mirror of
https://github.com/python/cpython.git
synced 2025-01-19 15:05:15 +08:00
8f8ec92de8
requires them. Disable executable bits and shebang lines in test and benchmark files in order to prevent using a random system python, and in source files of modules which don't provide command line interface. Fixed shebang lines in the unittestgui and checkpip scripts.
323 lines
11 KiB
Python
Executable File
323 lines
11 KiB
Python
Executable File
#! /usr/bin/env python3
|
|
|
|
"""Tool for measuring execution time of small code snippets.
|
|
|
|
This module avoids a number of common traps for measuring execution
|
|
times. See also Tim Peters' introduction to the Algorithms chapter in
|
|
the Python Cookbook, published by O'Reilly.
|
|
|
|
Library usage: see the Timer class.
|
|
|
|
Command line usage:
|
|
python timeit.py [-n N] [-r N] [-s S] [-t] [-c] [-p] [-h] [--] [statement]
|
|
|
|
Options:
|
|
-n/--number N: how many times to execute 'statement' (default: see below)
|
|
-r/--repeat N: how many times to repeat the timer (default 3)
|
|
-s/--setup S: statement to be executed once initially (default 'pass')
|
|
-p/--process: use time.process_time() (default is time.perf_counter())
|
|
-t/--time: use time.time() (deprecated)
|
|
-c/--clock: use time.clock() (deprecated)
|
|
-v/--verbose: print raw timing results; repeat for more digits precision
|
|
-h/--help: print this usage message and exit
|
|
--: separate options from statement, use when statement starts with -
|
|
statement: statement to be timed (default 'pass')
|
|
|
|
A multi-line statement may be given by specifying each line as a
|
|
separate argument; indented lines are possible by enclosing an
|
|
argument in quotes and using leading spaces. Multiple -s options are
|
|
treated similarly.
|
|
|
|
If -n is not given, a suitable number of loops is calculated by trying
|
|
successive powers of 10 until the total time is at least 0.2 seconds.
|
|
|
|
Note: there is a certain baseline overhead associated with executing a
|
|
pass statement. It differs between versions. The code here doesn't try
|
|
to hide it, but you should be aware of it. The baseline overhead can be
|
|
measured by invoking the program without arguments.
|
|
|
|
Classes:
|
|
|
|
Timer
|
|
|
|
Functions:
|
|
|
|
timeit(string, string) -> float
|
|
repeat(string, string) -> list
|
|
default_timer() -> float
|
|
|
|
"""
|
|
|
|
import gc
|
|
import sys
|
|
import time
|
|
import itertools
|
|
|
|
__all__ = ["Timer", "timeit", "repeat", "default_timer"]
|
|
|
|
dummy_src_name = "<timeit-src>"
|
|
default_number = 1000000
|
|
default_repeat = 3
|
|
default_timer = time.perf_counter
|
|
|
|
# Don't change the indentation of the template; the reindent() calls
|
|
# in Timer.__init__() depend on setup being indented 4 spaces and stmt
|
|
# being indented 8 spaces.
|
|
template = """
|
|
def inner(_it, _timer):
|
|
{setup}
|
|
_t0 = _timer()
|
|
for _i in _it:
|
|
{stmt}
|
|
_t1 = _timer()
|
|
return _t1 - _t0
|
|
"""
|
|
|
|
def reindent(src, indent):
|
|
"""Helper to reindent a multi-line statement."""
|
|
return src.replace("\n", "\n" + " "*indent)
|
|
|
|
def _template_func(setup, func):
|
|
"""Create a timer function. Used if the "statement" is a callable."""
|
|
def inner(_it, _timer, _func=func):
|
|
setup()
|
|
_t0 = _timer()
|
|
for _i in _it:
|
|
_func()
|
|
_t1 = _timer()
|
|
return _t1 - _t0
|
|
return inner
|
|
|
|
class Timer:
|
|
"""Class for timing execution speed of small code snippets.
|
|
|
|
The constructor takes a statement to be timed, an additional
|
|
statement used for setup, and a timer function. Both statements
|
|
default to 'pass'; the timer function is platform-dependent (see
|
|
module doc string).
|
|
|
|
To measure the execution time of the first statement, use the
|
|
timeit() method. The repeat() method is a convenience to call
|
|
timeit() multiple times and return a list of results.
