cpython/Doc/library/os.rst
Rafael Fontenelle fdc7e52f5f
[doc] Fix typo in os module (GH-24464)
Automerge-Triggered-By: GH:iritkatriel
2021-05-16 16:38:11 -07:00

4926 lines
167 KiB
ReStructuredText

:mod:`os` --- Miscellaneous operating system interfaces
=======================================================
.. module:: os
:synopsis: Miscellaneous operating system interfaces.
**Source code:** :source:`Lib/os.py`
--------------
This module provides a portable way of using operating system dependent
functionality. If you just want to read or write a file see :func:`open`, if
you want to manipulate paths, see the :mod:`os.path` module, and if you want to
read all the lines in all the files on the command line see the :mod:`fileinput`
module. For creating temporary files and directories see the :mod:`tempfile`
module, and for high-level file and directory handling see the :mod:`shutil`
module.
Notes on the availability of these functions:
* The design of all built-in operating system dependent modules of Python is
such that as long as the same functionality is available, it uses the same
interface; for example, the function ``os.stat(path)`` returns stat
information about *path* in the same format (which happens to have originated
with the POSIX interface).
* Extensions peculiar to a particular operating system are also available
through the :mod:`os` module, but using them is of course a threat to
portability.
* All functions accepting path or file names accept both bytes and string
objects, and result in an object of the same type, if a path or file name is
returned.
* On VxWorks, os.popen, os.fork, os.execv and os.spawn*p* are not supported.
.. note::
All functions in this module raise :exc:`OSError` (or subclasses thereof) in
the case of invalid or inaccessible file names and paths, or other arguments
that have the correct type, but are not accepted by the operating system.
.. exception:: error
An alias for the built-in :exc:`OSError` exception.
.. data:: name
The name of the operating system dependent module imported. The following
names have currently been registered: ``'posix'``, ``'nt'``,
``'java'``.
.. seealso::
:attr:`sys.platform` has a finer granularity. :func:`os.uname` gives
system-dependent version information.
The :mod:`platform` module provides detailed checks for the
system's identity.
.. _os-filenames:
.. _filesystem-encoding:
File Names, Command Line Arguments, and Environment Variables
-------------------------------------------------------------
In Python, file names, command line arguments, and environment variables are
represented using the string type. On some systems, decoding these strings to
and from bytes is necessary before passing them to the operating system. Python
uses the :term:`filesystem encoding and error handler` to perform this
conversion (see :func:`sys.getfilesystemencoding`).
The :term:`filesystem encoding and error handler` are configured at Python
startup by the :c:func:`PyConfig_Read` function: see
:c:member:`~PyConfig.filesystem_encoding` and
:c:member:`~PyConfig.filesystem_errors` members of :c:type:`PyConfig`.
.. versionchanged:: 3.1
On some systems, conversion using the file system encoding may fail. In this
case, Python uses the :ref:`surrogateescape encoding error handler
<surrogateescape>`, which means that undecodable bytes are replaced by a
Unicode character U+DCxx on decoding, and these are again translated to the
original byte on encoding.
The :term:`file system encoding <filesystem encoding and error handler>` must
guarantee to successfully decode all bytes below 128. If the file system
encoding fails to provide this guarantee, API functions can raise
:exc:`UnicodeError`.
See also the :term:`locale encoding`.
.. _utf8-mode:
Python UTF-8 Mode
-----------------
.. versionadded:: 3.7
See :pep:`540` for more details.
The Python UTF-8 Mode ignores the :term:`locale encoding` and forces the usage
of the UTF-8 encoding:
* Use UTF-8 as the :term:`filesystem encoding <filesystem encoding and error
handler>`.
* :func:`sys.getfilesystemencoding()` returns ``'UTF-8'``.
* :func:`locale.getpreferredencoding()` returns ``'UTF-8'`` (the *do_setlocale*
argument has no effect).
* :data:`sys.stdin`, :data:`sys.stdout`, and :data:`sys.stderr` all use
UTF-8 as their text encoding, with the ``surrogateescape``
:ref:`error handler <error-handlers>` being enabled for :data:`sys.stdin`
and :data:`sys.stdout` (:data:`sys.stderr` continues to use
``backslashreplace`` as it does in the default locale-aware mode)
* On Unix, :func:`os.device_encoding` returns ``'UTF-8'``. rather than the
device encoding.
Note that the standard stream settings in UTF-8 mode can be overridden by
:envvar:`PYTHONIOENCODING` (just as they can be in the default locale-aware
mode).
As a consequence of the changes in those lower level APIs, other higher
level APIs also exhibit different default behaviours:
* Command line arguments, environment variables and filenames are decoded
to text using the UTF-8 encoding.
* :func:`os.fsdecode()` and :func:`os.fsencode()` use the UTF-8 encoding.
* :func:`open()`, :func:`io.open()`, and :func:`codecs.open()` use the UTF-8
encoding by default. However, they still use the strict error handler by
default so that attempting to open a binary file in text mode is likely
to raise an exception rather than producing nonsense data.
The :ref:`Python UTF-8 Mode <utf8-mode>` is enabled if the LC_CTYPE locale is
``C`` or ``POSIX`` at Python startup (see the :c:func:`PyConfig_Read`
function).
It can be enabled or disabled using the :option:`-X utf8 <-X>` command line
option and the :envvar:`PYTHONUTF8` environment variable.
If the :envvar:`PYTHONUTF8` environment variable is not set at all, then the
interpreter defaults to using the current locale settings, *unless* the current
locale is identified as a legacy ASCII-based locale (as described for
:envvar:`PYTHONCOERCECLOCALE`), and locale coercion is either disabled or
fails. In such legacy locales, the interpreter will default to enabling UTF-8
mode unless explicitly instructed not to do so.
The Python UTF-8 Mode can only be enabled at the Python startup. Its value
can be read from :data:`sys.flags.utf8_mode <sys.flags>`.
See also the :ref:`UTF-8 mode on Windows <win-utf8-mode>`
and the :term:`filesystem encoding and error handler`.
.. _os-procinfo:
Process Parameters
------------------
These functions and data items provide information and operate on the current
process and user.
.. function:: ctermid()
Return the filename corresponding to the controlling terminal of the process.
.. availability:: Unix.
.. data:: environ
A :term:`mapping` object representing the string environment. For example,
``environ['HOME']`` is the pathname of your home directory (on some platforms),
and is equivalent to ``getenv("HOME")`` in C.
This mapping is captured the first time the :mod:`os` module is imported,
typically during Python startup as part of processing :file:`site.py`. Changes
to the environment made after this time are not reflected in ``os.environ``,
except for changes made by modifying ``os.environ`` directly.
This mapping may be used to modify the environment as well as query the
environment. :func:`putenv` will be called automatically when the mapping
is modified.
On Unix, keys and values use :func:`sys.getfilesystemencoding` and
``'surrogateescape'`` error handler. Use :data:`environb` if you would like
to use a different encoding.
.. note::
Calling :func:`putenv` directly does not change ``os.environ``, so it's better
to modify ``os.environ``.
.. note::
On some platforms, including FreeBSD and Mac OS X, setting ``environ`` may
cause memory leaks. Refer to the system documentation for
:c:func:`putenv`.
You can delete items in this mapping to unset environment variables.
:func:`unsetenv` will be called automatically when an item is deleted from
``os.environ``, and when one of the :meth:`pop` or :meth:`clear` methods is
called.
.. versionchanged:: 3.9
Updated to support :pep:`584`'s merge (``|``) and update (``|=``) operators.
.. data:: environb
Bytes version of :data:`environ`: a :term:`mapping` object representing the
environment as byte strings. :data:`environ` and :data:`environb` are
synchronized (modify :data:`environb` updates :data:`environ`, and vice
versa).
:data:`environb` is only available if :data:`supports_bytes_environ` is
``True``.
.. versionadded:: 3.2
.. versionchanged:: 3.9
Updated to support :pep:`584`'s merge (``|``) and update (``|=``) operators.
.. function:: chdir(path)
fchdir(fd)
getcwd()
:noindex:
These functions are described in :ref:`os-file-dir`.
.. function:: fsencode(filename)
Encode :term:`path-like <path-like object>` *filename* to the
:term:`filesystem encoding and error handler`; return :class:`bytes`
unchanged.
:func:`fsdecode` is the reverse function.
.. versionadded:: 3.2
.. versionchanged:: 3.6
Support added to accept objects implementing the :class:`os.PathLike`
interface.
