cpython/Objects/intobject.c
Thomas Wouters fc7bb8c786 Merged revisions 53304-53433,53435-53450 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r53304 | vinay.sajip | 2007-01-09 15:50:28 +0100 (Tue, 09 Jan 2007) | 1 line

  Bug #1627575: Added _open() method to FileHandler which can be used to reopen files. The FileHandler instance now saves the encoding (which can be None) in an attribute called "encoding".
........
  r53305 | vinay.sajip | 2007-01-09 15:51:36 +0100 (Tue, 09 Jan 2007) | 1 line

  Added entry about addition of _open() method to logging.FileHandler.
........
  r53306 | vinay.sajip | 2007-01-09 15:54:56 +0100 (Tue, 09 Jan 2007) | 1 line

  Added a docstring
........
  r53316 | thomas.heller | 2007-01-09 20:19:33 +0100 (Tue, 09 Jan 2007) | 4 lines

  Verify the sizes of the basic ctypes data types against the struct
  module.

  Will backport to release25-maint.
........
  r53340 | gustavo.niemeyer | 2007-01-10 17:13:40 +0100 (Wed, 10 Jan 2007) | 3 lines

  Mention in the int() docstring that a base zero has meaning, as
  stated in http://docs.python.org/lib/built-in-funcs.html as well.
........
  r53341 | gustavo.niemeyer | 2007-01-10 17:15:48 +0100 (Wed, 10 Jan 2007) | 2 lines

  Minor change in int() docstring for proper spacing.
........
  r53358 | thomas.heller | 2007-01-10 21:12:13 +0100 (Wed, 10 Jan 2007) | 1 line

  Change the ctypes version number to "1.1.0".
........
  r53361 | thomas.heller | 2007-01-10 21:51:19 +0100 (Wed, 10 Jan 2007) | 1 line

  Must change the version number in the _ctypes extension as well.
........
  r53362 | guido.van.rossum | 2007-01-11 00:12:56 +0100 (Thu, 11 Jan 2007) | 3 lines

  Fix the signature of log_error().  (A subclass that did the right thing
  was getting complaints from pychecker.)
........
  r53370 | matthias.klose | 2007-01-11 11:26:31 +0100 (Thu, 11 Jan 2007) | 2 lines

  - Make the documentation match the code and the docstring
........
  r53375 | matthias.klose | 2007-01-11 12:44:04 +0100 (Thu, 11 Jan 2007) | 2 lines

  - idle: Honor the "Cancel" action in the save dialog (Debian bug #299092).
........
  r53381 | raymond.hettinger | 2007-01-11 19:22:55 +0100 (Thu, 11 Jan 2007) | 1 line

  SF #1486663 -- Allow keyword args in subclasses of set() and frozenset().
........
  r53388 | thomas.heller | 2007-01-11 22:18:56 +0100 (Thu, 11 Jan 2007) | 4 lines

  Fixes for 64-bit Windows: In ctypes.wintypes, correct the definitions
  of HANDLE, WPARAM, LPARAM data types.  Make parameterless foreign
  function calls work.
........
  r53390 | thomas.heller | 2007-01-11 22:23:12 +0100 (Thu, 11 Jan 2007) | 2 lines

  Correct the comments: the code is right.
........
  r53393 | brett.cannon | 2007-01-12 08:27:52 +0100 (Fri, 12 Jan 2007) | 3 lines

  Fix error where the end of a funcdesc environment was accidentally moved too
  far down.
........
  r53397 | anthony.baxter | 2007-01-12 10:35:56 +0100 (Fri, 12 Jan 2007) | 3 lines

  add parsetok.h as a dependency - previously, changing this file doesn't
  cause the right files to be rebuilt.
........
  r53401 | thomas.heller | 2007-01-12 21:08:19 +0100 (Fri, 12 Jan 2007) | 3 lines

  Avoid warnings in the test suite because ctypes.wintypes cannot be
  imported on non-windows systems.
........
  r53402 | thomas.heller | 2007-01-12 21:17:34 +0100 (Fri, 12 Jan 2007) | 6 lines

  patch #1610795: BSD version of ctypes.util.find_library, by Martin
  Kammerhofer.

  release25-maint backport candidate, but the release manager has to
  decide.
........
  r53403 | thomas.heller | 2007-01-12 21:21:53 +0100 (Fri, 12 Jan 2007) | 3 lines

  patch #1610795: BSD version of ctypes.util.find_library, by Martin
  Kammerhofer.
........
  r53406 | brett.cannon | 2007-01-13 01:29:49 +0100 (Sat, 13 Jan 2007) | 2 lines

  Deprecate the sets module.
........
  r53407 | georg.brandl | 2007-01-13 13:31:51 +0100 (Sat, 13 Jan 2007) | 3 lines

  Fix typo.
........
  r53409 | marc-andre.lemburg | 2007-01-13 22:00:08 +0100 (Sat, 13 Jan 2007) | 16 lines

  Bump version number and change copyright year.

  Add new API linux_distribution() which supports reading the full distribution
  name and also knows how to parse LSB-style release files.

  Redirect the old dist() API to the new API (using the short distribution name
  taken from the release file filename).

  Add branch and revision to _sys_version().

  Add work-around for Cygwin to libc_ver().

