Py_ID(stderr));
|
|
if (file == NULL || file == Py_None) {
|
|
if (thread == Py_None) {
|
|
/* do nothing if sys.stderr is None and thread is None */
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
file = PyObject_GetAttrString(thread, "_stderr");
|
|
if (file == NULL) {
|
|
return NULL;
|
|
}
|
|
if (file == Py_None) {
|
|
Py_DECREF(file);
|
|
/* do nothing if sys.stderr is None and sys.stderr was None
|
|
when the thread was created */
|
|
Py_RETURN_NONE;
|
|
}
|
|
}
|
|
else {
|
|
Py_INCREF(file);
|
|
}
|
|
|
|
int res = thread_excepthook_file(file, exc_type, exc_value, exc_tb,
|
|
thread);
|
|
Py_DECREF(file);
|
|
if (res < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
PyDoc_STRVAR(excepthook_doc,
|
|
"excepthook(exc_type, exc_value, exc_traceback, thread)\n\
|
|
\n\
|
|
Handle uncaught Thread.run() exception.");
|
|
|
|
static PyMethodDef thread_methods[] = {
|
|
{"start_new_thread", (PyCFunction)thread_PyThread_start_new_thread,
|
|
METH_VARARGS, start_new_doc},
|
|
{"start_new", (PyCFunction)thread_PyThread_start_new_thread,
|
|
METH_VARARGS, start_new_doc},
|
|
{"daemon_threads_allowed", (PyCFunction)thread_daemon_threads_allowed,
|
|
METH_NOARGS, daemon_threads_allowed_doc},
|
|
{"allocate_lock", thread_PyThread_allocate_lock,
|
|
METH_NOARGS, allocate_doc},
|
|
{"allocate", thread_PyThread_allocate_lock,
|
|
METH_NOARGS, allocate_doc},
|
|
{"exit_thread", thread_PyThread_exit_thread,
|
|
METH_NOARGS, exit_doc},
|
|
{"exit", thread_PyThread_exit_thread,
|
|
METH_NOARGS, exit_doc},
|
|
{"interrupt_main", (PyCFunction)thread_PyThread_interrupt_main,
|
|
METH_VARARGS, interrupt_doc},
|
|
{"get_ident", thread_get_ident,
|
|
METH_NOARGS, get_ident_doc},
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
{"get_native_id", thread_get_native_id,
|
|
METH_NOARGS, get_native_id_doc},
|
|
#endif
|
|
{"_count", thread__count,
|
|
METH_NOARGS, _count_doc},
|
|
{"stack_size", (PyCFunction)thread_stack_size,
|
|
METH_VARARGS, stack_size_doc},
|
|
{"_set_sentinel", thread__set_sentinel,
|
|
METH_NOARGS, _set_sentinel_doc},
|
|
{"_excepthook", thread_excepthook,
|
|
METH_O, excepthook_doc},
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
/* Initialization function */
|
|
|
|
static int
|
|
thread_module_exec(PyObject *module)
|
|
{
|
|
thread_module_state *state = get_thread_state(module);
|
|
PyObject *d = PyModule_GetDict(module);
|
|
|
|
// Initialize the C thread library
|
|
PyThread_init_thread();
|
|
|
|
// Lock
|
|
state->lock_type = (PyTypeObject *)PyType_FromSpec(&lock_type_spec);
|
|
if (state->lock_type == NULL) {
|
|
return -1;
|
|
}
|
|
if (PyDict_SetItemString(d, "LockType", (PyObject *)state->lock_type) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
// RLock
|
|
PyTypeObject *rlock_type = (PyTypeObject *)PyType_FromSpec(&rlock_type_spec);
|
|
if (rlock_type == NULL) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddType(module, rlock_type) < 0) {
|
|
Py_DECREF(rlock_type);
|
|
return -1;
|
|
}
|
|
Py_DECREF(rlock_type);
|
|
|
|
// Local dummy
|
|
state->local_dummy_type = (PyTypeObject *)PyType_FromSpec(&local_dummy_type_spec);
|
|
if (state->local_dummy_type == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
// Local
|
|
state->local_type = (PyTypeObject *)PyType_FromModuleAndSpec(module, &local_type_spec, NULL);
|
|
if (state->local_type == NULL) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddType(module, state->local_type) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
// Add module attributes
|
|
if (PyDict_SetItemString(d, "error", ThreadError) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
// _ExceptHookArgs type
|
|
state->excepthook_type = PyStructSequence_NewType(&ExceptHookArgs_desc);
|
|
if (state->excepthook_type == NULL) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddType(module, state->excepthook_type) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
// TIMEOUT_MAX
|
|
double timeout_max = (double)PY_TIMEOUT_MAX * 1e-6;
|
|
double time_max = _PyTime_AsSecondsDouble(_PyTime_MAX);
|
|
timeout_max = Py_MIN(timeout_max, time_max);
|
|
// Round towards minus infinity
|
|
timeout_max = floor(timeout_max);
|
|
|
|
if (PyModule_AddObject(module, "TIMEOUT_MAX",
|
|
PyFloat_FromDouble(timeout_max)) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
thread_module_traverse(PyObject *module, visitproc visit, void *arg)
|
|
{
|
|
thread_module_state *state = get_thread_state(module);
|
|
Py_VISIT(state->excepthook_type);
|
|
Py_VISIT(state->lock_type);
|
|
Py_VISIT(state->local_type);
|
|
Py_VISIT(state->local_dummy_type);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
thread_module_clear(PyObject *module)
|
|
{
|
|
thread_module_state *state = get_thread_state(module);
|
|
Py_CLEAR(state->excepthook_type);
|
|
Py_CLEAR(state->lock_type);
|
|
Py_CLEAR(state->local_type);
|
|
Py_CLEAR(state->local_dummy_type);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
thread_module_free(void *module)
|
|
{
|
|
thread_module_clear((PyObject *)module);
|
|
}
|
|
|
|
|
|
|
|
PyDoc_STRVAR(thread_doc,
|
|
"This module provides primitive operations to write multi-threaded programs.\n\
|
|
The 'threading' module provides a more convenient interface.");
|
|
|
|
static PyModuleDef_Slot thread_module_slots[] = {
|
|
{Py_mod_exec, thread_module_exec},
|
|
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
|
|
{0, NULL}
|
|
};
|
|
|
|
static struct PyModuleDef thread_module = {
|
|
PyModuleDef_HEAD_INIT,
|
|
.m_name = "_thread",
|
|
.m_doc = thread_doc,
|
|
.m_size = sizeof(thread_module_state),
|
|
.m_methods = thread_methods,
|
|
.m_traverse = thread_module_traverse,
|
|
.m_clear = thread_module_clear,
|
|
.m_free = thread_module_free,
|
|
.m_slots = thread_module_slots,
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__thread(void)
|
|
{
|
|
return PyModuleDef_Init(&thread_module);
|
|
}
|