.. function:: fsdecode(filename)
Decode the :term:`path-like <path-like object>` *filename* from the
:term:`filesystem encoding and error handler`; return :class:`str`
unchanged.
:func:`fsencode` is the reverse function.
.. versionadded:: 3.2
.. versionchanged:: 3.6
Support added to accept objects implementing the :class:`os.PathLike`
interface.
.. function:: fspath(path)
Return the file system representation of the path.
If :class:`str` or :class:`bytes` is passed in, it is returned unchanged.
Otherwise :meth:`~os.PathLike.__fspath__` is called and its value is
returned as long as it is a :class:`str` or :class:`bytes` object.
In all other cases, :exc:`TypeError` is raised.
.. versionadded:: 3.6
.. class:: PathLike
An :term:`abstract base class` for objects representing a file system path,
e.g. :class:`pathlib.PurePath`.
.. versionadded:: 3.6
.. abstractmethod:: __fspath__()
Return the file system path representation of the object.
The method should only return a :class:`str` or :class:`bytes` object,
with the preference being for :class:`str`.
.. function:: getenv(key, default=None)
Return the value of the environment variable *key* if it exists, or
*default* if it doesn't. *key*, *default* and the result are str.
On Unix, keys and values are decoded with :func:`sys.getfilesystemencoding`
and ``'surrogateescape'`` error handler. Use :func:`os.getenvb` if you
would like to use a different encoding.
.. availability:: most flavors of Unix, Windows.
.. function:: getenvb(key, default=None)
Return the value of the environment variable *key* if it exists, or
*default* if it doesn't. *key*, *default* and the result are bytes.
:func:`getenvb` is only available if :data:`supports_bytes_environ`
is ``True``.
.. availability:: most flavors of Unix.
.. versionadded:: 3.2
.. function:: get_exec_path(env=None)
Returns the list of directories that will be searched for a named
executable, similar to a shell, when launching a process.
*env*, when specified, should be an environment variable dictionary
to lookup the PATH in.
By default, when *env* is ``None``, :data:`environ` is used.
.. versionadded:: 3.2
.. function:: getegid()
Return the effective group id of the current process. This corresponds to the
"set id" bit on the file being executed in the current process.
.. availability:: Unix.
.. function:: geteuid()
.. index:: single: user; effective id
Return the current process's effective user id.
.. availability:: Unix.
.. function:: getgid()
.. index:: single: process; group
Return the real group id of the current process.
.. availability:: Unix.
.. function:: getgrouplist(user, group)
Return list of group ids that *user* belongs to. If *group* is not in the
list, it is included; typically, *group* is specified as the group ID
field from the password record for *user*.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: getgroups()
Return list of supplemental group ids associated with the current process.
.. availability:: Unix.
.. note::
On Mac OS X, :func:`getgroups` behavior differs somewhat from
other Unix platforms. If the Python interpreter was built with a
deployment target of :const:`10.5` or earlier, :func:`getgroups` returns
the list of effective group ids associated with the current user process;
this list is limited to a system-defined number of entries, typically 16,
and may be modified by calls to :func:`setgroups` if suitably privileged.
If built with a deployment target greater than :const:`10.5`,
:func:`getgroups` returns the current group access list for the user
associated with the effective user id of the process; the group access
list may change over the lifetime of the process, it is not affected by
calls to :func:`setgroups`, and its length is not limited to 16. The
deployment target value, :const:`MACOSX_DEPLOYMENT_TARGET`, can be
obtained with :func:`sysconfig.get_config_var`.
.. function:: getlogin()
Return the name of the user logged in on the controlling terminal of the
process. For most purposes, it is more useful to use
:func:`getpass.getuser` since the latter checks the environment variables
:envvar:`LOGNAME` or :envvar:`USERNAME` to find out who the user is, and
falls back to ``pwd.getpwuid(os.getuid())[0]`` to get the login name of the
current real user id.
.. availability:: Unix, Windows.
.. function:: getpgid(pid)
Return the process group id of the process with process id *pid*. If *pid* is 0,
the process group id of the current process is returned.
.. availability:: Unix.
.. function:: getpgrp()
.. index:: single: process; group
Return the id of the current process group.
.. availability:: Unix.
.. function:: getpid()
.. index:: single: process; id
Return the current process id.
.. function:: getppid()
.. index:: single: process; id of parent
Return the parent's process id. When the parent process has exited, on Unix
the id returned is the one of the init process (1), on Windows it is still
the same id, which may be already reused by another process.
.. availability:: Unix, Windows.
.. versionchanged:: 3.2
Added support for Windows.
.. function:: getpriority(which, who)
.. index:: single: process; scheduling priority
Get program scheduling priority. The value *which* is one of
:const:`PRIO_PROCESS`, :const:`PRIO_PGRP`, or :const:`PRIO_USER`, and *who*
is interpreted relative to *which* (a process identifier for
:const:`PRIO_PROCESS`, process group identifier for :const:`PRIO_PGRP`, and a
user ID for :const:`PRIO_USER`). A zero value for *who* denotes
(respectively) the calling process, the process group of the calling process,
or the real user ID of the calling process.
.. availability:: Unix.
.. versionadded:: 3.3
.. data:: PRIO_PROCESS
PRIO_PGRP
PRIO_USER
Parameters for the :func:`getpriority` and :func:`setpriority` functions.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: getresuid()
Return a tuple (ruid, euid, suid) denoting the current process's
real, effective, and saved user ids.
.. availability:: Unix.
.. versionadded:: 3.2
.. function:: getresgid()
Return a tuple (rgid, egid, sgid) denoting the current process's
real, effective, and saved group ids.
.. availability:: Unix.
.. versionadded:: 3.2
.. function:: getuid()
.. index:: single: user; id
Return the current process's real user id.
.. availability:: Unix.
.. function:: initgroups(username, gid)
Call the system initgroups() to initialize the group access list with all of
the groups of which the specified username is a member, plus the specified
group id.
.. availability:: Unix.
.. versionadded:: 3.2
.. function:: putenv(key, value)
.. index:: single: environment variables; setting
Set the environment variable named *key* to the string *value*. Such
changes to the environment affect subprocesses started with :func:`os.system`,
:func:`popen` or :func:`fork` and :func:`execv`.
Assignments to items in ``os.environ`` are automatically translated into
corresponding calls to :func:`putenv`; however, calls to :func:`putenv`
don't update ``os.environ``, so it is actually preferable to assign to items
of ``os.environ``.
.. note::
On some platforms, including FreeBSD and Mac OS X, setting ``environ`` may
cause memory leaks. Refer to the system documentation for :c:func:`putenv`.
.. audit-event:: os.putenv key,value os.putenv
.. versionchanged:: 3.9
The function is now always available.
.. function:: setegid(egid)
Set the current process's effective group id.
.. availability:: Unix.
.. function:: seteuid(euid)
Set the current process's effective user id.
.. availability:: Unix.
.. function:: setgid(gid)
Set the current process' group id.
.. availability:: Unix.
.. function:: setgroups(groups)
Set the list of supplemental group ids associated with the current process to
*groups*. *groups* must be a sequence, and each element must be an integer
identifying a group. This operation is typically available only to the superuser.
.. availability:: Unix.
.. note:: On Mac OS X, the length of *groups* may not exceed the
system-defined maximum number of effective group ids, typically 16.
See the documentation for :func:`getgroups` for cases where it may not
return the same group list set by calling setgroups().
.. function:: setpgrp()
Call the system call :c:func:`setpgrp` or ``setpgrp(0, 0)`` depending on
which version is implemented (if any). See the Unix manual for the semantics.
.. availability:: Unix.
.. function:: setpgid(pid, pgrp)
Call the system call :c:func:`setpgid` to set the process group id of the
process with id *pid* to the process group with id *pgrp*. See the Unix manual
for the semantics.
.. availability:: Unix.
.. function:: setpriority(which, who, priority)
.. index:: single: process; scheduling priority
Set program scheduling priority. The value *which* is one of
:const:`PRIO_PROCESS`, :const:`PRIO_PGRP`, or :const:`PRIO_USER`, and *who*
is interpreted relative to *which* (a process identifier for
:const:`PRIO_PROCESS`, process group identifier for :const:`PRIO_PGRP`, and a
user ID for :const:`PRIO_USER`). A zero value for *who* denotes
(respectively) the calling process, the process group of the calling process,
or the real user ID of the calling process.
*priority* is a value in the range -20 to 19. The default priority is 0;
lower priorities cause more favorable scheduling.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: setregid(rgid, egid)
Set the current process's real and effective group ids.
.. availability:: Unix.