  Add support for IronPython (thanks for Anthony Baxter) and make
  Jython support more robust.
........
  r53410 | neal.norwitz | 2007-01-13 22:22:37 +0100 (Sat, 13 Jan 2007) | 1 line

  Fix grammar in docstrings
........
  r53411 | marc-andre.lemburg | 2007-01-13 23:32:21 +0100 (Sat, 13 Jan 2007) | 9 lines

  Add parameter sys_version to _sys_version().

  Change the cache for _sys_version() to take the parameter into account.

  Add support for parsing the IronPython 1.0.1 sys.version value - even
  though it still returns '1.0.0'; the version string no longer includes
  the patch level.
........
  r53412 | peter.astrand | 2007-01-13 23:35:35 +0100 (Sat, 13 Jan 2007) | 1 line

  Fix for bug #1634343: allow specifying empty arguments on Windows
........
  r53414 | marc-andre.lemburg | 2007-01-13 23:59:36 +0100 (Sat, 13 Jan 2007) | 14 lines

  Add Python implementation to the machine details.

  Pretty-print the Python version used for running PyBench.

  Let the user know when calibration has finished.

  [ 1563844 ] pybench support for IronPython:

  Simplify Unicode version detection.

  Make garbage collection and check interval settings optional if
  the Python implementation doesn't support thess (e.g. IronPython).
........
  r53415 | marc-andre.lemburg | 2007-01-14 00:13:54 +0100 (Sun, 14 Jan 2007) | 5 lines

  Use defaults if sys.executable isn't set (e.g. on Jython).

  This change allows running PyBench under Jython.
........
  r53416 | marc-andre.lemburg | 2007-01-14 00:15:33 +0100 (Sun, 14 Jan 2007) | 3 lines

  Jython doesn't have sys.setcheckinterval() - ignore it in that case.
........
  r53420 | gerhard.haering | 2007-01-14 02:43:50 +0100 (Sun, 14 Jan 2007) | 29 lines

  Merged changes from standalone version 2.3.3. This should probably all be
  merged into the 2.5 maintenance branch:

  - self->statement was not checked while fetching data, which could
    lead to crashes if you used the pysqlite API in unusual ways.
    Closing the cursor and continuing to fetch data was enough.

  - Converters are stored in a converters dictionary. The converter name
    is uppercased first. The old upper-casing algorithm was wrong and
    was replaced by a simple call to the Python string's upper() method
    instead.

  -Applied patch by Glyph Lefkowitz that fixes the problem with
   subsequent SQLITE_SCHEMA errors.

  - Improvement to the row type: rows can now be iterated over and have a keys()
    method. This improves compatibility with both tuple and dict a lot.

  - A bugfix for the subsecond resolution in timestamps.

  - Corrected the way the flags PARSE_DECLTYPES and PARSE_COLNAMES are
    checked for. Now they work as documented.

  - gcc on Linux sucks. It exports all symbols by default in shared
    libraries, so if symbols are not unique it can lead to problems with
    symbol lookup.  pysqlite used to crash under Apache when mod_cache
    was enabled because both modules had the symbol cache_init. I fixed
    this by applying the prefix pysqlite_ almost everywhere. Sigh.
........
  r53423 | guido.van.rossum | 2007-01-14 04:46:33 +0100 (Sun, 14 Jan 2007) | 2 lines

  Remove a dependency of this test on $COLUMNS.
........
  r53425 | ka-ping.yee | 2007-01-14 05:25:15 +0100 (Sun, 14 Jan 2007) | 3 lines

  Handle old-style instances more gracefully (display documentation on
  the relevant class instead of documentation on <type 'instance'>).
........
  r53440 | vinay.sajip | 2007-01-14 22:49:59 +0100 (Sun, 14 Jan 2007) | 1 line

  Added WatchedFileHandler (based on SF patch #1598415)
........
  r53441 | vinay.sajip | 2007-01-14 22:50:50 +0100 (Sun, 14 Jan 2007) | 1 line

  Added documentation for WatchedFileHandler (based on SF patch #1598415)
........
  r53442 | guido.van.rossum | 2007-01-15 01:02:35 +0100 (Mon, 15 Jan 2007) | 2 lines

  Doc patch matching r53434 (htonl etc. now always take/return positive ints).
........
2007-01-15 15:49:28 +00:00