|
|
|
|
The statements may contain newlines, as long as they don't contain
|
|
multi-line string literals.
|
|
"""
|
|
|
|
def __init__(self, stmt="pass", setup="pass", timer=default_timer):
|
|
"""Constructor. See class doc string."""
|
|
self.timer = timer
|
|
ns = {}
|
|
if isinstance(stmt, str):
|
|
stmt = reindent(stmt, 8)
|
|
if isinstance(setup, str):
|
|
setup = reindent(setup, 4)
|
|
src = template.format(stmt=stmt, setup=setup)
|
|
elif callable(setup):
|
|
src = template.format(stmt=stmt, setup='_setup()')
|
|
ns['_setup'] = setup
|
|
else:
|
|
raise ValueError("setup is neither a string nor callable")
|
|
self.src = src # Save for traceback display
|
|
code = compile(src, dummy_src_name, "exec")
|
|
exec(code, globals(), ns)
|
|
self.inner = ns["inner"]
|
|
elif callable(stmt):
|
|
self.src = None
|
|
if isinstance(setup, str):
|
|
_setup = setup
|
|
def setup():
|
|
exec(_setup, globals(), ns)
|
|
elif not callable(setup):
|
|
raise ValueError("setup is neither a string nor callable")
|
|
self.inner = _template_func(setup, stmt)
|
|
else:
|
|
raise ValueError("stmt is neither a string nor callable")
|
|
|
|
def print_exc(self, file=None):
|
|
"""Helper to print a traceback from the timed code.
|
|
|
|
Typical use:
|
|
|
|
t = Timer(...) # outside the try/except
|
|
try:
|
|
t.timeit(...) # or t.repeat(...)
|
|
except:
|
|
t.print_exc()
|
|
|
|
The advantage over the standard traceback is that source lines
|
|
in the compiled template will be displayed.
|
|
|
|
The optional file argument directs where the traceback is
|
|
sent; it defaults to sys.stderr.
|
|
"""
|
|
import linecache, traceback
|
|
if self.src is not None:
|
|
linecache.cache[dummy_src_name] = (len(self.src),
|
|
None,
|
|
self.src.split("\n"),
|
|
dummy_src_name)
|
|
# else the source is already stored somewhere else
|
|
|
|
traceback.print_exc(file=file)
|
|
|
|
def timeit(self, number=default_number):
|
|
"""Time 'number' executions of the main statement.
|
|
|
|
To be precise, this executes the setup statement once, and
|
|
then returns the time it takes to execute the main statement
|
|
a number of times, as a float measured in seconds. The
|
|
argument is the number of times through the loop, defaulting
|
|
to one million. The main statement, the setup statement and
|
|
the timer function to be used are passed to the constructor.
|
|
"""
|
|
it = itertools.repeat(None, number)
|
|
gcold = gc.isenabled()
|
|
gc.disable()
|
|
try:
|
|
timing = self.inner(it, self.timer)
|
|
finally:
|
|
if gcold:
|
|
gc.enable()
|
|
return timing
|
|
|
|
def repeat(self, repeat=default_repeat, number=default_number):
|
|
"""Call timeit() a few times.
|
|
|
|
This is a convenience function that calls the timeit()
|
|
repeatedly, returning a list of results. The first argument
|
|
specifies how many times to call timeit(), defaulting to 3;
|
|
the second argument specifies the timer argument, defaulting
|
|
to one million.
|
|
|
|
Note: it's tempting to calculate mean and standard deviation
|
|
from the result vector and report these. However, this is not
|
|
very useful. In a typical case, the lowest value gives a
|
|
lower bound for how fast your machine can run the given code
|
|
snippet; higher values in the result vector are typically not
|
|
caused by variability in Python's speed, but by other
|
|
processes interfering with your timing accuracy. So the min()
|
|
of the result is probably the only number you should be
|
|
interested in. After that, you should look at the entire
|
|
vector and apply common sense rather than statistics.
|
|
"""
|
|
r = []
|
|
for i in range(repeat):
|
|
t = self.timeit(number)
|
|
r.append(t)
|
|
return r
|
|
|
|
def timeit(stmt="pass", setup="pass", timer=default_timer,
|
|
number=default_number):
|
|
"""Convenience function to create Timer object and call timeit method."""