.. function:: setresgid(rgid, egid, sgid)
Set the current process's real, effective, and saved group ids.
.. availability:: Unix.
.. versionadded:: 3.2
.. function:: setresuid(ruid, euid, suid)
Set the current process's real, effective, and saved user ids.
.. availability:: Unix.
.. versionadded:: 3.2
.. function:: setreuid(ruid, euid)
Set the current process's real and effective user ids.
.. availability:: Unix.
.. function:: getsid(pid)
Call the system call :c:func:`getsid`. See the Unix manual for the semantics.
.. availability:: Unix.
.. function:: setsid()
Call the system call :c:func:`setsid`. See the Unix manual for the semantics.
.. availability:: Unix.
.. function:: setuid(uid)
.. index:: single: user; id, setting
Set the current process's user id.
.. availability:: Unix.
.. placed in this section since it relates to errno.... a little weak
.. function:: strerror(code)
Return the error message corresponding to the error code in *code*.
On platforms where :c:func:`strerror` returns ``NULL`` when given an unknown
error number, :exc:`ValueError` is raised.
.. data:: supports_bytes_environ
``True`` if the native OS type of the environment is bytes (eg. ``False`` on
Windows).
.. versionadded:: 3.2
.. function:: umask(mask)
Set the current numeric umask and return the previous umask.
.. function:: uname()
.. index::
single: gethostname() (in module socket)
single: gethostbyaddr() (in module socket)
Returns information identifying the current operating system.
The return value is an object with five attributes:
* :attr:`sysname` - operating system name
* :attr:`nodename` - name of machine on network (implementation-defined)
* :attr:`release` - operating system release
* :attr:`version` - operating system version
* :attr:`machine` - hardware identifier
For backwards compatibility, this object is also iterable, behaving
like a five-tuple containing :attr:`sysname`, :attr:`nodename`,
:attr:`release`, :attr:`version`, and :attr:`machine`
in that order.
Some systems truncate :attr:`nodename` to 8 characters or to the
leading component; a better way to get the hostname is
:func:`socket.gethostname` or even
``socket.gethostbyaddr(socket.gethostname())``.
.. availability:: recent flavors of Unix.
.. versionchanged:: 3.3
Return type changed from a tuple to a tuple-like object
with named attributes.
.. function:: unsetenv(key)
.. index:: single: environment variables; deleting
Unset (delete) the environment variable named *key*. Such changes to the
environment affect subprocesses started with :func:`os.system`, :func:`popen` or
:func:`fork` and :func:`execv`.
Deletion of items in ``os.environ`` is automatically translated into a
corresponding call to :func:`unsetenv`; however, calls to :func:`unsetenv`
don't update ``os.environ``, so it is actually preferable to delete items of
``os.environ``.
.. audit-event:: os.unsetenv key os.unsetenv
.. versionchanged:: 3.9
The function is now always available and is also available on Windows.
.. _os-newstreams:
File Object Creation
--------------------
These functions create new :term:`file objects <file object>`. (See also
:func:`~os.open` for opening file descriptors.)
.. function:: fdopen(fd, *args, **kwargs)
Return an open file object connected to the file descriptor *fd*. This is an
alias of the :func:`open` built-in function and accepts the same arguments.
The only difference is that the first argument of :func:`fdopen` must always
be an integer.
.. _os-fd-ops:
File Descriptor Operations
--------------------------
These functions operate on I/O streams referenced using file descriptors.
File descriptors are small integers corresponding to a file that has been opened
by the current process. For example, standard input is usually file descriptor
0, standard output is 1, and standard error is 2. Further files opened by a
process will then be assigned 3, 4, 5, and so forth. The name "file descriptor"
is slightly deceptive; on Unix platforms, sockets and pipes are also referenced
by file descriptors.
The :meth:`~io.IOBase.fileno` method can be used to obtain the file descriptor
associated with a :term:`file object` when required. Note that using the file
descriptor directly will bypass the file object methods, ignoring aspects such
as internal buffering of data.
.. function:: close(fd)
Close file descriptor *fd*.
.. note::
This function is intended for low-level I/O and must be applied to a file
descriptor as returned by :func:`os.open` or :func:`pipe`. To close a "file
object" returned by the built-in function :func:`open` or by :func:`popen` or
:func:`fdopen`, use its :meth:`~io.IOBase.close` method.
.. function:: closerange(fd_low, fd_high)
Close all file descriptors from *fd_low* (inclusive) to *fd_high* (exclusive),
ignoring errors. Equivalent to (but much faster than)::
for fd in range(fd_low, fd_high):
try:
os.close(fd)
except OSError:
pass
.. function:: copy_file_range(src, dst, count, offset_src=None, offset_dst=None)
Copy *count* bytes from file descriptor *src*, starting from offset
*offset_src*, to file descriptor *dst*, starting from offset *offset_dst*.
If *offset_src* is None, then *src* is read from the current position;
respectively for *offset_dst*. The files pointed by *src* and *dst*
must reside in the same filesystem, otherwise an :exc:`OSError` is
raised with :attr:`~OSError.errno` set to :data:`errno.EXDEV`.
This copy is done without the additional cost of transferring data
from the kernel to user space and then back into the kernel. Additionally,
some filesystems could implement extra optimizations. The copy is done as if
both files are opened as binary.
The return value is the amount of bytes copied. This could be less than the
amount requested.
.. availability:: Linux kernel >= 4.5 or glibc >= 2.27.
.. versionadded:: 3.8
.. function:: device_encoding(fd)
Return a string describing the encoding of the device associated with *fd*
if it is connected to a terminal; else return :const:`None`.
On Unix, if the :ref:`Python UTF-8 Mode <utf8-mode>` is enabled, return
``'UTF-8'`` rather than the device encoding.
.. versionchanged:: 3.10
On Unix, the function now implements the Python UTF-8 Mode.
.. function:: dup(fd)
Return a duplicate of file descriptor *fd*. The new file descriptor is
:ref:`non-inheritable <fd_inheritance>`.
On Windows, when duplicating a standard stream (0: stdin, 1: stdout,
2: stderr), the new file descriptor is :ref:`inheritable
<fd_inheritance>`.
.. versionchanged:: 3.4
The new file descriptor is now non-inheritable.
.. function:: dup2(fd, fd2, inheritable=True)
Duplicate file descriptor *fd* to *fd2*, closing the latter first if
necessary. Return *fd2*. The new file descriptor is :ref:`inheritable
<fd_inheritance>` by default or non-inheritable if *inheritable*
is ``False``.
.. versionchanged:: 3.4
Add the optional *inheritable* parameter.
.. versionchanged:: 3.7
Return *fd2* on success. Previously, ``None`` was always returned.
.. function:: fchmod(fd, mode)
Change the mode of the file given by *fd* to the numeric *mode*. See the
docs for :func:`chmod` for possible values of *mode*. As of Python 3.3, this
is equivalent to ``os.chmod(fd, mode)``.
.. audit-event:: os.chmod path,mode,dir_fd os.fchmod
.. availability:: Unix.
.. function:: fchown(fd, uid, gid)
Change the owner and group id of the file given by *fd* to the numeric *uid*
and *gid*. To leave one of the ids unchanged, set it to -1. See
:func:`chown`. As of Python 3.3, this is equivalent to ``os.chown(fd, uid,
gid)``.
.. audit-event:: os.chown path,uid,gid,dir_fd os.fchown
.. availability:: Unix.
.. function:: fdatasync(fd)
Force write of file with filedescriptor *fd* to disk. Does not force update of
metadata.
.. availability:: Unix.
.. note::
This function is not available on MacOS.
.. function:: fpathconf(fd, name)
Return system configuration information relevant to an open file. *name*
specifies the configuration value to retrieve; it may be a string which is the
name of a defined system value; these names are specified in a number of
standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define
additional names as well. The names known to the host operating system are
given in the ``pathconf_names`` dictionary. For configuration variables not
included in that mapping, passing an integer for *name* is also accepted.
If *name* is a string and is not known, :exc:`ValueError` is raised. If a
specific value for *name* is not supported by the host system, even if it is
included in ``pathconf_names``, an :exc:`OSError` is raised with
:const:`errno.EINVAL` for the error number.
As of Python 3.3, this is equivalent to ``os.pathconf(fd, name)``.
.. availability:: Unix.
.. function:: fstat(fd)
Get the status of the file descriptor *fd*. Return a :class:`stat_result`
object.
As of Python 3.3, this is equivalent to ``os.stat(fd)``.
.. seealso::
The :func:`.stat` function.
