mirror of
https://github.com/python/cpython.git
synced 2024-11-23 18:04:37 +08:00
9573d14215
Co-authored-by: Łukasz Langa <lukasz@langa.pl> Co-authored-by: Pieter Eendebak <pieter.eendebak@gmail.com> Co-authored-by: Dennis Sweeney <36520290+sweeneyde@users.noreply.github.com>
534 lines
20 KiB
Python
534 lines
20 KiB
Python
# Original Algorithm:
|
|
# By Steve Hanov, 2011. Released to the public domain.
|
|
# Please see http://stevehanov.ca/blog/index.php?id=115 for the accompanying article.
|
|
#
|
|
# Adapted for PyPy/CPython by Carl Friedrich Bolz-Tereick
|
|
#
|
|
# Based on Daciuk, Jan, et al. "Incremental construction of minimal acyclic finite-state automata."
|
|
# Computational linguistics 26.1 (2000): 3-16.
|
|
#
|
|
# Updated 2014 to use DAWG as a mapping; see
|
|
# Kowaltowski, T.; CL. Lucchesi (1993), "Applications of finite automata representing large vocabularies",
|
|
# Software-Practice and Experience 1993
|
|
|
|
from collections import defaultdict
|
|
from functools import cached_property
|
|
|
|
|
|
# This class represents a node in the directed acyclic word graph (DAWG). It
|
|
# has a list of edges to other nodes. It has functions for testing whether it
|
|
# is equivalent to another node. Nodes are equivalent if they have identical
|
|
# edges, and each identical edge leads to identical states. The __hash__ and
|
|
# __eq__ functions allow it to be used as a key in a python dictionary.
|
|
|
|
|
|
class DawgNode:
|
|
|
|
def __init__(self, dawg):
|
|
self.id = dawg.next_id
|
|
dawg.next_id += 1
|
|
self.final = False
|
|
self.edges = {}
|
|
|
|
self.linear_edges = None # later: list of (string, next_state)
|
|
|
|
def __str__(self):
|
|
if self.final:
|
|
arr = ["1"]
|
|
else:
|
|
arr = ["0"]
|
|
|
|
for (label, node) in sorted(self.edges.items()):
|
|
arr.append(label)
|
|
arr.append(str(node.id))
|
|
|
|
return "_".join(arr)
|
|
__repr__ = __str__
|
|
|
|
def _as_tuple(self):
|
|
edges = sorted(self.edges.items())
|
|
edge_tuple = tuple((label, node.id) for label, node in edges)
|
|
return (self.final, edge_tuple)
|
|
|
|
def __hash__(self):
|
|
return hash(self._as_tuple())
|
|
|
|
def __eq__(self, other):
|
|
return self._as_tuple() == other._as_tuple()
|
|
|
|
@cached_property
|
|
def num_reachable_linear(self):
|
|
# returns the number of different paths to final nodes reachable from
|
|
# this one
|
|
|
|
count = 0
|
|
# staying at self counts as a path if self is final
|
|
if self.final:
|
|
count += 1
|
|
for label, node in self.linear_edges:
|
|
count += node.num_reachable_linear
|
|
|
|
return count
|
|
|
|
|
|
class Dawg:
|
|
def __init__(self):
|
|
self.previous_word = ""
|
|
self.next_id = 0
|
|
self.root = DawgNode(self)
|
|
|
|
# Here is a list of nodes that have not been checked for duplication.
|
|
self.unchecked_nodes = []
|
|
|
|
# To deduplicate, maintain a dictionary with
|
|
# minimized_nodes[canonical_node] is canonical_node.
|
|
# Based on __hash__ and __eq__, minimized_nodes[n] is the
|
|
# canonical node equal to n.
|
|
# In other words, self.minimized_nodes[x] == x for all nodes found in
|
|
# the dict.
|
|
self.minimized_nodes = {}
|
|
|
|
# word: value mapping
|
|
self.data = {}
|
|
# value: word mapping
|
|
self.inverse = {}
|
|
|
|
def insert(self, word, value):
|
|
if not all(0 <= ord(c) < 128 for c in word):
|
|
raise ValueError("Use 7-bit ASCII characters only")
|
|
if word <= self.previous_word:
|
|
raise ValueError("Error: Words must be inserted in alphabetical order.")
