cpython/Lib/fractions.py
Georg Brandl 2ee470f7f9 Merged revisions 64722,64729,64753,64845-64846,64849,64871,64880-64882,64885,64888,64897,64900-64901,64915,64926-64929,64938-64941,64944,64961,64966,64973 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r64722 | georg.brandl | 2008-07-05 12:13:36 +0200 (Sat, 05 Jul 2008) | 4 lines

  #2663: support an *ignore* argument to shutil.copytree(). Patch by Tarek Ziade.

  This is a new feature, but Barry authorized adding it in the beta period.
........
  r64729 | mark.dickinson | 2008-07-05 13:33:52 +0200 (Sat, 05 Jul 2008) | 5 lines

  Issue 3188: accept float('infinity') as well as float('inf').  This
  makes the float constructor behave in the same way as specified
  by various other language standards, including C99, IEEE 754r,
  and the IBM Decimal standard.
........
  r64753 | gregory.p.smith | 2008-07-06 05:35:58 +0200 (Sun, 06 Jul 2008) | 4 lines

  - Issue #2862: Make int and float freelist management consistent with other
    freelists.  Changes their CompactFreeList apis into ClearFreeList apis and
    calls them via gc.collect().
........
  r64845 | raymond.hettinger | 2008-07-10 16:03:19 +0200 (Thu, 10 Jul 2008) | 1 line

  Issue 3301:  Bisect functions behaved badly when lo was negative.
........
  r64846 | raymond.hettinger | 2008-07-10 16:34:57 +0200 (Thu, 10 Jul 2008) | 1 line

  Issue 3285: Fractions from_float() and from_decimal() accept Integral arguments.
........
  r64849 | andrew.kuchling | 2008-07-10 16:43:31 +0200 (Thu, 10 Jul 2008) | 1 line

  Wording changes
........
  r64871 | raymond.hettinger | 2008-07-11 14:00:21 +0200 (Fri, 11 Jul 2008) | 1 line

  Add cautionary note on the use of PySequence_Fast_ITEMS.
........
  r64880 | amaury.forgeotdarc | 2008-07-11 23:28:25 +0200 (Fri, 11 Jul 2008) | 5 lines

  #3317 in zipfile module, restore the previous names of global variables:
  some applications relied on them.

  Also remove duplicated lines.
........
  r64881 | amaury.forgeotdarc | 2008-07-11 23:45:06 +0200 (Fri, 11 Jul 2008) | 3 lines

  #3342: In tracebacks, printed source lines were not indented since r62555.
  #3343: Py_DisplaySourceLine should be a private function. Rename it to _Py_DisplaySourceLine.
........
  r64882 | josiah.carlson | 2008-07-12 00:17:14 +0200 (Sat, 12 Jul 2008) | 2 lines

  Fix for the AttributeError in test_asynchat.
........
  r64885 | josiah.carlson | 2008-07-12 01:26:59 +0200 (Sat, 12 Jul 2008) | 2 lines

  Fixed test for asyncore.
........
  r64888 | matthias.klose | 2008-07-12 09:51:48 +0200 (Sat, 12 Jul 2008) | 2 lines

  - Fix bashisms in Tools/faqwiz/move-faqwiz.sh
........
  r64897 | benjamin.peterson | 2008-07-12 22:16:19 +0200 (Sat, 12 Jul 2008) | 1 line

  fix various doc typos #3320
........
  r64900 | alexandre.vassalotti | 2008-07-13 00:06:53 +0200 (Sun, 13 Jul 2008) | 2 lines

  Fixed typo.
........
  r64901 | benjamin.peterson | 2008-07-13 01:41:19 +0200 (Sun, 13 Jul 2008) | 1 line

  #1778443 robotparser fixes from Aristotelis Mikropoulos
........
  r64915 | nick.coghlan | 2008-07-13 16:52:36 +0200 (Sun, 13 Jul 2008) | 1 line

  Fix issue 3221 by emitting a RuntimeWarning instead of raising SystemError when the parent module can't be found during an absolute import (likely due to non-PEP 361 aware code which sets a module level __package__ attribute)
........
  r64926 | martin.v.loewis | 2008-07-13 22:31:49 +0200 (Sun, 13 Jul 2008) | 2 lines

  Add turtle into the module index.
........
  r64927 | alexandre.vassalotti | 2008-07-13 22:42:44 +0200 (Sun, 13 Jul 2008) | 3 lines