.. function:: fstatvfs(fd)
Return information about the filesystem containing the file associated with
file descriptor *fd*, like :func:`statvfs`. As of Python 3.3, this is
equivalent to ``os.statvfs(fd)``.
.. availability:: Unix.
.. function:: fsync(fd)
Force write of file with filedescriptor *fd* to disk. On Unix, this calls the
native :c:func:`fsync` function; on Windows, the MS :c:func:`_commit` function.
If you're starting with a buffered Python :term:`file object` *f*, first do
``f.flush()``, and then do ``os.fsync(f.fileno())``, to ensure that all internal
buffers associated with *f* are written to disk.
.. availability:: Unix, Windows.
.. function:: ftruncate(fd, length)
Truncate the file corresponding to file descriptor *fd*, so that it is at
most *length* bytes in size. As of Python 3.3, this is equivalent to
``os.truncate(fd, length)``.
.. audit-event:: os.truncate fd,length os.ftruncate
.. availability:: Unix, Windows.
.. versionchanged:: 3.5
Added support for Windows
.. function:: get_blocking(fd)
Get the blocking mode of the file descriptor: ``False`` if the
:data:`O_NONBLOCK` flag is set, ``True`` if the flag is cleared.
See also :func:`set_blocking` and :meth:`socket.socket.setblocking`.
.. availability:: Unix.
.. versionadded:: 3.5
.. function:: isatty(fd)
Return ``True`` if the file descriptor *fd* is open and connected to a
tty(-like) device, else ``False``.
.. function:: lockf(fd, cmd, len)
Apply, test or remove a POSIX lock on an open file descriptor.
*fd* is an open file descriptor.
*cmd* specifies the command to use - one of :data:`F_LOCK`, :data:`F_TLOCK`,
:data:`F_ULOCK` or :data:`F_TEST`.
*len* specifies the section of the file to lock.
.. audit-event:: os.lockf fd,cmd,len os.lockf
.. availability:: Unix.
.. versionadded:: 3.3
.. data:: F_LOCK
F_TLOCK
F_ULOCK
F_TEST
Flags that specify what action :func:`lockf` will take.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: lseek(fd, pos, how)
Set the current position of file descriptor *fd* to position *pos*, modified
by *how*: :const:`SEEK_SET` or ``0`` to set the position relative to the
beginning of the file; :const:`SEEK_CUR` or ``1`` to set it relative to the
current position; :const:`SEEK_END` or ``2`` to set it relative to the end of
the file. Return the new cursor position in bytes, starting from the beginning.
.. data:: SEEK_SET
SEEK_CUR
SEEK_END
Parameters to the :func:`lseek` function. Their values are 0, 1, and 2,
respectively.
.. versionadded:: 3.3
Some operating systems could support additional values, like
:data:`os.SEEK_HOLE` or :data:`os.SEEK_DATA`.
.. function:: open(path, flags, mode=0o777, *, dir_fd=None)
Open the file *path* and set various flags according to *flags* and possibly
its mode according to *mode*. When computing *mode*, the current umask value
is first masked out. Return the file descriptor for the newly opened file.
The new file descriptor is :ref:`non-inheritable <fd_inheritance>`.
For a description of the flag and mode values, see the C run-time documentation;
flag constants (like :const:`O_RDONLY` and :const:`O_WRONLY`) are defined in
the :mod:`os` module. In particular, on Windows adding
:const:`O_BINARY` is needed to open files in binary mode.
This function can support :ref:`paths relative to directory descriptors
<dir_fd>` with the *dir_fd* parameter.
.. audit-event:: open path,mode,flags os.open
.. versionchanged:: 3.4
The new file descriptor is now non-inheritable.
.. note::
This function is intended for low-level I/O. For normal usage, use the
built-in function :func:`open`, which returns a :term:`file object` with
:meth:`~file.read` and :meth:`~file.write` methods (and many more). To
wrap a file descriptor in a file object, use :func:`fdopen`.
.. versionadded:: 3.3
The *dir_fd* argument.
.. versionchanged:: 3.5
If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an
:exc:`InterruptedError` exception (see :pep:`475` for the rationale).
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
The following constants are options for the *flags* parameter to the
:func:`~os.open` function. They can be combined using the bitwise OR operator
``|``. Some of them are not available on all platforms. For descriptions of
their availability and use, consult the :manpage:`open(2)` manual page on Unix
or `the MSDN <https://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx>`_ on Windows.
.. data:: O_RDONLY
O_WRONLY
O_RDWR
O_APPEND
O_CREAT
O_EXCL
O_TRUNC
The above constants are available on Unix and Windows.
.. data:: O_DSYNC
O_RSYNC
O_SYNC
O_NDELAY
O_NONBLOCK
O_NOCTTY
O_CLOEXEC
The above constants are only available on Unix.
.. versionchanged:: 3.3
Add :data:`O_CLOEXEC` constant.
.. data:: O_BINARY
O_NOINHERIT
O_SHORT_LIVED
O_TEMPORARY
O_RANDOM
O_SEQUENTIAL
O_TEXT
The above constants are only available on Windows.
.. data:: O_EVTONLY
O_FSYNC
O_SYMLINK
O_NOFOLLOW_ANY
The above constants are only available on macOS.
.. versionchanged:: 3.10
Add :data:`O_EVTONLY`, :data:`O_FSYNC`, :data:`O_SYMLINK`
and :data:`O_NOFOLLOW_ANY` constants.
.. data:: O_ASYNC
O_DIRECT
O_DIRECTORY
O_NOFOLLOW
O_NOATIME
O_PATH
O_TMPFILE
O_SHLOCK
O_EXLOCK
The above constants are extensions and not present if they are not defined by
the C library.
.. versionchanged:: 3.4
Add :data:`O_PATH` on systems that support it.
Add :data:`O_TMPFILE`, only available on Linux Kernel 3.11
or newer.
.. function:: openpty()
.. index:: module: pty
Open a new pseudo-terminal pair. Return a pair of file descriptors
``(master, slave)`` for the pty and the tty, respectively. The new file
descriptors are :ref:`non-inheritable <fd_inheritance>`. For a (slightly) more
portable approach, use the :mod:`pty` module.
.. availability:: some flavors of Unix.
.. versionchanged:: 3.4
The new file descriptors are now non-inheritable.
.. function:: pipe()
Create a pipe. Return a pair of file descriptors ``(r, w)`` usable for
reading and writing, respectively. The new file descriptor is
:ref:`non-inheritable <fd_inheritance>`.
.. availability:: Unix, Windows.
.. versionchanged:: 3.4
The new file descriptors are now non-inheritable.
.. function:: pipe2(flags)
Create a pipe with *flags* set atomically.
*flags* can be constructed by ORing together one or more of these values:
:data:`O_NONBLOCK`, :data:`O_CLOEXEC`.
Return a pair of file descriptors ``(r, w)`` usable for reading and writing,
respectively.
.. availability:: some flavors of Unix.
.. versionadded:: 3.3
.. function:: posix_fallocate(fd, offset, len)
Ensures that enough disk space is allocated for the file specified by *fd*
starting from *offset* and continuing for *len* bytes.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: posix_fadvise(fd, offset, len, advice)
Announces an intention to access data in a specific pattern thus allowing
the kernel to make optimizations.
The advice applies to the region of the file specified by *fd* starting at
*offset* and continuing for *len* bytes.
*advice* is one of :data:`POSIX_FADV_NORMAL`, :data:`POSIX_FADV_SEQUENTIAL`,
:data:`POSIX_FADV_RANDOM`, :data:`POSIX_FADV_NOREUSE`,
:data:`POSIX_FADV_WILLNEED` or :data:`POSIX_FADV_DONTNEED`.
.. availability:: Unix.
.. versionadded:: 3.3
.. data:: POSIX_FADV_NORMAL
POSIX_FADV_SEQUENTIAL
POSIX_FADV_RANDOM
POSIX_FADV_NOREUSE
POSIX_FADV_WILLNEED
POSIX_FADV_DONTNEED
Flags that can be used in *advice* in :func:`posix_fadvise` that specify
the access pattern that is likely to be used.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: pread(fd, n, offset)
Read at most *n* bytes from file descriptor *fd* at a position of *offset*,
leaving the file offset unchanged.
Return a bytestring containing the bytes read. If the end of the file
referred to by *fd* has been reached, an empty bytes object is returned.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: preadv(fd, buffers, offset, flags=0)
Read from a file descriptor *fd* at a position of *offset* into mutable
:term:`bytes-like objects <bytes-like object>` *buffers*, leaving the file
offset unchanged. Transfer data into each buffer until it is full and then
move on to the next buffer in the sequence to hold the rest of the data.