|
|
if value in self.inverse:
|
|
raise ValueError(f"value {value} is duplicate, got it for word {self.inverse[value]} and now {word}")
|
|
|
|
# find common prefix between word and previous word
|
|
common_prefix = 0
|
|
for i in range(min(len(word), len(self.previous_word))):
|
|
if word[i] != self.previous_word[i]:
|
|
break
|
|
common_prefix += 1
|
|
|
|
# Check the unchecked_nodes for redundant nodes, proceeding from last
|
|
# one down to the common prefix size. Then truncate the list at that
|
|
# point.
|
|
self._minimize(common_prefix)
|
|
|
|
self.data[word] = value
|
|
self.inverse[value] = word
|
|
|
|
# add the suffix, starting from the correct node mid-way through the
|
|
# graph
|
|
if len(self.unchecked_nodes) == 0:
|
|
node = self.root
|
|
else:
|
|
node = self.unchecked_nodes[-1][2]
|
|
|
|
for letter in word[common_prefix:]:
|
|
next_node = DawgNode(self)
|
|
node.edges[letter] = next_node
|
|
self.unchecked_nodes.append((node, letter, next_node))
|
|
node = next_node
|
|
|
|
node.final = True
|
|
self.previous_word = word
|
|
|
|
def finish(self):
|
|
if not self.data:
|
|
raise ValueError("need at least one word in the dawg")
|
|
# minimize all unchecked_nodes
|
|
self._minimize(0)
|
|
|
|
self._linearize_edges()
|
|
|
|
topoorder, linear_data, inverse = self._topological_order()
|
|
return self.compute_packed(topoorder), linear_data, inverse
|
|
|
|
def _minimize(self, down_to):
|
|
# proceed from the leaf up to a certain point
|
|
for i in range(len(self.unchecked_nodes) - 1, down_to - 1, -1):
|
|
(parent, letter, child) = self.unchecked_nodes[i]
|
|
if child in self.minimized_nodes:
|
|
# replace the child with the previously encountered one
|
|
parent.edges[letter] = self.minimized_nodes[child]
|
|
else:
|
|
# add the state to the minimized nodes.
|
|
self.minimized_nodes[child] = child
|
|
self.unchecked_nodes.pop()
|
|
|
|
def _lookup(self, word):
|
|
""" Return an integer 0 <= k < number of strings in dawg
|
|
where word is the kth successful traversal of the dawg. """
|
|
node = self.root
|
|
skipped = 0 # keep track of number of final nodes that we skipped
|
|
index = 0
|
|
while index < len(word):
|
|
for label, child in node.linear_edges:
|
|
if word[index] == label[0]:
|
|
if word[index:index + len(label)] == label:
|
|
if node.final:
|
|
skipped += 1
|
|
index += len(label)
|
|
node = child
|
|
break
|
|
else:
|
|
return None
|
|
skipped += child.num_reachable_linear
|
|
else:
|
|
return None
|
|
return skipped
|
|
|
|
def enum_all_nodes(self):
|
|
stack = [self.root]
|
|
done = set()
|
|
while stack:
|
|
node = stack.pop()
|
|
if node.id in done:
|
|
continue
|
|
yield node
|
|
done.add(node.id)
|
|
for label, child in sorted(node.edges.items()):
|
|
stack.append(child)
|
|
|
|
def prettyprint(self):
|
|
for node in sorted(self.enum_all_nodes(), key=lambda e: e.id):
|
|
s_final = " final" if node.final else ""
|
|
print(f"{node.id}: ({node}) {s_final}")
|
|
for label, child in sorted(node.edges.items()):
|
|
print(f" {label} goto {child.id}")
|
|
|
|
def _inverse_lookup(self, number):
|
|
assert 0, "not working in the current form, but keep it as the pure python version of compact lookup"
|
|
result = []
|
|
node = self.root
|
|
while 1:
|
|
if node.final:
|
|
if pos == 0:
|
|
return "".join(result)
|
|
pos -= 1
|
|
for label, child in sorted(node.edges.items()):
|
|
nextpos = pos - child.num_reachable_linear
|
|
if nextpos < 0:
|
|
result.append(label)
|
|
node = child
|