1260 lines
30 KiB
C

/* Integer object implementation */
#include "Python.h"
#include <ctype.h>
long
PyInt_GetMax(void)
{
return LONG_MAX; /* To initialize sys.maxint */
}
#if 0
/* Integers are quite normal objects, to make object handling uniform.
(Using odd pointers to represent integers would save much space
but require extra checks for this special case throughout the code.)
Since a typical Python program spends much of its time allocating
and deallocating integers, these operations should be very fast.
Therefore we use a dedicated allocation scheme with a much lower
overhead (in space and time) than straight malloc(): a simple
dedicated free list, filled when necessary with memory from malloc().
block_list is a singly-linked list of all PyIntBlocks ever allocated,
linked via their next members. PyIntBlocks are never returned to the
system before shutdown (PyInt_Fini).
free_list is a singly-linked list of available PyIntObjects, linked
via abuse of their ob_type members.
*/
#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
#define N_INTOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyIntObject))
struct _intblock {
struct _intblock *next;
PyIntObject objects[N_INTOBJECTS];
};
typedef struct _intblock PyIntBlock;
static PyIntBlock *block_list = NULL;
static PyIntObject *free_list = NULL;
static PyIntObject *
fill_free_list(void)
{
PyIntObject *p, *q;
/* Python's object allocator isn't appropriate for large blocks. */
p = (PyIntObject *) PyMem_MALLOC(sizeof(PyIntBlock));
if (p == NULL)
return (PyIntObject *) PyErr_NoMemory();
((PyIntBlock *)p)->next = block_list;
block_list = (PyIntBlock *)p;
/* Link the int objects together, from rear to front, then return
the address of the last int object in the block. */
p = &((PyIntBlock *)p)->objects[0];
q = p + N_INTOBJECTS;
while (--q > p)
q->ob_type = (struct _typeobject *)(q-1);
q->ob_type = NULL;
return p + N_INTOBJECTS - 1;
}
#ifndef NSMALLPOSINTS
#define NSMALLPOSINTS 257
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS 5
#endif
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
/* References to small integers are saved in this array so that they
can be shared.
The integers that are saved are those in the range
-NSMALLNEGINTS (inclusive) to NSMALLPOSINTS (not inclusive).
*/
static PyIntObject *small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
#endif
#ifdef COUNT_ALLOCS
int quick_int_allocs, quick_neg_int_allocs;
#endif
PyObject *
PyInt_FromLong(long ival)
{
register PyIntObject *v;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
if (-NSMALLNEGINTS <= ival && ival < NSMALLPOSINTS) {
v = small_ints[ival + NSMALLNEGINTS];
Py_INCREF(v);
#ifdef COUNT_ALLOCS
if (ival >= 0)
quick_int_allocs++;
else
quick_neg_int_allocs++;
#endif
return (PyObject *) v;
}
#endif
if (free_list == NULL) {
if ((free_list = fill_free_list()) == NULL)
return NULL;
}
/* Inline PyObject_New */
v = free_list;
free_list = (PyIntObject *)v->ob_type;
PyObject_INIT(v, &PyInt_Type);
v->ob_ival = ival;
return (PyObject *) v;
}
PyObject *
PyInt_FromSize_t(size_t ival)
{
if (ival <= LONG_MAX)
return PyInt_FromLong((long)ival);
return _PyLong_FromSize_t(ival);
}
PyObject *
PyInt_FromSsize_t(Py_ssize_t ival)
{
if (ival >= LONG_MIN && ival <= LONG_MAX)
return PyInt_FromLong((long)ival);
return _PyLong_FromSsize_t(ival);
}
static void
int_dealloc(PyIntObject *v)
{
if (PyInt_CheckExact(v)) {
v->ob_type = (struct _typeobject *)free_list;
free_list = v;
}
else
v->ob_type->tp_free((PyObject *)v);
}
static void
int_free(PyIntObject *v)
{
v->ob_type = (struct _typeobject *)free_list;
free_list = v;
}
long
PyInt_AsLong(register PyObject *op)
{
PyNumberMethods *nb;
PyIntObject *io;
long val;
if (op && PyInt_Check(op))
return PyInt_AS_LONG((PyIntObject*) op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
io = (PyIntObject*) (*nb->nb_int) (op);
if (io == NULL)
return -1;
if (!PyInt_Check(io)) {
if (PyLong_Check(io)) {
/* got a long? => retry int conversion */
val = PyLong_AsLong((PyObject *)io);
Py_DECREF(io);
if ((val == -1) && PyErr_Occurred())
return -1;
return val;
}
else
{
Py_DECREF(io);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return -1;
}
}
val = PyInt_AS_LONG(io);
Py_DECREF(io);
return val;
}
Py_ssize_t
PyInt_AsSsize_t(register PyObject *op)
{
#if SIZEOF_SIZE_T != SIZEOF_LONG
PyNumberMethods *nb;
PyIntObject *io;
Py_ssize_t val;
#endif
if (op == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
if (PyInt_Check(op))
return PyInt_AS_LONG((PyIntObject*) op);
if (PyLong_Check(op))
return _PyLong_AsSsize_t(op);
#if SIZEOF_SIZE_T == SIZEOF_LONG