  Issue #3274: Use a less common identifier for the temporary variable
  in Py_CLEAR().
........
  r64928 | andrew.kuchling | 2008-07-13 23:43:25 +0200 (Sun, 13 Jul 2008) | 1 line

  Re-word
........
  r64929 | andrew.kuchling | 2008-07-13 23:43:52 +0200 (Sun, 13 Jul 2008) | 1 line

  Add various items; move ctypes items into a subsection of their own
........
  r64938 | andrew.kuchling | 2008-07-14 02:35:32 +0200 (Mon, 14 Jul 2008) | 1 line

  Typo fixes
........
  r64939 | andrew.kuchling | 2008-07-14 02:40:55 +0200 (Mon, 14 Jul 2008) | 1 line

  Typo fix
........
  r64940 | andrew.kuchling | 2008-07-14 03:18:16 +0200 (Mon, 14 Jul 2008) | 1 line

  Typo fix
........
  r64941 | andrew.kuchling | 2008-07-14 03:18:31 +0200 (Mon, 14 Jul 2008) | 1 line

  Expand the multiprocessing section
........
  r64944 | gregory.p.smith | 2008-07-14 08:06:48 +0200 (Mon, 14 Jul 2008) | 7 lines

  Fix posix.fork1() / os.fork1() to only call PyOS_AfterFork() in the child
  process rather than both parent and child.

  Does anyone actually use fork1()?  It appears to be a Solaris thing
  but if Python is built with pthreads on Solaris, fork1() and fork()
  should be the same.
........
  r64961 | jesse.noller | 2008-07-15 15:47:33 +0200 (Tue, 15 Jul 2008) | 1 line

  multiprocessing/connection.py patch to remove fqdn oddness for issue 3270
........
  r64966 | nick.coghlan | 2008-07-15 17:40:22 +0200 (Tue, 15 Jul 2008) | 1 line

  Add missing NEWS entry for r64962
........
  r64973 | jesse.noller | 2008-07-15 20:29:18 +0200 (Tue, 15 Jul 2008) | 1 line

  Revert 3270 patch: self._address is in pretty widespread use, need to revisit
........
2008-07-16 12:55:28 +00:00