|
break
|
|
else:
|
|
pos = nextpos
|
|
else:
|
|
assert 0
|
|
|
|
def _linearize_edges(self):
|
|
# compute "linear" edges. the idea is that long chains of edges without
|
|
# any of the intermediate states being final or any extra incoming or
|
|
# outgoing edges can be represented by having removing them, and
|
|
# instead using longer strings as edge labels (instead of single
|
|
# characters)
|
|
incoming = defaultdict(list)
|
|
nodes = sorted(self.enum_all_nodes(), key=lambda e: e.id)
|
|
for node in nodes:
|
|
for label, child in sorted(node.edges.items()):
|
|
incoming[child].append(node)
|
|
for node in nodes:
|
|
node.linear_edges = []
|
|
for label, child in sorted(node.edges.items()):
|
|
s = [label]
|
|
while len(child.edges) == 1 and len(incoming[child]) == 1 and not child.final:
|
|
(c, child), = child.edges.items()
|
|
s.append(c)
|
|
node.linear_edges.append((''.join(s), child))
|
|
|
|
def _topological_order(self):
|
|
# compute reachable linear nodes, and the set of incoming edges for each node
|
|
order = []
|
|
stack = [self.root]
|
|
seen = set()
|
|
while stack:
|
|
# depth first traversal
|
|
node = stack.pop()
|
|
if node.id in seen:
|
|
continue
|
|
seen.add(node.id)
|
|
order.append(node)
|
|
for label, child in node.linear_edges:
|
|
stack.append(child)
|
|
|
|
# do a (slightly bad) topological sort
|
|
incoming = defaultdict(set)
|
|
for node in order:
|
|
for label, child in node.linear_edges:
|
|
incoming[child].add((label, node))
|
|
no_incoming = [order[0]]
|
|
topoorder = []
|
|
positions = {}
|
|
while no_incoming:
|
|
node = no_incoming.pop()
|
|
topoorder.append(node)
|
|
positions[node] = len(topoorder)
|
|
# use "reversed" to make sure that the linear_edges get reorderd
|
|
# from their alphabetical order as little as necessary (no_incoming
|
|
# is LIFO)
|
|
for label, child in reversed(node.linear_edges):
|
|
incoming[child].discard((label, node))
|
|
if not incoming[child]:
|
|
no_incoming.append(child)
|
|
del incoming[child]
|
|
# check result
|
|
assert set(topoorder) == set(order)
|
|
assert len(set(topoorder)) == len(topoorder)
|
|
|
|
for node in order:
|
|
node.linear_edges.sort(key=lambda element: positions[element[1]])
|
|
|
|
for node in order:
|
|
for label, child in node.linear_edges:
|
|
assert positions[child] > positions[node]
|
|
# number the nodes. afterwards every input string in the set has a
|
|
# unique number in the 0 <= number < len(data). We then put the data in
|
|
# self.data into a linear list using these numbers as indexes.
|
|
topoorder[0].num_reachable_linear
|
|
linear_data = [None] * len(self.data)
|
|
inverse = {} # maps value back to index
|
|
for word, value in self.data.items():
|
|
index = self._lookup(word)
|
|
linear_data[index] = value
|
|
inverse[value] = index
|
|
|
|
return topoorder, linear_data, inverse
|
|
|
|
def compute_packed(self, order):
|
|
def compute_chunk(node, offsets):
|
|
""" compute the packed node/edge data for a node. result is a
|
|
list of bytes as long as order. the jump distance calculations use
|
|
the offsets dictionary to know where in the final big output
|
|
bytestring the individual nodes will end up. """
|
|
result = bytearray()
|
|
offset = offsets[node]
|
|
encode_varint_unsigned(number_add_bits(node.num_reachable_linear, node.final), result)
|
|
if len(node.linear_edges) == 0:
|
|
assert node.final
|
|
encode_varint_unsigned(0, result) # add a 0 saying "done"
|
|
prev_child_offset = offset + len(result)