return PyInt_AsLong(op);
#else
if ((nb = op->ob_type->tp_as_number) == NULL ||
(nb->nb_int == NULL && nb->nb_long == 0)) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return -1;
}
if (nb->nb_long != 0) {
io = (PyIntObject*) (*nb->nb_long) (op);
} else {
io = (PyIntObject*) (*nb->nb_int) (op);
}
if (io == NULL)
return -1;
if (!PyInt_Check(io)) {
if (PyLong_Check(io)) {
/* got a long? => retry int conversion */
val = _PyLong_AsSsize_t((PyObject *)io);
Py_DECREF(io);
if ((val == -1) && PyErr_Occurred())
return -1;
return val;
}
else
{
Py_DECREF(io);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return -1;
}
}
val = PyInt_AS_LONG(io);
Py_DECREF(io);
return val;
#endif
}
unsigned long
PyInt_AsUnsignedLongMask(register PyObject *op)
{
PyNumberMethods *nb;
PyIntObject *io;
unsigned long val;
if (op && PyInt_Check(op))
return PyInt_AS_LONG((PyIntObject*) op);
if (op && PyLong_Check(op))
return PyLong_AsUnsignedLongMask(op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned long)-1;
}
io = (PyIntObject*) (*nb->nb_int) (op);
if (io == NULL)
return (unsigned long)-1;
if (!PyInt_Check(io)) {
if (PyLong_Check(io)) {
val = PyLong_AsUnsignedLongMask((PyObject *)io);
Py_DECREF(io);
if (PyErr_Occurred())
return (unsigned long)-1;
return val;
}
else
{
Py_DECREF(io);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return (unsigned long)-1;
}
}
val = PyInt_AS_LONG(io);
Py_DECREF(io);
return val;
}
#ifdef HAVE_LONG_LONG
unsigned PY_LONG_LONG
PyInt_AsUnsignedLongLongMask(register PyObject *op)
{
PyNumberMethods *nb;
PyIntObject *io;
unsigned PY_LONG_LONG val;
if (op && PyInt_Check(op))
return PyInt_AS_LONG((PyIntObject*) op);
if (op && PyLong_Check(op))
return PyLong_AsUnsignedLongLongMask(op);
if (op == NULL || (nb = op->ob_type->tp_as_number) == NULL ||
nb->nb_int == NULL) {
PyErr_SetString(PyExc_TypeError, "an integer is required");
return (unsigned PY_LONG_LONG)-1;
}
io = (PyIntObject*) (*nb->nb_int) (op);
if (io == NULL)
return (unsigned PY_LONG_LONG)-1;
if (!PyInt_Check(io)) {
if (PyLong_Check(io)) {
val = PyLong_AsUnsignedLongLongMask((PyObject *)io);
Py_DECREF(io);
if (PyErr_Occurred())
return (unsigned PY_LONG_LONG)-1;
return val;
}
else
{
Py_DECREF(io);
PyErr_SetString(PyExc_TypeError,
"nb_int should return int object");
return (unsigned PY_LONG_LONG)-1;
}
}
val = PyInt_AS_LONG(io);
Py_DECREF(io);
return val;
}
#endif
PyObject *
PyInt_FromString(char *s, char **pend, int base)
{
char *end;
long x;
Py_ssize_t slen;
PyObject *sobj, *srepr;
if ((base != 0 && base < 2) || base > 36) {
PyErr_SetString(PyExc_ValueError,
"int() base must be >= 2 and <= 36");
return NULL;
}
while (*s && isspace(Py_CHARMASK(*s)))
s++;
errno = 0;
if (base == 0 && s[0] == '0') {
x = (long) PyOS_strtoul(s, &end, base);
if (x < 0)
return PyLong_FromString(s, pend, base);
}
else
x = PyOS_strtol(s, &end, base);
if (end == s || !isalnum(Py_CHARMASK(end[-1])))
goto bad;
while (*end && isspace(Py_CHARMASK(*end)))
end++;
if (*end != '\0') {
bad:
slen = strlen(s) < 200 ? strlen(s) : 200;
sobj = PyString_FromStringAndSize(s, slen);
if (sobj == NULL)
return NULL;
srepr = PyObject_Repr(sobj);
Py_DECREF(sobj);
if (srepr == NULL)
return NULL;
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %s",
base, PyString_AS_STRING(srepr));
Py_DECREF(srepr);
return NULL;
}
else if (errno != 0)
return PyLong_FromString(s, pend, base);
if (pend)
*pend = end;
return PyInt_FromLong(x);
}
#ifdef Py_USING_UNICODE
PyObject *
PyInt_FromUnicode(Py_UNICODE *s, Py_ssize_t length, int base)
{
PyObject *result;
char *buffer = (char *)PyMem_MALLOC(length+1);
if (buffer == NULL)
return NULL;
if (PyUnicode_EncodeDecimal(s, length, buffer, NULL)) {
PyMem_FREE(buffer);
return NULL;
}
result = PyInt_FromString(buffer, NULL, base);
PyMem_FREE(buffer);
return result;
}
#endif
/* Methods */
/* Integers are seen as the "smallest" of all numeric types and thus
don't have any knowledge about conversion of other types to
integers. */
#define CONVERT_TO_LONG(obj, lng) \
if (PyInt_Check(obj)) { \
lng = PyInt_AS_LONG(obj); \
} \
else { \
Py_INCREF(Py_NotImplemented); \
return Py_NotImplemented; \
}
/* ARGSUSED */
static int
int_print(PyIntObject *v, FILE *fp, int flags)
/* flags -- not used but required by interface */
{
fprintf(fp, "%ld", v->ob_ival);
return 0;
}
static PyObject *
int_repr(PyIntObject *v)
{
char buf[64];
PyOS_snprintf(buf, sizeof(buf), "%ld", v->ob_ival);
return PyString_FromString(buf);
}
static int
int_compare(PyIntObject *v, PyIntObject *w)
{
register long i = v->ob_ival;
register long j = w->ob_ival;