The flags argument contains a bitwise OR of zero or more of the following
flags:
- :data:`RWF_HIPRI`
- :data:`RWF_NOWAIT`
Return the total number of bytes actually read which can be less than the
total capacity of all the objects.
The operating system may set a limit (:func:`sysconf` value
``'SC_IOV_MAX'``) on the number of buffers that can be used.
Combine the functionality of :func:`os.readv` and :func:`os.pread`.
.. availability:: Linux 2.6.30 and newer, FreeBSD 6.0 and newer,
OpenBSD 2.7 and newer, AIX 7.1 and newer. Using flags requires
Linux 4.6 or newer.
.. versionadded:: 3.7
.. data:: RWF_NOWAIT
Do not wait for data which is not immediately available. If this flag is
specified, the system call will return instantly if it would have to read
data from the backing storage or wait for a lock.
If some data was successfully read, it will return the number of bytes read.
If no bytes were read, it will return ``-1`` and set errno to
:data:`errno.EAGAIN`.
.. availability:: Linux 4.14 and newer.
.. versionadded:: 3.7
.. data:: RWF_HIPRI
High priority read/write. Allows block-based filesystems to use polling
of the device, which provides lower latency, but may use additional
resources.
Currently, on Linux, this feature is usable only on a file descriptor opened
using the :data:`O_DIRECT` flag.
.. availability:: Linux 4.6 and newer.
.. versionadded:: 3.7
.. function:: pwrite(fd, str, offset)
Write the bytestring in *str* to file descriptor *fd* at position of
*offset*, leaving the file offset unchanged.
Return the number of bytes actually written.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: pwritev(fd, buffers, offset, flags=0)
Write the *buffers* contents to file descriptor *fd* at a offset *offset*,
leaving the file offset unchanged. *buffers* must be a sequence of
:term:`bytes-like objects <bytes-like object>`. Buffers are processed in
array order. Entire contents of the first buffer is written before
proceeding to the second, and so on.
The flags argument contains a bitwise OR of zero or more of the following
flags:
- :data:`RWF_DSYNC`
- :data:`RWF_SYNC`
- :data:`RWF_APPEND`
Return the total number of bytes actually written.
The operating system may set a limit (:func:`sysconf` value
``'SC_IOV_MAX'``) on the number of buffers that can be used.
Combine the functionality of :func:`os.writev` and :func:`os.pwrite`.
.. availability:: Linux 2.6.30 and newer, FreeBSD 6.0 and newer,
OpenBSD 2.7 and newer, AIX 7.1 and newer. Using flags requires
Linux 4.7 or newer.
.. versionadded:: 3.7
.. data:: RWF_DSYNC
Provide a per-write equivalent of the :data:`O_DSYNC` :func:`os.open` flag.
This flag effect applies only to the data range written by the system call.
.. availability:: Linux 4.7 and newer.
.. versionadded:: 3.7
.. data:: RWF_SYNC
Provide a per-write equivalent of the :data:`O_SYNC` :func:`os.open` flag.
This flag effect applies only to the data range written by the system call.
.. availability:: Linux 4.7 and newer.
.. versionadded:: 3.7
.. data:: RWF_APPEND
Provide a per-write equivalent of the :data:`O_APPEND` :func:`os.open`
flag. This flag is meaningful only for :func:`os.pwritev`, and its
effect applies only to the data range written by the system call. The
*offset* argument does not affect the write operation; the data is always
appended to the end of the file. However, if the *offset* argument is
``-1``, the current file *offset* is updated.
.. availability:: Linux 4.16 and newer.
.. versionadded:: 3.10
.. function:: read(fd, n)
Read at most *n* bytes from file descriptor *fd*.
Return a bytestring containing the bytes read. If the end of the file
referred to by *fd* has been reached, an empty bytes object is returned.
.. note::
This function is intended for low-level I/O and must be applied to a file
descriptor as returned by :func:`os.open` or :func:`pipe`. To read a
"file object" returned by the built-in function :func:`open` or by
:func:`popen` or :func:`fdopen`, or :data:`sys.stdin`, use its
:meth:`~file.read` or :meth:`~file.readline` methods.
.. versionchanged:: 3.5
If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an
:exc:`InterruptedError` exception (see :pep:`475` for the rationale).
.. function:: sendfile(out_fd, in_fd, offset, count)
sendfile(out_fd, in_fd, offset, count, headers=(), trailers=(), flags=0)
Copy *count* bytes from file descriptor *in_fd* to file descriptor *out_fd*
starting at *offset*.
Return the number of bytes sent. When EOF is reached return ``0``.
The first function notation is supported by all platforms that define
:func:`sendfile`.
On Linux, if *offset* is given as ``None``, the bytes are read from the
current position of *in_fd* and the position of *in_fd* is updated.
The second case may be used on Mac OS X and FreeBSD where *headers* and
*trailers* are arbitrary sequences of buffers that are written before and
after the data from *in_fd* is written. It returns the same as the first case.
On Mac OS X and FreeBSD, a value of ``0`` for *count* specifies to send until
the end of *in_fd* is reached.
All platforms support sockets as *out_fd* file descriptor, and some platforms
allow other types (e.g. regular file, pipe) as well.
Cross-platform applications should not use *headers*, *trailers* and *flags*
arguments.
.. availability:: Unix.
.. note::
For a higher-level wrapper of :func:`sendfile`, see
:meth:`socket.socket.sendfile`.
.. versionadded:: 3.3
.. versionchanged:: 3.9
Parameters *out* and *in* was renamed to *out_fd* and *in_fd*.
.. function:: set_blocking(fd, blocking)
Set the blocking mode of the specified file descriptor. Set the
:data:`O_NONBLOCK` flag if blocking is ``False``, clear the flag otherwise.
See also :func:`get_blocking` and :meth:`socket.socket.setblocking`.
.. availability:: Unix.
.. versionadded:: 3.5
.. data:: SF_NODISKIO
SF_MNOWAIT
SF_SYNC
Parameters to the :func:`sendfile` function, if the implementation supports
them.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: splice(src, dst, count, offset_src=None, offset_dst=None)
Transfer *count* bytes from file descriptor *src*, starting from offset
*offset_src*, to file descriptor *dst*, starting from offset *offset_dst*.
At least one of the file descriptors must refer to a pipe. If *offset_src*
is None, then *src* is read from the current position; respectively for
*offset_dst*. The offset associated to the file descriptor that refers to a
pipe must be ``None``. The files pointed by *src* and *dst* must reside in
the same filesystem, otherwise an :exc:`OSError` is raised with
:attr:`~OSError.errno` set to :data:`errno.EXDEV`.
This copy is done without the additional cost of transferring data
from the kernel to user space and then back into the kernel. Additionally,
some filesystems could implement extra optimizations. The copy is done as if
both files are opened as binary.
Upon successful completion, returns the number of bytes spliced to or from
the pipe. A return value of 0 means end of input. If *src* refers to a
pipe, then this means that there was no data to transfer, and it would not
make sense to block because there are no writers connected to the write end
of the pipe.
.. availability:: Linux kernel >= 2.6.17 and glibc >= 2.5
.. versionadded:: 3.10
.. data:: SPLICE_F_MOVE
SPLICE_F_NONBLOCK
SPLICE_F_MORE
.. versionadded:: 3.10
.. function:: readv(fd, buffers)
Read from a file descriptor *fd* into a number of mutable :term:`bytes-like
objects <bytes-like object>` *buffers*. Transfer data into each buffer until
it is full and then move on to the next buffer in the sequence to hold the
rest of the data.
Return the total number of bytes actually read which can be less than the
total capacity of all the objects.
The operating system may set a limit (:func:`sysconf` value
``'SC_IOV_MAX'``) on the number of buffers that can be used.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: tcgetpgrp(fd)
Return the process group associated with the terminal given by *fd* (an open
file descriptor as returned by :func:`os.open`).
.. availability:: Unix.
.. function:: tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by *fd* (an open file
descriptor as returned by :func:`os.open`) to *pg*.
.. availability:: Unix.
.. function:: ttyname(fd)
Return a string which specifies the terminal device associated with
file descriptor *fd*. If *fd* is not associated with a terminal device, an
exception is raised.
.. availability:: Unix.
.. function:: write(fd, str)
Write the bytestring in *str* to file descriptor *fd*.
Return the number of bytes actually written.