|
|
for edgeindex, (label, targetnode) in enumerate(node.linear_edges):
|
|
label = label.encode('ascii')
|
|
child_offset = offsets[targetnode]
|
|
child_offset_difference = child_offset - prev_child_offset
|
|
|
|
info = number_add_bits(child_offset_difference, len(label) == 1, edgeindex == len(node.linear_edges) - 1)
|
|
if edgeindex == 0:
|
|
assert info != 0
|
|
encode_varint_unsigned(info, result)
|
|
prev_child_offset = child_offset
|
|
if len(label) > 1:
|
|
encode_varint_unsigned(len(label), result)
|
|
result.extend(label)
|
|
return result
|
|
|
|
def compute_new_offsets(chunks, offsets):
|
|
""" Given a list of chunks, compute the new offsets (by adding the
|
|
chunk lengths together). Also check if we cannot shrink the output
|
|
further because none of the node offsets are smaller now. if that's
|
|
the case return None. """
|
|
new_offsets = {}
|
|
curr_offset = 0
|
|
should_continue = False
|
|
for node, result in zip(order, chunks):
|
|
if curr_offset < offsets[node]:
|
|
# the new offset is below the current assumption, this
|
|
# means we can shrink the output more
|
|
should_continue = True
|
|
new_offsets[node] = curr_offset
|
|
curr_offset += len(result)
|
|
if not should_continue:
|
|
return None
|
|
return new_offsets
|
|
|
|
# assign initial offsets to every node
|
|
offsets = {}
|
|
for i, node in enumerate(order):
|
|
# we don't know position of the edge yet, just use something big as
|
|
# the starting position. we'll have to do further iterations anyway,
|
|
# but the size is at least a lower limit then
|
|
offsets[node] = i * 2 ** 30
|
|
|
|
|
|
# due to the variable integer width encoding of edge targets we need to
|
|
# run this to fixpoint. in the process we shrink the output more and
|
|
# more until we can't any more. at any point we can stop and use the
|
|
# output, but we might need padding zero bytes when joining the chunks
|
|
# to have the correct jump distances
|
|
last_offsets = None
|
|
while 1:
|
|
chunks = [compute_chunk(node, offsets) for node in order]
|
|
last_offsets = offsets
|
|
offsets = compute_new_offsets(chunks, offsets)
|
|
if offsets is None: # couldn't shrink
|
|
break
|
|
|
|
# build the final packed string
|
|
total_result = bytearray()
|
|
for node, result in zip(order, chunks):
|
|
node_offset = last_offsets[node]
|
|
if node_offset > len(total_result):
|
|
# need to pad to get the offsets correct
|
|
padding = b"\x00" * (node_offset - len(total_result))
|
|
total_result.extend(padding)
|
|
assert node_offset == len(total_result)
|
|
total_result.extend(result)
|
|
return bytes(total_result)
|
|
|
|
|
|
# ______________________________________________________________________
|
|
# the following functions operate on the packed representation
|
|
|
|
def number_add_bits(x, *bits):
|
|
for bit in bits:
|
|
assert bit == 0 or bit == 1
|
|
x = (x << 1) | bit
|
|
return x
|
|
|
|
def encode_varint_unsigned(i, res):
|
|
# https://en.wikipedia.org/wiki/LEB128 unsigned variant
|
|
more = True
|
|
startlen = len(res)
|
|
if i < 0:
|
|
raise ValueError("only positive numbers supported", i)
|
|
while more:
|
|
lowest7bits = i & 0b1111111
|
|
i >>= 7
|
|
if i == 0:
|
|
more = False
|
|
else:
|
|
lowest7bits |= 0b10000000
|
|
res.append(lowest7bits)
|
|
return len(res) - startlen
|
|
|
|
def number_split_bits(x, n, acc=()):
|
|
if n == 1:
|
|
return x >> 1, x & 1
|
|
if n == 2:
|
|
return x >> 2, (x >> 1) & 1, x & 1
|
|
assert 0, "implement me!"