return (i < j) ? -1 : (i > j) ? 1 : 0;
}
static PyObject *
int_richcompare(PyObject *self, PyObject *other, int op)
{
if (!PyInt_Check(self) || !PyInt_Check(other)) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
return Py_CmpToRich(op, int_compare((PyIntObject *)self,
(PyIntObject *)other));
}
static long
int_hash(PyIntObject *v)
{
/* XXX If this is changed, you also need to change the way
Python's long, float and complex types are hashed. */
long x = v -> ob_ival;
if (x == -1)
x = -2;
return x;
}
static PyObject *
int_add(PyIntObject *v, PyIntObject *w)
{
register long a, b, x;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
x = a + b;
if ((x^a) >= 0 || (x^b) >= 0)
return PyInt_FromLong(x);
return PyLong_Type.tp_as_number->nb_add((PyObject *)v, (PyObject *)w);
}
static PyObject *
int_sub(PyIntObject *v, PyIntObject *w)
{
register long a, b, x;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
x = a - b;
if ((x^a) >= 0 || (x^~b) >= 0)
return PyInt_FromLong(x);
return PyLong_Type.tp_as_number->nb_subtract((PyObject *)v,
(PyObject *)w);
}
/*
Integer overflow checking for * is painful: Python tried a couple ways, but
they didn't work on all platforms, or failed in endcases (a product of
-sys.maxint-1 has been a particular pain).
Here's another way:
The native long product x*y is either exactly right or *way* off, being
just the last n bits of the true product, where n is the number of bits
in a long (the delivered product is the true product plus i*2**n for
some integer i).
The native double product (double)x * (double)y is subject to three
rounding errors: on a sizeof(long)==8 box, each cast to double can lose
info, and even on a sizeof(long)==4 box, the multiplication can lose info.
But, unlike the native long product, it's not in *range* trouble: even
if sizeof(long)==32 (256-bit longs), the product easily fits in the
dynamic range of a double. So the leading 50 (or so) bits of the double
product are correct.
We check these two ways against each other, and declare victory if they're
approximately the same. Else, because the native long product is the only
one that can lose catastrophic amounts of information, it's the native long
product that must have overflowed.
*/
static PyObject *
int_mul(PyObject *v, PyObject *w)
{
long a, b;
long longprod; /* a*b in native long arithmetic */
double doubled_longprod; /* (double)longprod */
double doubleprod; /* (double)a * (double)b */
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
longprod = a * b;
doubleprod = (double)a * (double)b;
doubled_longprod = (double)longprod;
/* Fast path for normal case: small multiplicands, and no info
is lost in either method. */
if (doubled_longprod == doubleprod)
return PyInt_FromLong(longprod);
/* Somebody somewhere lost info. Close enough, or way off? Note
that a != 0 and b != 0 (else doubled_longprod == doubleprod == 0).
The difference either is or isn't significant compared to the
true value (of which doubleprod is a good approximation).
*/
{
const double diff = doubled_longprod - doubleprod;
const double absdiff = diff >= 0.0 ? diff : -diff;
const double absprod = doubleprod >= 0.0 ? doubleprod :
-doubleprod;
/* absdiff/absprod <= 1/32 iff
32 * absdiff <= absprod -- 5 good bits is "close enough" */
if (32.0 * absdiff <= absprod)
return PyInt_FromLong(longprod);
else
return PyLong_Type.tp_as_number->nb_multiply(v, w);
}
}
/* Integer overflow checking for unary negation: on a 2's-complement
* box, -x overflows iff x is the most negative long. In this case we
* get -x == x. However, -x is undefined (by C) if x /is/ the most
* negative long (it's a signed overflow case), and some compilers care.
* So we cast x to unsigned long first. However, then other compilers
* warn about applying unary minus to an unsigned operand. Hence the
* weird "0-".
*/
#define UNARY_NEG_WOULD_OVERFLOW(x) \
((x) < 0 && (unsigned long)(x) == 0-(unsigned long)(x))
/* Return type of i_divmod */
enum divmod_result {
DIVMOD_OK, /* Correct result */
DIVMOD_OVERFLOW, /* Overflow, try again using longs */
DIVMOD_ERROR /* Exception raised */
};
static enum divmod_result
i_divmod(register long x, register long y,
long *p_xdivy, long *p_xmody)
{
long xdivy, xmody;
if (y == 0) {
PyErr_SetString(PyExc_ZeroDivisionError,
"integer division or modulo by zero");
return DIVMOD_ERROR;
}
/* (-sys.maxint-1)/-1 is the only overflow case. */
if (y == -1 && UNARY_NEG_WOULD_OVERFLOW(x))
return DIVMOD_OVERFLOW;
xdivy = x / y;
xmody = x - xdivy * y;
/* If the signs of x and y differ, and the remainder is non-0,
* C89 doesn't define whether xdivy is now the floor or the