|
|
return Timer(stmt, setup, timer).timeit(number)
|
|
|
|
def repeat(stmt="pass", setup="pass", timer=default_timer,
|
|
repeat=default_repeat, number=default_number):
|
|
"""Convenience function to create Timer object and call repeat method."""
|
|
return Timer(stmt, setup, timer).repeat(repeat, number)
|
|
|
|
def main(args=None, *, _wrap_timer=None):
|
|
"""Main program, used when run as a script.
|
|
|
|
The optional 'args' argument specifies the command line to be parsed,
|
|
defaulting to sys.argv[1:].
|
|
|
|
The return value is an exit code to be passed to sys.exit(); it
|
|
may be None to indicate success.
|
|
|
|
When an exception happens during timing, a traceback is printed to
|
|
stderr and the return value is 1. Exceptions at other times
|
|
(including the template compilation) are not caught.
|
|
|
|
'_wrap_timer' is an internal interface used for unit testing. If it
|
|
is not None, it must be a callable that accepts a timer function
|
|
and returns another timer function (used for unit testing).
|
|
"""
|
|
if args is None:
|
|
args = sys.argv[1:]
|
|
import getopt
|
|
try:
|
|
opts, args = getopt.getopt(args, "n:s:r:tcpvh",
|
|
["number=", "setup=", "repeat=",
|
|
"time", "clock", "process",
|
|
"verbose", "help"])
|
|
except getopt.error as err:
|
|
print(err)
|
|
print("use -h/--help for command line help")
|
|
return 2
|
|
timer = default_timer
|
|
stmt = "\n".join(args) or "pass"
|
|
number = 0 # auto-determine
|
|
setup = []
|
|
repeat = default_repeat
|
|
verbose = 0
|
|
precision = 3
|
|
for o, a in opts:
|
|
if o in ("-n", "--number"):
|
|
number = int(a)
|
|
if o in ("-s", "--setup"):
|
|
setup.append(a)
|
|
if o in ("-r", "--repeat"):
|
|
repeat = int(a)
|
|
if repeat <= 0:
|
|
repeat = 1
|
|
if o in ("-t", "--time"):
|
|
timer = time.time
|
|
if o in ("-c", "--clock"):
|
|
timer = time.clock
|
|
if o in ("-p", "--process"):
|
|
timer = time.process_time
|
|
if o in ("-v", "--verbose"):
|
|
if verbose:
|
|
precision += 1
|
|
verbose += 1
|
|
if o in ("-h", "--help"):
|
|
print(__doc__, end=' ')
|
|
return 0
|
|
setup = "\n".join(setup) or "pass"
|
|
# Include the current directory, so that local imports work (sys.path
|
|
# contains the directory of this script, rather than the current
|
|
# directory)
|
|
import os
|
|
sys.path.insert(0, os.curdir)
|
|
if _wrap_timer is not None:
|
|
timer = _wrap_timer(timer)
|
|
t = Timer(stmt, setup, timer)
|
|
if number == 0:
|
|
# determine number so that 0.2 <= total time < 2.0
|
|
for i in range(1, 10):
|
|
number = 10**i
|
|
try:
|
|
x = t.timeit(number)
|
|
except:
|
|
t.print_exc()
|
|
return 1
|
|
if verbose:
|
|
print("%d loops -> %.*g secs" % (number, precision, x))
|
|
if x >= 0.2:
|
|
break
|
|
try:
|
|
r = t.repeat(repeat, number)
|
|
except:
|
|
t.print_exc()
|
|
return 1
|
|
best = min(r)
|
|
if verbose:
|
|
print("raw times:", " ".join(["%.*g" % (precision, x) for x in r]))
|
|
print("%d loops," % number, end=' ')
|
|
usec = best * 1e6 / number
|
|
if usec < 1000:
|
|
print("best of %d: %.*g usec per loop" % (repeat, precision, usec))
|
|
else:
|
|
msec = usec / 1000
|
|
if msec < 1000:
|
|
print("best of %d: %.*g msec per loop" % (repeat, precision, msec))
|
|
else:
|
|
sec = msec / 1000
|
|
print("best of %d: %.*g sec per loop" % (repeat, precision, sec))
|
|
return None
|
|
|
|
if __name__ == "__main__":
|
|
sys.exit(main())
|