|
|
|
|
def decode_varint_unsigned(b, index=0):
|
|
res = 0
|
|
shift = 0
|
|
while True:
|
|
byte = b[index]
|
|
res = res | ((byte & 0b1111111) << shift)
|
|
index += 1
|
|
shift += 7
|
|
if not (byte & 0b10000000):
|
|
return res, index
|
|
|
|
def decode_node(packed, node):
|
|
x, node = decode_varint_unsigned(packed, node)
|
|
node_count, final = number_split_bits(x, 1)
|
|
return node_count, final, node
|
|
|
|
def decode_edge(packed, edgeindex, prev_child_offset, offset):
|
|
x, offset = decode_varint_unsigned(packed, offset)
|
|
if x == 0 and edgeindex == 0:
|
|
raise KeyError # trying to decode past a final node
|
|
child_offset_difference, len1, last_edge = number_split_bits(x, 2)
|
|
child_offset = prev_child_offset + child_offset_difference
|
|
if len1:
|
|
size = 1
|
|
else:
|
|
size, offset = decode_varint_unsigned(packed, offset)
|
|
return child_offset, last_edge, size, offset
|
|
|
|
def _match_edge(packed, s, size, node_offset, stringpos):
|
|
if size > 1 and stringpos + size > len(s):
|
|
# past the end of the string, can't match
|
|
return False
|
|
for i in range(size):
|
|
if packed[node_offset + i] != s[stringpos + i]:
|
|
# if a subsequent char of an edge doesn't match, the word isn't in
|
|
# the dawg
|
|
if i > 0:
|
|
raise KeyError
|
|
return False
|
|
return True
|
|
|
|
def lookup(packed, data, s):
|
|
return data[_lookup(packed, s)]
|
|
|
|
def _lookup(packed, s):
|
|
stringpos = 0
|
|
node_offset = 0
|
|
skipped = 0 # keep track of number of final nodes that we skipped
|
|
false = False
|
|
while stringpos < len(s):
|
|
#print(f"{node_offset=} {stringpos=}")
|
|
_, final, edge_offset = decode_node(packed, node_offset)
|
|
prev_child_offset = edge_offset
|
|
edgeindex = 0
|
|
while 1:
|
|
child_offset, last_edge, size, edgelabel_chars_offset = decode_edge(packed, edgeindex, prev_child_offset, edge_offset)
|
|
#print(f" {edge_offset=} {child_offset=} {last_edge=} {size=} {edgelabel_chars_offset=}")
|
|
edgeindex += 1
|
|
prev_child_offset = child_offset
|
|
if _match_edge(packed, s, size, edgelabel_chars_offset, stringpos):
|
|
# match
|
|
if final:
|
|
skipped += 1
|
|
stringpos += size
|
|
node_offset = child_offset
|
|
break
|
|
if last_edge:
|
|
raise KeyError
|
|
descendant_count, _, _ = decode_node(packed, child_offset)
|
|
skipped += descendant_count
|
|
edge_offset = edgelabel_chars_offset + size
|
|
_, final, _ = decode_node(packed, node_offset)
|
|
if final:
|
|
return skipped
|
|
raise KeyError
|
|
|
|
def inverse_lookup(packed, inverse, x):
|
|
pos = inverse[x]
|
|
return _inverse_lookup(packed, pos)
|
|
|
|
def _inverse_lookup(packed, pos):
|
|
result = bytearray()
|
|
node_offset = 0
|
|
while 1:
|
|
node_count, final, edge_offset = decode_node(packed, node_offset)
|
|
if final:
|
|
if pos == 0:
|
|
return bytes(result)
|
|
pos -= 1
|
|
prev_child_offset = edge_offset
|
|
edgeindex = 0
|
|
while 1:
|
|
child_offset, last_edge, size, edgelabel_chars_offset = decode_edge(packed, edgeindex, prev_child_offset, edge_offset)
|
|
edgeindex += 1
|
|
prev_child_offset = child_offset
|
|
descendant_count, _, _ = decode_node(packed, child_offset)
|
|
nextpos = pos - descendant_count
|
|
if nextpos < 0:
|
|
assert edgelabel_chars_offset >= 0
|
|
result.extend(packed[edgelabel_chars_offset: edgelabel_chars_offset + size])
|
|
node_offset = child_offset
|
|
break
|
|
elif not last_edge:
|
|
pos = nextpos
|
|
edge_offset = edgelabel_chars_offset + size
|
|
else:
|
|
raise KeyError
|
|
else:
|
|
raise KeyError
|
|
|
|
|
|
def build_compression_dawg(ucdata):
|
|
d = Dawg()
|
|
ucdata.sort()
|
|
for name, value in ucdata:
|
|
d.insert(name, value)
|
|
packed, pos_to_code, reversedict = d.finish()
|
|
print("size of dawg [KiB]", round(len(packed) / 1024, 2))
|
|
# check that lookup and inverse_lookup work correctly on the input data
|
|
for name, value in ucdata:
|
|
assert lookup(packed, pos_to_code, name.encode('ascii')) == value
|
|
assert inverse_lookup(packed, reversedict, value) == name.encode('ascii')
|
|
return packed, pos_to_code
|