* ceiling of the infinitely precise quotient. We want the floor,
* and we have it iff the remainder's sign matches y's.
*/
if (xmody && ((y ^ xmody) < 0) /* i.e. and signs differ */) {
xmody += y;
--xdivy;
assert(xmody && ((y ^ xmody) >= 0));
}
*p_xdivy = xdivy;
*p_xmody = xmody;
return DIVMOD_OK;
}
static PyObject *
int_floor_div(PyIntObject *x, PyIntObject *y)
{
long xi, yi;
long d, m;
CONVERT_TO_LONG(x, xi);
CONVERT_TO_LONG(y, yi);
switch (i_divmod(xi, yi, &d, &m)) {
case DIVMOD_OK:
return PyInt_FromLong(d);
case DIVMOD_OVERFLOW:
return PyLong_Type.tp_as_number->nb_floor_divide((PyObject *)x,
(PyObject *)y);
default:
return NULL;
}
}
static PyObject *
int_true_divide(PyObject *v, PyObject *w)
{
/* If they aren't both ints, give someone else a chance. In
particular, this lets int/long get handled by longs, which
underflows to 0 gracefully if the long is too big to convert
to float. */
if (PyInt_Check(v) && PyInt_Check(w))
return PyFloat_Type.tp_as_number->nb_true_divide(v, w);
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
static PyObject *
int_mod(PyIntObject *x, PyIntObject *y)
{
long xi, yi;
long d, m;
CONVERT_TO_LONG(x, xi);
CONVERT_TO_LONG(y, yi);
switch (i_divmod(xi, yi, &d, &m)) {
case DIVMOD_OK:
return PyInt_FromLong(m);
case DIVMOD_OVERFLOW:
return PyLong_Type.tp_as_number->nb_remainder((PyObject *)x,
(PyObject *)y);
default:
return NULL;
}
}
static PyObject *
int_divmod(PyIntObject *x, PyIntObject *y)
{
long xi, yi;
long d, m;
CONVERT_TO_LONG(x, xi);
CONVERT_TO_LONG(y, yi);
switch (i_divmod(xi, yi, &d, &m)) {
case DIVMOD_OK:
return Py_BuildValue("(ll)", d, m);
case DIVMOD_OVERFLOW:
return PyLong_Type.tp_as_number->nb_divmod((PyObject *)x,
(PyObject *)y);
default:
return NULL;
}
}
static PyObject *
int_pow(PyIntObject *v, PyIntObject *w, PyIntObject *z)
{
register long iv, iw, iz=0, ix, temp, prev;
CONVERT_TO_LONG(v, iv);
CONVERT_TO_LONG(w, iw);
if (iw < 0) {
if ((PyObject *)z != Py_None) {
PyErr_SetString(PyExc_TypeError, "pow() 2nd argument "
"cannot be negative when 3rd argument specified");
return NULL;
}
/* Return a float. This works because we know that
this calls float_pow() which converts its
arguments to double. */
return PyFloat_Type.tp_as_number->nb_power(
(PyObject *)v, (PyObject *)w, (PyObject *)z);
}
if ((PyObject *)z != Py_None) {
CONVERT_TO_LONG(z, iz);
if (iz == 0) {
PyErr_SetString(PyExc_ValueError,
"pow() 3rd argument cannot be 0");
return NULL;
}
}
/*
* XXX: The original exponentiation code stopped looping
* when temp hit zero; this code will continue onwards
* unnecessarily, but at least it won't cause any errors.
* Hopefully the speed improvement from the fast exponentiation
* will compensate for the slight inefficiency.
* XXX: Better handling of overflows is desperately needed.
*/
temp = iv;
ix = 1;
while (iw > 0) {
prev = ix; /* Save value for overflow check */
if (iw & 1) {
ix = ix*temp;
if (temp == 0)
break; /* Avoid ix / 0 */
if (ix / temp != prev) {
return PyLong_Type.tp_as_number->nb_power(
(PyObject *)v,
(PyObject *)w,
(PyObject *)z);
}
}
iw >>= 1; /* Shift exponent down by 1 bit */
if (iw==0) break;
prev = temp;
temp *= temp; /* Square the value of temp */
if (prev != 0 && temp / prev != prev) {
return PyLong_Type.tp_as_number->nb_power(
(PyObject *)v, (PyObject *)w, (PyObject *)z);
}
if (iz) {
/* If we did a multiplication, perform a modulo */
ix = ix % iz;
temp = temp % iz;
}
}
if (iz) {
long div, mod;
switch (i_divmod(ix, iz, &div, &mod)) {
case DIVMOD_OK:
ix = mod;
break;
case DIVMOD_OVERFLOW:
return PyLong_Type.tp_as_number->nb_power(
(PyObject *)v, (PyObject *)w, (PyObject *)z);
default:
return NULL;
}
}
return PyInt_FromLong(ix);
}
static PyObject *
int_neg(PyIntObject *v)
{
register long a;
a = v->ob_ival;
/* check for overflow */
if (UNARY_NEG_WOULD_OVERFLOW(a)) {
PyObject *o = PyLong_FromLong(a);
if (o != NULL) {
PyObject *result = PyNumber_Negative(o);
Py_DECREF(o);
return result;
}
return NULL;
}
return PyInt_FromLong(-a);
}
static PyObject *
int_pos(PyIntObject *v)
{
if (PyInt_CheckExact(v)) {
Py_INCREF(v);
return (PyObject *)v;
}
else
return PyInt_FromLong(v->ob_ival);
}
static PyObject *
int_abs(PyIntObject *v)
{
if (v->ob_ival >= 0)
return int_pos(v);
else
return int_neg(v);
}
static int
int_bool(PyIntObject *v)
{
return v->ob_ival != 0;
}
static PyObject *
int_invert(PyIntObject *v)
{
return PyInt_FromLong(~v->ob_ival);
}
static PyObject *
int_lshift(PyIntObject *v, PyIntObject *w)
{
long a, b, c;
PyObject *vv, *ww, *result;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