.. note::
This function is intended for low-level I/O and must be applied to a file
descriptor as returned by :func:`os.open` or :func:`pipe`. To write a "file
object" returned by the built-in function :func:`open` or by :func:`popen` or
:func:`fdopen`, or :data:`sys.stdout` or :data:`sys.stderr`, use its
:meth:`~file.write` method.
.. versionchanged:: 3.5
If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an
:exc:`InterruptedError` exception (see :pep:`475` for the rationale).
.. function:: writev(fd, buffers)
Write the contents of *buffers* to file descriptor *fd*. *buffers* must be
a sequence of :term:`bytes-like objects <bytes-like object>`. Buffers are
processed in array order. Entire contents of the first buffer is written
before proceeding to the second, and so on.
Returns the total number of bytes actually written.
The operating system may set a limit (:func:`sysconf` value
``'SC_IOV_MAX'``) on the number of buffers that can be used.
.. availability:: Unix.
.. versionadded:: 3.3
.. _terminal-size:
Querying the size of a terminal
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 3.3
.. function:: get_terminal_size(fd=STDOUT_FILENO)
Return the size of the terminal window as ``(columns, lines)``,
tuple of type :class:`terminal_size`.
The optional argument ``fd`` (default ``STDOUT_FILENO``, or standard
output) specifies which file descriptor should be queried.
If the file descriptor is not connected to a terminal, an :exc:`OSError`
is raised.
:func:`shutil.get_terminal_size` is the high-level function which
should normally be used, ``os.get_terminal_size`` is the low-level
implementation.
.. availability:: Unix, Windows.
.. class:: terminal_size
A subclass of tuple, holding ``(columns, lines)`` of the terminal window size.
.. attribute:: columns
Width of the terminal window in characters.
.. attribute:: lines
Height of the terminal window in characters.
.. _fd_inheritance:
Inheritance of File Descriptors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 3.4
A file descriptor has an "inheritable" flag which indicates if the file descriptor
can be inherited by child processes. Since Python 3.4, file descriptors
created by Python are non-inheritable by default.
On UNIX, non-inheritable file descriptors are closed in child processes at the
execution of a new program, other file descriptors are inherited.
On Windows, non-inheritable handles and file descriptors are closed in child
processes, except for standard streams (file descriptors 0, 1 and 2: stdin, stdout
and stderr), which are always inherited. Using :func:`spawn\* <spawnl>` functions,
all inheritable handles and all inheritable file descriptors are inherited.
Using the :mod:`subprocess` module, all file descriptors except standard
streams are closed, and inheritable handles are only inherited if the
*close_fds* parameter is ``False``.
.. function:: get_inheritable(fd)
Get the "inheritable" flag of the specified file descriptor (a boolean).
.. function:: set_inheritable(fd, inheritable)
Set the "inheritable" flag of the specified file descriptor.
.. function:: get_handle_inheritable(handle)
Get the "inheritable" flag of the specified handle (a boolean).
.. availability:: Windows.
.. function:: set_handle_inheritable(handle, inheritable)
Set the "inheritable" flag of the specified handle.
.. availability:: Windows.
.. _os-file-dir:
Files and Directories
---------------------
On some Unix platforms, many of these functions support one or more of these
features:
.. _path_fd:
* **specifying a file descriptor:**
Normally the *path* argument provided to functions in the :mod:`os` module
must be a string specifying a file path. However, some functions now
alternatively accept an open file descriptor for their *path* argument.
The function will then operate on the file referred to by the descriptor.
(For POSIX systems, Python will call the variant of the function prefixed
with ``f`` (e.g. call ``fchdir`` instead of ``chdir``).)
You can check whether or not *path* can be specified as a file descriptor
for a particular function on your platform using :data:`os.supports_fd`.
If this functionality is unavailable, using it will raise a
:exc:`NotImplementedError`.
If the function also supports *dir_fd* or *follow_symlinks* arguments, it's
an error to specify one of those when supplying *path* as a file descriptor.
.. _dir_fd:
* **paths relative to directory descriptors:** If *dir_fd* is not ``None``, it
should be a file descriptor referring to a directory, and the path to operate
on should be relative; path will then be relative to that directory. If the
path is absolute, *dir_fd* is ignored. (For POSIX systems, Python will call
the variant of the function with an ``at`` suffix and possibly prefixed with
``f`` (e.g. call ``faccessat`` instead of ``access``).
You can check whether or not *dir_fd* is supported for a particular function
on your platform using :data:`os.supports_dir_fd`. If it's unavailable,
using it will raise a :exc:`NotImplementedError`.
.. _follow_symlinks:
* **not following symlinks:** If *follow_symlinks* is
``False``, and the last element of the path to operate on is a symbolic link,
the function will operate on the symbolic link itself rather than the file
pointed to by the link. (For POSIX systems, Python will call the ``l...``
variant of the function.)
You can check whether or not *follow_symlinks* is supported for a particular
function on your platform using :data:`os.supports_follow_symlinks`.
If it's unavailable, using it will raise a :exc:`NotImplementedError`.
.. function:: access(path, mode, *, dir_fd=None, effective_ids=False, follow_symlinks=True)
Use the real uid/gid to test for access to *path*. Note that most operations
will use the effective uid/gid, therefore this routine can be used in a
suid/sgid environment to test if the invoking user has the specified access to
*path*. *mode* should be :const:`F_OK` to test the existence of *path*, or it
can be the inclusive OR of one or more of :const:`R_OK`, :const:`W_OK`, and
:const:`X_OK` to test permissions. Return :const:`True` if access is allowed,
:const:`False` if not. See the Unix man page :manpage:`access(2)` for more
information.
This function can support specifying :ref:`paths relative to directory
descriptors <dir_fd>` and :ref:`not following symlinks <follow_symlinks>`.
If *effective_ids* is ``True``, :func:`access` will perform its access
checks using the effective uid/gid instead of the real uid/gid.
*effective_ids* may not be supported on your platform; you can check whether
or not it is available using :data:`os.supports_effective_ids`. If it is
unavailable, using it will raise a :exc:`NotImplementedError`.
.. note::
Using :func:`access` to check if a user is authorized to e.g. open a file
before actually doing so using :func:`open` creates a security hole,
because the user might exploit the short time interval between checking
and opening the file to manipulate it. It's preferable to use :term:`EAFP`
techniques. For example::
if os.access("myfile", os.R_OK):
with open("myfile") as fp:
return fp.read()
return "some default data"
is better written as::
try:
fp = open("myfile")
except PermissionError:
return "some default data"
else:
with fp:
return fp.read()
.. note::
I/O operations may fail even when :func:`access` indicates that they would
succeed, particularly for operations on network filesystems which may have
permissions semantics beyond the usual POSIX permission-bit model.
.. versionchanged:: 3.3
Added the *dir_fd*, *effective_ids*, and *follow_symlinks* parameters.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. data:: F_OK
R_OK
W_OK
X_OK
Values to pass as the *mode* parameter of :func:`access` to test the
existence, readability, writability and executability of *path*,
respectively.
.. function:: chdir(path)
.. index:: single: directory; changing
Change the current working directory to *path*.
This function can support :ref:`specifying a file descriptor <path_fd>`. The
descriptor must refer to an opened directory, not an open file.
This function can raise :exc:`OSError` and subclasses such as
:exc:`FileNotFoundError`, :exc:`PermissionError`, and :exc:`NotADirectoryError`.
.. audit-event:: os.chdir path os.chdir
.. versionadded:: 3.3
Added support for specifying *path* as a file descriptor
on some platforms.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: chflags(path, flags, *, follow_symlinks=True)
Set the flags of *path* to the numeric *flags*. *flags* may take a combination
(bitwise OR) of the following values (as defined in the :mod:`stat` module):
* :data:`stat.UF_NODUMP`
* :data:`stat.UF_IMMUTABLE`
* :data:`stat.UF_APPEND`
* :data:`stat.UF_OPAQUE`
* :data:`stat.UF_NOUNLINK`
* :data:`stat.UF_COMPRESSED`
* :data:`stat.UF_HIDDEN`
* :data:`stat.SF_ARCHIVED`
* :data:`stat.SF_IMMUTABLE`
* :data:`stat.SF_APPEND`
* :data:`stat.SF_NOUNLINK`
* :data:`stat.SF_SNAPSHOT`
This function can support :ref:`not following symlinks <follow_symlinks>`.
.. audit-event:: os.chflags path,flags os.chflags
.. availability:: Unix.