555 lines
20 KiB
Python
Executable File

# Originally contributed by Sjoerd Mullender.
# Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>.
"""Fraction, infinite-precision, real numbers."""
import math
import numbers
import operator
import re
__all__ = ['Fraction', 'gcd']
def gcd(a, b):
"""Calculate the Greatest Common Divisor of a and b.
Unless b==0, the result will have the same sign as b (so that when
b is divided by it, the result comes out positive).
"""
while b:
a, b = b, a%b
return a
_RATIONAL_FORMAT = re.compile(r"""
\A\s* # optional whitespace at the start, then
(?P<sign>[-+]?) # an optional sign, then
(?=\d|\.\d) # lookahead for digit or .digit
(?P<num>\d*) # numerator (possibly empty)
(?: # followed by an optional
/(?P<denom>\d+) # / and denominator
| # or
\.(?P<decimal>\d*) # decimal point and fractional part
)?
\s*\Z # and optional whitespace to finish
""", re.VERBOSE)
class Fraction(numbers.Rational):
"""This class implements rational numbers.
Fraction(8, 6) will produce a rational number equivalent to
4/3. Both arguments must be Integral. The numerator defaults to 0
and the denominator defaults to 1 so that Fraction(3) == 3 and
Fraction() == 0.
Fraction can also be constructed from strings of the form
'[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces.
"""
__slots__ = ('_numerator', '_denominator')
# We're immutable, so use __new__ not __init__
def __new__(cls, numerator=0, denominator=1):
"""Constructs a Rational.
Takes a string like '3/2' or '1.5', another Rational, or a
numerator/denominator pair.
"""
self = super(Fraction, cls).__new__(cls)
if not isinstance(numerator, int) and denominator == 1:
if isinstance(numerator, str):
# Handle construction from strings.
input = numerator
m = _RATIONAL_FORMAT.match(input)
if m is None:
raise ValueError('Invalid literal for Fraction: %r' % input)
numerator = m.group('num')
decimal = m.group('decimal')
if decimal:
# The literal is a decimal number.
numerator = int(numerator + decimal)
denominator = 10**len(decimal)
else:
# The literal is an integer or fraction.
numerator = int(numerator)
# Default denominator to 1.
denominator = int(m.group('denom') or 1)
if m.group('sign') == '-':
numerator = -numerator
elif isinstance(numerator, numbers.Rational):
# Handle copies from other rationals. Integrals get
# caught here too, but it doesn't matter because
# denominator is already 1.
other_rational = numerator
numerator = other_rational.numerator
denominator = other_rational.denominator
if denominator == 0:
raise ZeroDivisionError('Fraction(%s, 0)' % numerator)
numerator = operator.index(numerator)
denominator = operator.index(denominator)
g = gcd(numerator, denominator)
self._numerator = numerator // g
self._denominator = denominator // g
return self
@classmethod
def from_float(cls, f):
"""Converts a finite float to a rational number, exactly.
Beware that Fraction.from_float(0.3) != Fraction(3, 10).
"""
if isinstance(f, numbers.Integral):
f = float(f)
elif not isinstance(f, float):
raise TypeError("%s.from_float() only takes floats, not %r (%s)" %
(cls.__name__, f, type(f).__name__))
if math.isnan(f) or math.isinf(f):
raise TypeError("Cannot convert %r to %s." % (f, cls.__name__))
return cls(*f.as_integer_ratio())
@classmethod
def from_decimal(cls, dec):
"""Converts a finite Decimal instance to a rational number, exactly."""
from decimal import Decimal
if isinstance(dec, numbers.Integral):
dec = Decimal(int(dec))
elif not isinstance(dec, Decimal):
raise TypeError(
"%s.from_decimal() only takes Decimals, not %r (%s)" %
(cls.__name__, dec, type(dec).__name__))
if not dec.is_finite():
# Catches infinities and nans.
raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__))
sign, digits, exp = dec.as_tuple()
digits = int(''.join(map(str, digits)))
if sign:
digits = -digits
if exp >= 0:
return cls(digits * 10 ** exp)
else:
return cls(digits, 10 ** -exp)
def limit_denominator(self, max_denominator=1000000):
"""Closest Fraction to self with denominator at most max_denominator.
>>> Fraction('3.141592653589793').limit_denominator(10)
Fraction(22, 7)
>>> Fraction('3.141592653589793').limit_denominator(100)
Fraction(311, 99)
>>> Fraction(1234, 5678).limit_denominator(10000)
Fraction(1234, 5678)
"""
# Algorithm notes: For any real number x, define a *best upper
# approximation* to x to be a rational number p/q such that:
#
# (1) p/q >= x, and
# (2) if p/q > r/s >= x then s > q, for any rational r/s.
#
# Define *best lower approximation* similarly. Then it can be
# proved that a rational number is a best upper or lower
# approximation to x if, and only if, it is a convergent or
# semiconvergent of the (unique shortest) continued fraction
# associated to x.
#
# To find a best rational approximation with denominator <= M,
# we find the best upper and lower approximations with
# denominator <= M and take whichever of these is closer to x.
# In the event of a tie, the bound with smaller denominator is
# chosen. If both denominators are equal (which can happen
# only when max_denominator == 1 and self is midway between
# two integers) the lower bound---i.e., the floor of self, is
# taken.
if max_denominator < 1:
raise ValueError("max_denominator should be at least 1")
if self._denominator <= max_denominator:
return Fraction(self)
p0, q0, p1, q1 = 0, 1, 1, 0
n, d = self._numerator, self._denominator
while True:
a = n//d
q2 = q0+a*q1
if q2 > max_denominator:
break
p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
n, d = d, n-a*d
k = (max_denominator-q0)//q1
bound1 = Fraction(p0+k*p1, q0+k*q1)
bound2 = Fraction(p1, q1)
if abs(bound2 - self) <= abs(bound1-self):
return bound2
else:
return bound1
@property
def numerator(a):
return a._numerator
@property
def denominator(a):
return a._denominator
def __repr__(self):
"""repr(self)"""
return ('Fraction(%s, %s)' % (self._numerator, self._denominator))
def __str__(self):
"""str(self)"""
if self._denominator == 1:
return str(self._numerator)
else:
return '%s/%s' % (self._numerator, self._denominator)
def _operator_fallbacks(monomorphic_operator, fallback_operator):
"""Generates forward and reverse operators given a purely-rational
operator and a function from the operator module.
Use this like:
__op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op)
In general, we want to implement the arithmetic operations so
that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both
to the nearest built in type and do the operation there. In
Fraction, that means that we define __add__ and __radd__ as:
def __add__(self, other):
# Both types have numerators/denominator attributes,
# so do the operation directly
if isinstance(other, (int, Fraction)):
return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
# float and complex don't have those operations, but we
# know about those types, so special case them.
elif isinstance(other, float):
return float(self) + other
elif isinstance(other, complex):
return complex(self) + other
# Let the other type take over.
return NotImplemented
def __radd__(self, other):
# radd handles more types than add because there's
# nothing left to fall back to.
if isinstance(other, numbers.Rational):
return Fraction(self.numerator * other.denominator +
other.numerator * self.denominator,
self.denominator * other.denominator)
elif isinstance(other, Real):
return float(other) + float(self)
elif isinstance(other, Complex):
return complex(other) + complex(self)
return NotImplemented
There are 5 different cases for a mixed-type addition on
Fraction. I'll refer to all of the above code that doesn't
refer to Fraction, float, or complex as "boilerplate". 'r'
will be an instance of Fraction, which is a subtype of
Rational (r : Fraction <: Rational), and b : B <:
Complex. The first three involve 'r + b':
1. If B <: Fraction, int, float, or complex, we handle
that specially, and all is well.
2. If Fraction falls back to the boilerplate code, and it
were to return a value from __add__, we'd miss the
possibility that B defines a more intelligent __radd__,
so the boilerplate should return NotImplemented from
__add__. In particular, we don't handle Rational
here, even though we could get an exact answer, in case
the other type wants to do something special.
3. If B <: Fraction, Python tries B.__radd__ before
Fraction.__add__. This is ok, because it was
implemented with knowledge of Fraction, so it can
handle those instances before delegating to Real or
Complex.
The next two situations describe 'b + r'. We assume that b
didn't know about Fraction in its implementation, and that it
uses similar boilerplate code:
4. If B <: Rational, then __radd_ converts both to the
builtin rational type (hey look, that's us) and
proceeds.
5. Otherwise, __radd__ tries to find the nearest common
base ABC, and fall back to its builtin type. Since this
class doesn't subclass a concrete type, there's no
implementation to fall back to, so we need to try as
hard as possible to return an actual value, or the user
will get a TypeError.
"""
def forward(a, b):
if isinstance(b, (int, Fraction)):
return monomorphic_operator(a, b)
elif isinstance(b, float):
return fallback_operator(float(a), b)
elif isinstance(b, complex):
return fallback_operator(complex(a), b)
else:
return NotImplemented
forward.__name__ = '__' + fallback_operator.__name__ + '__'
forward.__doc__ = monomorphic_operator.__doc__
def reverse(b, a):
if isinstance(a, numbers.Rational):
# Includes ints.
return monomorphic_operator(a, b)
elif isinstance(a, numbers.Real):
return fallback_operator(float(a), float(b))
elif isinstance(a, numbers.Complex):
return fallback_operator(complex(a), complex(b))
else:
return NotImplemented
reverse.__name__ = '__r' + fallback_operator.__name__ + '__'
reverse.__doc__ = monomorphic_operator.__doc__
return forward, reverse
def _add(a, b):
"""a + b"""
return Fraction(a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)
__add__, __radd__ = _operator_fallbacks(_add, operator.add)
def _sub(a, b):
"""a - b"""
return Fraction(a.numerator * b.denominator -
b.numerator * a.denominator,
a.denominator * b.denominator)
__sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub)
def _mul(a, b):
"""a * b"""
return Fraction(a.numerator * b.numerator, a.denominator * b.denominator)
__mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul)
def _div(a, b):
"""a / b"""
return Fraction(a.numerator * b.denominator,
a.denominator * b.numerator)
__truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv)
def __floordiv__(a, b):
"""a // b"""
return math.floor(a / b)
def __rfloordiv__(b, a):
"""a // b"""
return math.floor(a / b)
def __mod__(a, b):
"""a % b"""
div = a // b
return a - b * div
def __rmod__(b, a):
"""a % b"""
div = a // b
return a - b * div
def __pow__(a, b):
"""a ** b
If b is not an integer, the result will be a float or complex
since roots are generally irrational. If b is an integer, the
result will be rational.
"""
if isinstance(b, numbers.Rational):
if b.denominator == 1:
power = b.numerator
if power >= 0:
return Fraction(a._numerator ** power,
a._denominator ** power)
else:
return Fraction(a._denominator ** -power,
a._numerator ** -power)
else:
# A fractional power will generally produce an
# irrational number.
return float(a) ** float(b)
else:
return float(a) ** b
def __rpow__(b, a):
"""a ** b"""
if b._denominator == 1 and b._numerator >= 0:
# If a is an int, keep it that way if possible.
return a ** b._numerator
if isinstance(a, numbers.Rational):
return Fraction(a.numerator, a.denominator) ** b
if b._denominator == 1:
return a ** b._numerator
return a ** float(b)
def __pos__(a):
"""+a: Coerces a subclass instance to Fraction"""
return Fraction(a._numerator, a._denominator)
def __neg__(a):
"""-a"""
return Fraction(-a._numerator, a._denominator)
def __abs__(a):
"""abs(a)"""
return Fraction(abs(a._numerator), a._denominator)
def __trunc__(a):
"""trunc(a)"""
if a._numerator < 0:
return -(-a._numerator // a._denominator)
else:
return a._numerator // a._denominator
def __floor__(a):
"""Will be math.floor(a) in 3.0."""
return a.numerator // a.denominator
def __ceil__(a):
"""Will be math.ceil(a) in 3.0."""
# The negations cleverly convince floordiv to return the ceiling.
return -(-a.numerator // a.denominator)
def __round__(self, ndigits=None):
"""Will be round(self, ndigits) in 3.0.
Rounds half toward even.
"""
if ndigits is None:
floor, remainder = divmod(self.numerator, self.denominator)
if remainder * 2 < self.denominator:
return floor
elif remainder * 2 > self.denominator:
return floor + 1
# Deal with the half case:
elif floor % 2 == 0:
return floor
else:
return floor + 1
shift = 10**abs(ndigits)
# See _operator_fallbacks.forward to check that the results of
# these operations will always be Fraction and therefore have
# round().
if ndigits > 0:
return Fraction(round(self * shift), shift)
else:
return Fraction(round(self / shift) * shift)
def __hash__(self):
"""hash(self)
Tricky because values that are exactly representable as a
float must have the same hash as that float.
"""
# XXX since this method is expensive, consider caching the result
if self._denominator == 1:
# Get integers right.
return hash(self._numerator)
# Expensive check, but definitely correct.
if self == float(self):
return hash(float(self))
else:
# Use tuple's hash to avoid a high collision rate on
# simple fractions.
return hash((self._numerator, self._denominator))
def __eq__(a, b):
"""a == b"""
if isinstance(b, numbers.Rational):
return (a._numerator == b.numerator and
a._denominator == b.denominator)
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
return a == a.from_float(b)
else:
# XXX: If b.__eq__ is implemented like this method, it may
# give the wrong answer after float(a) changes a's
# value. Better ways of doing this are welcome.
return float(a) == b
def _subtractAndCompareToZero(a, b, op):
"""Helper function for comparison operators.
Subtracts b from a, exactly if possible, and compares the
result with 0 using op, in such a way that the comparison
won't recurse. If the difference raises a TypeError, returns
NotImplemented instead.
"""
if isinstance(b, numbers.Complex) and b.imag == 0:
b = b.real
if isinstance(b, float):
b = a.from_float(b)
try:
# XXX: If b <: Real but not <: Rational, this is likely
# to fall back to a float. If the actual values differ by
# less than MIN_FLOAT, this could falsely call them equal,
# which would make <= inconsistent with ==. Better ways of
# doing this are welcome.
diff = a - b
except TypeError:
return NotImplemented
if isinstance(diff, numbers.Rational):
return op(diff.numerator, 0)
return op(diff, 0)
def __lt__(a, b):
"""a < b"""
return a._subtractAndCompareToZero(b, operator.lt)
def __gt__(a, b):
"""a > b"""
return a._subtractAndCompareToZero(b, operator.gt)
def __le__(a, b):
"""a <= b"""
return a._subtractAndCompareToZero(b, operator.le)
def __ge__(a, b):
"""a >= b"""
return a._subtractAndCompareToZero(b, operator.ge)
def __bool__(a):
"""a != 0"""
return a._numerator != 0
# support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
def __copy__(self):
if type(self) == Fraction:
return self # I'm immutable; therefore I am my own clone
return self.__class__(self._numerator, self._denominator)
def __deepcopy__(self, memo):
if type(self) == Fraction:
return self # My components are also immutable
return self.__class__(self._numerator, self._denominator)