if (b < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (a == 0 || b == 0)
return int_pos(v);
if (b >= LONG_BIT) {
vv = PyLong_FromLong(PyInt_AS_LONG(v));
if (vv == NULL)
return NULL;
ww = PyLong_FromLong(PyInt_AS_LONG(w));
if (ww == NULL) {
Py_DECREF(vv);
return NULL;
}
result = PyNumber_Lshift(vv, ww);
Py_DECREF(vv);
Py_DECREF(ww);
return result;
}
c = a << b;
if (a != Py_ARITHMETIC_RIGHT_SHIFT(long, c, b)) {
vv = PyLong_FromLong(PyInt_AS_LONG(v));
if (vv == NULL)
return NULL;
ww = PyLong_FromLong(PyInt_AS_LONG(w));
if (ww == NULL) {
Py_DECREF(vv);
return NULL;
}
result = PyNumber_Lshift(vv, ww);
Py_DECREF(vv);
Py_DECREF(ww);
return result;
}
return PyInt_FromLong(c);
}
static PyObject *
int_rshift(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
if (b < 0) {
PyErr_SetString(PyExc_ValueError, "negative shift count");
return NULL;
}
if (a == 0 || b == 0)
return int_pos(v);
if (b >= LONG_BIT) {
if (a < 0)
a = -1;
else
a = 0;
}
else {
a = Py_ARITHMETIC_RIGHT_SHIFT(long, a, b);
}
return PyInt_FromLong(a);
}
static PyObject *
int_and(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
return PyInt_FromLong(a & b);
}
static PyObject *
int_xor(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
return PyInt_FromLong(a ^ b);
}
static PyObject *
int_or(PyIntObject *v, PyIntObject *w)
{
register long a, b;
CONVERT_TO_LONG(v, a);
CONVERT_TO_LONG(w, b);
return PyInt_FromLong(a | b);
}
static PyObject *
int_int(PyIntObject *v)
{
if (PyInt_CheckExact(v))
Py_INCREF(v);
else
v = (PyIntObject *)PyInt_FromLong(v->ob_ival);
return (PyObject *)v;
}
static PyObject *
int_long(PyIntObject *v)
{
return PyLong_FromLong((v -> ob_ival));
}
static PyObject *
int_float(PyIntObject *v)
{
return PyFloat_FromDouble((double)(v -> ob_ival));
}
static PyObject *
int_oct(PyIntObject *v)
{
char buf[100];
long x = v -> ob_ival;
if (x < 0)
PyOS_snprintf(buf, sizeof(buf), "-0%lo", -x);
else if (x == 0)
strcpy(buf, "0");
else
PyOS_snprintf(buf, sizeof(buf), "0%lo", x);
return PyString_FromString(buf);
}
static PyObject *
int_hex(PyIntObject *v)
{
char buf[100];
long x = v -> ob_ival;
if (x < 0)
PyOS_snprintf(buf, sizeof(buf), "-0x%lx", -x);
else
PyOS_snprintf(buf, sizeof(buf), "0x%lx", x);
return PyString_FromString(buf);
}
static PyObject *
int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
int_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *x = NULL;
int base = -909;
static char *kwlist[] = {"x", "base", 0};
if (type != &PyInt_Type)
return int_subtype_new(type, args, kwds); /* Wimp out */
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:int", kwlist,
&x, &base))
return NULL;
if (x == NULL)
return PyInt_FromLong(0L);
if (base == -909)
return PyNumber_Int(x);
if (PyString_Check(x)) {
/* Since PyInt_FromString doesn't have a length parameter,
* check here for possible NULs in the string. */
char *string = PyString_AS_STRING(x);
if (strlen(string) != PyString_Size(x)) {
/* create a repr() of the input string,
* just like PyInt_FromString does */
PyObject *srepr;
srepr = PyObject_Repr(x);
if (srepr == NULL)
return NULL;
PyErr_Format(PyExc_ValueError,
"invalid literal for int() with base %d: %s",
base, PyString_AS_STRING(srepr));
Py_DECREF(srepr);
return NULL;
}
return PyInt_FromString(string, NULL, base);
}
#ifdef Py_USING_UNICODE
if (PyUnicode_Check(x))
return PyInt_FromUnicode(PyUnicode_AS_UNICODE(x),
PyUnicode_GET_SIZE(x),
base);
#endif
PyErr_SetString(PyExc_TypeError,
"int() can't convert non-string with explicit base");
return NULL;
}
/* Wimpy, slow approach to tp_new calls for subtypes of int:
first create a regular int from whatever arguments we got,
then allocate a subtype instance and initialize its ob_ival
from the regular int. The regular int is then thrown away.
*/
static PyObject *
int_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *tmp, *newobj;
long ival;
assert(PyType_IsSubtype(type, &PyInt_Type));
tmp = int_new(&PyInt_Type, args, kwds);
if (tmp == NULL)
return NULL;
if (!PyInt_Check(tmp)) {
ival = PyLong_AsLong(tmp);
if (ival == -1 && PyErr_Occurred()) {
Py_DECREF(tmp);
return NULL;
}
} else {
ival = ((PyIntObject *)tmp)->ob_ival;
}
newobj = type->tp_alloc(type, 0);
if (newobj == NULL) {
Py_DECREF(tmp);
return NULL;
}
((PyIntObject *)newobj)->ob_ival = ival;
Py_DECREF(tmp);
return newobj;
}
static PyObject *
int_getnewargs(PyIntObject *v)
{
return Py_BuildValue("(l)", v->ob_ival);
}
static PyMethodDef int_methods[] = {
{"__getnewargs__", (PyCFunction)int_getnewargs, METH_NOARGS},
{NULL, NULL} /* sentinel */
};
PyDoc_STRVAR(int_doc,
"int(x[, base]) -> integer\n\
\n\