.. versionadded:: 3.3
The *follow_symlinks* argument.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: chmod(path, mode, *, dir_fd=None, follow_symlinks=True)
Change the mode of *path* to the numeric *mode*. *mode* may take one of the
following values (as defined in the :mod:`stat` module) or bitwise ORed
combinations of them:
* :data:`stat.S_ISUID`
* :data:`stat.S_ISGID`
* :data:`stat.S_ENFMT`
* :data:`stat.S_ISVTX`
* :data:`stat.S_IREAD`
* :data:`stat.S_IWRITE`
* :data:`stat.S_IEXEC`
* :data:`stat.S_IRWXU`
* :data:`stat.S_IRUSR`
* :data:`stat.S_IWUSR`
* :data:`stat.S_IXUSR`
* :data:`stat.S_IRWXG`
* :data:`stat.S_IRGRP`
* :data:`stat.S_IWGRP`
* :data:`stat.S_IXGRP`
* :data:`stat.S_IRWXO`
* :data:`stat.S_IROTH`
* :data:`stat.S_IWOTH`
* :data:`stat.S_IXOTH`
This function can support :ref:`specifying a file descriptor <path_fd>`,
:ref:`paths relative to directory descriptors <dir_fd>` and :ref:`not
following symlinks <follow_symlinks>`.
.. note::
Although Windows supports :func:`chmod`, you can only set the file's
read-only flag with it (via the ``stat.S_IWRITE`` and ``stat.S_IREAD``
constants or a corresponding integer value). All other bits are ignored.
.. audit-event:: os.chmod path,mode,dir_fd os.chmod
.. versionadded:: 3.3
Added support for specifying *path* as an open file descriptor,
and the *dir_fd* and *follow_symlinks* arguments.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: chown(path, uid, gid, *, dir_fd=None, follow_symlinks=True)
Change the owner and group id of *path* to the numeric *uid* and *gid*. To
leave one of the ids unchanged, set it to -1.
This function can support :ref:`specifying a file descriptor <path_fd>`,
:ref:`paths relative to directory descriptors <dir_fd>` and :ref:`not
following symlinks <follow_symlinks>`.
See :func:`shutil.chown` for a higher-level function that accepts names in
addition to numeric ids.
.. audit-event:: os.chown path,uid,gid,dir_fd os.chown
.. availability:: Unix.
.. versionadded:: 3.3
Added support for specifying *path* as an open file descriptor,
and the *dir_fd* and *follow_symlinks* arguments.
.. versionchanged:: 3.6
Supports a :term:`path-like object`.
.. function:: chroot(path)
Change the root directory of the current process to *path*.
.. availability:: Unix.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: fchdir(fd)
Change the current working directory to the directory represented by the file
descriptor *fd*. The descriptor must refer to an opened directory, not an
open file. As of Python 3.3, this is equivalent to ``os.chdir(fd)``.
.. audit-event:: os.chdir path os.fchdir
.. availability:: Unix.
.. function:: getcwd()
Return a string representing the current working directory.
.. function:: getcwdb()
Return a bytestring representing the current working directory.
.. versionchanged:: 3.8
The function now uses the UTF-8 encoding on Windows, rather than the ANSI
code page: see :pep:`529` for the rationale. The function is no longer
deprecated on Windows.
.. function:: lchflags(path, flags)
Set the flags of *path* to the numeric *flags*, like :func:`chflags`, but do
not follow symbolic links. As of Python 3.3, this is equivalent to
``os.chflags(path, flags, follow_symlinks=False)``.
.. audit-event:: os.chflags path,flags os.lchflags
.. availability:: Unix.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: lchmod(path, mode)
Change the mode of *path* to the numeric *mode*. If path is a symlink, this
affects the symlink rather than the target. See the docs for :func:`chmod`
for possible values of *mode*. As of Python 3.3, this is equivalent to
``os.chmod(path, mode, follow_symlinks=False)``.
.. audit-event:: os.chmod path,mode,dir_fd os.lchmod
.. availability:: Unix.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: lchown(path, uid, gid)
Change the owner and group id of *path* to the numeric *uid* and *gid*. This
function will not follow symbolic links. As of Python 3.3, this is equivalent
to ``os.chown(path, uid, gid, follow_symlinks=False)``.
.. audit-event:: os.chown path,uid,gid,dir_fd os.lchown
.. availability:: Unix.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: link(src, dst, *, src_dir_fd=None, dst_dir_fd=None, follow_symlinks=True)
Create a hard link pointing to *src* named *dst*.
This function can support specifying *src_dir_fd* and/or *dst_dir_fd* to
supply :ref:`paths relative to directory descriptors <dir_fd>`, and :ref:`not
following symlinks <follow_symlinks>`.
.. audit-event:: os.link src,dst,src_dir_fd,dst_dir_fd os.link
.. availability:: Unix, Windows.
.. versionchanged:: 3.2
Added Windows support.
.. versionadded:: 3.3
Added the *src_dir_fd*, *dst_dir_fd*, and *follow_symlinks* arguments.
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *src* and *dst*.
.. function:: listdir(path='.')
Return a list containing the names of the entries in the directory given by
*path*. The list is in arbitrary order, and does not include the special
entries ``'.'`` and ``'..'`` even if they are present in the directory.
If a file is removed from or added to the directory during the call of
this function, whether a name for that file be included is unspecified.
*path* may be a :term:`path-like object`. If *path* is of type ``bytes``
(directly or indirectly through the :class:`PathLike` interface),
the filenames returned will also be of type ``bytes``;
in all other circumstances, they will be of type ``str``.
This function can also support :ref:`specifying a file descriptor
<path_fd>`; the file descriptor must refer to a directory.
.. audit-event:: os.listdir path os.listdir
.. note::
To encode ``str`` filenames to ``bytes``, use :func:`~os.fsencode`.
.. seealso::
The :func:`scandir` function returns directory entries along with
file attribute information, giving better performance for many
common use cases.
.. versionchanged:: 3.2
The *path* parameter became optional.
.. versionadded:: 3.3
Added support for specifying *path* as an open file descriptor.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: lstat(path, *, dir_fd=None)
Perform the equivalent of an :c:func:`lstat` system call on the given path.
Similar to :func:`~os.stat`, but does not follow symbolic links. Return a
:class:`stat_result` object.
On platforms that do not support symbolic links, this is an alias for
:func:`~os.stat`.
As of Python 3.3, this is equivalent to ``os.stat(path, dir_fd=dir_fd,
follow_symlinks=False)``.
This function can also support :ref:`paths relative to directory descriptors
<dir_fd>`.
.. seealso::
The :func:`.stat` function.
.. versionchanged:: 3.2
Added support for Windows 6.0 (Vista) symbolic links.
.. versionchanged:: 3.3
Added the *dir_fd* parameter.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. versionchanged:: 3.8
On Windows, now opens reparse points that represent another path
(name surrogates), including symbolic links and directory junctions.
Other kinds of reparse points are resolved by the operating system as
for :func:`~os.stat`.
.. function:: mkdir(path, mode=0o777, *, dir_fd=None)
Create a directory named *path* with numeric mode *mode*.
If the directory already exists, :exc:`FileExistsError` is raised.
.. _mkdir_modebits:
On some systems, *mode* is ignored. Where it is used, the current umask
value is first masked out. If bits other than the last 9 (i.e. the last 3
digits of the octal representation of the *mode*) are set, their meaning is
platform-dependent. On some platforms, they are ignored and you should call
:func:`chmod` explicitly to set them.
This function can also support :ref:`paths relative to directory descriptors
<dir_fd>`.
It is also possible to create temporary directories; see the
:mod:`tempfile` module's :func:`tempfile.mkdtemp` function.
.. audit-event:: os.mkdir path,mode,dir_fd os.mkdir
.. versionadded:: 3.3
The *dir_fd* argument.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: makedirs(name, mode=0o777, exist_ok=False)
.. index::
single: directory; creating
single: UNC paths; and os.makedirs()
Recursive directory creation function. Like :func:`mkdir`, but makes all
intermediate-level directories needed to contain the leaf directory.
The *mode* parameter is passed to :func:`mkdir` for creating the leaf
directory; see :ref:`the mkdir() description <mkdir_modebits>` for how it
is interpreted. To set the file permission bits of any newly-created parent
directories you can set the umask before invoking :func:`makedirs`. The
file permission bits of existing parent directories are not changed.
If *exist_ok* is ``False`` (the default), an :exc:`FileExistsError` is
raised if the target directory already exists.
.. note::
:func:`makedirs` will become confused if the path elements to create
include :data:`pardir` (eg. ".." on UNIX systems).
This function handles UNC paths correctly.
.. audit-event:: os.mkdir path,mode,dir_fd os.makedirs
.. versionadded:: 3.2
The *exist_ok* parameter.