Convert a string or number to an integer, if possible. A floating point\n\
argument will be truncated towards zero (this does not include a string\n\
representation of a floating point number!) When converting a string, use\n\
the optional base. It is an error to supply a base when converting a\n\
non-string. If base is zero, the proper base is guessed based on the\n\
string content. If the argument is outside the integer range a\n\
long object will be returned instead.");
static PyNumberMethods int_as_number = {
(binaryfunc)int_add, /*nb_add*/
(binaryfunc)int_sub, /*nb_subtract*/
(binaryfunc)int_mul, /*nb_multiply*/
(binaryfunc)int_mod, /*nb_remainder*/
(binaryfunc)int_divmod, /*nb_divmod*/
(ternaryfunc)int_pow, /*nb_power*/
(unaryfunc)int_neg, /*nb_negative*/
(unaryfunc)int_pos, /*nb_positive*/
(unaryfunc)int_abs, /*nb_absolute*/
(inquiry)int_bool, /*nb_bool*/
(unaryfunc)int_invert, /*nb_invert*/
(binaryfunc)int_lshift, /*nb_lshift*/
(binaryfunc)int_rshift, /*nb_rshift*/
(binaryfunc)int_and, /*nb_and*/
(binaryfunc)int_xor, /*nb_xor*/
(binaryfunc)int_or, /*nb_or*/
0, /*nb_coerce*/
(unaryfunc)int_int, /*nb_int*/
(unaryfunc)int_long, /*nb_long*/
(unaryfunc)int_float, /*nb_float*/
(unaryfunc)int_oct, /*nb_oct*/
(unaryfunc)int_hex, /*nb_hex*/
0, /*nb_inplace_add*/
0, /*nb_inplace_subtract*/
0, /*nb_inplace_multiply*/
0, /*nb_inplace_remainder*/
0, /*nb_inplace_power*/
0, /*nb_inplace_lshift*/
0, /*nb_inplace_rshift*/
0, /*nb_inplace_and*/
0, /*nb_inplace_xor*/
0, /*nb_inplace_or*/
(binaryfunc)int_floor_div, /* nb_floor_divide */
int_true_divide, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
(unaryfunc)int_int, /* nb_index */
};
PyTypeObject PyInt_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"int",
sizeof(PyIntObject),
0,
(destructor)int_dealloc, /* tp_dealloc */
(printfunc)int_print, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)int_repr, /* tp_repr */
&int_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)int_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)int_repr, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
int_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
int_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
int_methods, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
0, /* tp_alloc */
int_new, /* tp_new */
(freefunc)int_free, /* tp_free */
};
int
_PyInt_Init(void)
{
PyIntObject *v;
int ival;
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
for (ival = -NSMALLNEGINTS; ival < NSMALLPOSINTS; ival++) {
if (!free_list && (free_list = fill_free_list()) == NULL)
return 0;
/* PyObject_New is inlined */
v = free_list;
free_list = (PyIntObject *)v->ob_type;
PyObject_INIT(v, &PyInt_Type);
v->ob_ival = ival;
small_ints[ival + NSMALLNEGINTS] = v;
}
#endif
return 1;
}
void
PyInt_Fini(void)
{
PyIntObject *p;
PyIntBlock *list, *next;
int i;
unsigned int ctr;
int bc, bf; /* block count, number of freed blocks */
int irem, isum; /* remaining unfreed ints per block, total */
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
PyIntObject **q;
i = NSMALLNEGINTS + NSMALLPOSINTS;
q = small_ints;
while (--i >= 0) {
Py_XDECREF(*q);
*q++ = NULL;
}
#endif
bc = 0;
bf = 0;
isum = 0;
list = block_list;
block_list = NULL;
free_list = NULL;
while (list != NULL) {
bc++;
irem = 0;
for (ctr = 0, p = &list->objects[0];
ctr < N_INTOBJECTS;
ctr++, p++) {
if (PyInt_CheckExact(p) && p->ob_refcnt != 0)
irem++;
}
next = list->next;
if (irem) {
list->next = block_list;
block_list = list;
for (ctr = 0, p = &list->objects[0];
ctr < N_INTOBJECTS;
ctr++, p++) {
if (!PyInt_CheckExact(p) ||
p->ob_refcnt == 0) {
p->ob_type = (struct _typeobject *)
free_list;
free_list = p;
}
#if NSMALLNEGINTS + NSMALLPOSINTS > 0
else if (-NSMALLNEGINTS <= p->ob_ival &&
p->ob_ival < NSMALLPOSINTS &&
small_ints[p->ob_ival +
NSMALLNEGINTS] == NULL) {
Py_INCREF(p);
small_ints[p->ob_ival +
NSMALLNEGINTS] = p;
}
#endif
}
}
else {
PyMem_FREE(list);
bf++;
}
isum += irem;
list = next;
}
if (!Py_VerboseFlag)
return;
fprintf(stderr, "# cleanup ints");
if (!isum) {
fprintf(stderr, "\n");
}
else {
fprintf(stderr,
": %d unfreed int%s in %d out of %d block%s\n",
isum, isum == 1 ? "" : "s",
bc - bf, bc, bc == 1 ? "" : "s");
}
if (Py_VerboseFlag > 1) {
list = block_list;
while (list != NULL) {
for (ctr = 0, p = &list->objects[0];
ctr < N_INTOBJECTS;
ctr++, p++) {
if (PyInt_CheckExact(p) && p->ob_refcnt != 0)
/* XXX(twouters) cast refcount to
long until %zd is universally
available
*/
fprintf(stderr,
"# <int at %p, refcnt=%ld, val=%ld>\n",
p, (long)p->ob_refcnt,
p->ob_ival);
}
list = list->next;
}
}
}
#endif /* if 0 */