.. versionchanged:: 3.4.1
Before Python 3.4.1, if *exist_ok* was ``True`` and the directory existed,
:func:`makedirs` would still raise an error if *mode* did not match the
mode of the existing directory. Since this behavior was impossible to
implement safely, it was removed in Python 3.4.1. See :issue:`21082`.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. versionchanged:: 3.7
The *mode* argument no longer affects the file permission bits of
newly-created intermediate-level directories.
.. function:: mkfifo(path, mode=0o666, *, dir_fd=None)
Create a FIFO (a named pipe) named *path* with numeric mode *mode*.
The current umask value is first masked out from the mode.
This function can also support :ref:`paths relative to directory descriptors
<dir_fd>`.
FIFOs are pipes that can be accessed like regular files. FIFOs exist until they
are deleted (for example with :func:`os.unlink`). Generally, FIFOs are used as
rendezvous between "client" and "server" type processes: the server opens the
FIFO for reading, and the client opens it for writing. Note that :func:`mkfifo`
doesn't open the FIFO --- it just creates the rendezvous point.
.. availability:: Unix.
.. versionadded:: 3.3
The *dir_fd* argument.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: mknod(path, mode=0o600, device=0, *, dir_fd=None)
Create a filesystem node (file, device special file or named pipe) named
*path*. *mode* specifies both the permissions to use and the type of node
to be created, being combined (bitwise OR) with one of ``stat.S_IFREG``,
``stat.S_IFCHR``, ``stat.S_IFBLK``, and ``stat.S_IFIFO`` (those constants are
available in :mod:`stat`). For ``stat.S_IFCHR`` and ``stat.S_IFBLK``,
*device* defines the newly created device special file (probably using
:func:`os.makedev`), otherwise it is ignored.
This function can also support :ref:`paths relative to directory descriptors
<dir_fd>`.
.. availability:: Unix.
.. versionadded:: 3.3
The *dir_fd* argument.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: major(device)
Extract the device major number from a raw device number (usually the
:attr:`st_dev` or :attr:`st_rdev` field from :c:type:`stat`).
.. function:: minor(device)
Extract the device minor number from a raw device number (usually the
:attr:`st_dev` or :attr:`st_rdev` field from :c:type:`stat`).
.. function:: makedev(major, minor)
Compose a raw device number from the major and minor device numbers.
.. function:: pathconf(path, name)
Return system configuration information relevant to a named file. *name*
specifies the configuration value to retrieve; it may be a string which is the
name of a defined system value; these names are specified in a number of
standards (POSIX.1, Unix 95, Unix 98, and others). Some platforms define
additional names as well. The names known to the host operating system are
given in the ``pathconf_names`` dictionary. For configuration variables not
included in that mapping, passing an integer for *name* is also accepted.
If *name* is a string and is not known, :exc:`ValueError` is raised. If a
specific value for *name* is not supported by the host system, even if it is
included in ``pathconf_names``, an :exc:`OSError` is raised with
:const:`errno.EINVAL` for the error number.
This function can support :ref:`specifying a file descriptor
<path_fd>`.
.. availability:: Unix.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. data:: pathconf_names
Dictionary mapping names accepted by :func:`pathconf` and :func:`fpathconf` to
the integer values defined for those names by the host operating system. This
can be used to determine the set of names known to the system.
.. availability:: Unix.
.. function:: readlink(path, *, dir_fd=None)
Return a string representing the path to which the symbolic link points. The
result may be either an absolute or relative pathname; if it is relative, it
may be converted to an absolute pathname using
``os.path.join(os.path.dirname(path), result)``.
If the *path* is a string object (directly or indirectly through a
:class:`PathLike` interface), the result will also be a string object,
and the call may raise a UnicodeDecodeError. If the *path* is a bytes
object (direct or indirectly), the result will be a bytes object.
This function can also support :ref:`paths relative to directory descriptors
<dir_fd>`.
When trying to resolve a path that may contain links, use
:func:`~os.path.realpath` to properly handle recursion and platform
differences.
.. availability:: Unix, Windows.
.. versionchanged:: 3.2
Added support for Windows 6.0 (Vista) symbolic links.
.. versionadded:: 3.3
The *dir_fd* argument.
.. versionchanged:: 3.6
Accepts a :term:`path-like object` on Unix.
.. versionchanged:: 3.8
Accepts a :term:`path-like object` and a bytes object on Windows.
.. versionchanged:: 3.8
Added support for directory junctions, and changed to return the
substitution path (which typically includes ``\\?\`` prefix) rather
than the optional "print name" field that was previously returned.
.. function:: remove(path, *, dir_fd=None)
Remove (delete) the file *path*. If *path* is a directory, an
:exc:`IsADirectoryError` is raised. Use :func:`rmdir` to remove directories.
If the file does not exist, a :exc:`FileNotFoundError` is raised.
This function can support :ref:`paths relative to directory descriptors
<dir_fd>`.
On Windows, attempting to remove a file that is in use causes an exception to
be raised; on Unix, the directory entry is removed but the storage allocated
to the file is not made available until the original file is no longer in use.
This function is semantically identical to :func:`unlink`.
.. audit-event:: os.remove path,dir_fd os.remove
.. versionadded:: 3.3
The *dir_fd* argument.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: removedirs(name)
.. index:: single: directory; deleting
Remove directories recursively. Works like :func:`rmdir` except that, if the
leaf directory is successfully removed, :func:`removedirs` tries to
successively remove every parent directory mentioned in *path* until an error
is raised (which is ignored, because it generally means that a parent directory
is not empty). For example, ``os.removedirs('foo/bar/baz')`` will first remove
the directory ``'foo/bar/baz'``, and then remove ``'foo/bar'`` and ``'foo'`` if
they are empty. Raises :exc:`OSError` if the leaf directory could not be
successfully removed.
.. audit-event:: os.remove path,dir_fd os.removedirs
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: rename(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory *src* to *dst*. If *dst* exists, the operation
will fail with an :exc:`OSError` subclass in a number of cases:
On Windows, if *dst* exists a :exc:`FileExistsError` is always raised.
On Unix, if *src* is a file and *dst* is a directory or vice-versa, an
:exc:`IsADirectoryError` or a :exc:`NotADirectoryError` will be raised
respectively. If both are directories and *dst* is empty, *dst* will be
silently replaced. If *dst* is a non-empty directory, an :exc:`OSError`
is raised. If both are files, *dst* it will be replaced silently if the user
has permission. The operation may fail on some Unix flavors if *src* and
*dst* are on different filesystems. If successful, the renaming will be an
atomic operation (this is a POSIX requirement).
This function can support specifying *src_dir_fd* and/or *dst_dir_fd* to
supply :ref:`paths relative to directory descriptors <dir_fd>`.
If you want cross-platform overwriting of the destination, use :func:`replace`.
.. audit-event:: os.rename src,dst,src_dir_fd,dst_dir_fd os.rename
.. versionadded:: 3.3
The *src_dir_fd* and *dst_dir_fd* arguments.
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *src* and *dst*.
.. function:: renames(old, new)
Recursive directory or file renaming function. Works like :func:`rename`, except
creation of any intermediate directories needed to make the new pathname good is
attempted first. After the rename, directories corresponding to rightmost path
segments of the old name will be pruned away using :func:`removedirs`.
.. note::
This function can fail with the new directory structure made if you lack
permissions needed to remove the leaf directory or file.
.. audit-event:: os.rename src,dst,src_dir_fd,dst_dir_fd os.renames
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *old* and *new*.
.. function:: replace(src, dst, *, src_dir_fd=None, dst_dir_fd=None)
Rename the file or directory *src* to *dst*. If *dst* is a directory,
:exc:`OSError` will be raised. If *dst* exists and is a file, it will
be replaced silently if the user has permission. The operation may fail
if *src* and *dst* are on different filesystems. If successful,
the renaming will be an atomic operation (this is a POSIX requirement).
This function can support specifying *src_dir_fd* and/or *dst_dir_fd* to
supply :ref:`paths relative to directory descriptors <dir_fd>`.
.. audit-event:: os.rename src,dst,src_dir_fd,dst_dir_fd os.replace
.. versionadded:: 3.3
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *src* and *dst*.
.. function:: rmdir(path, *, dir_fd=None)
Remove (delete) the directory *path*. If the directory does not exist or is
not empty, an :exc:`FileNotFoundError` or an :exc:`OSError` is raised
respectively. In order to remove whole directory trees,
:func:`shutil.rmtree` can be used.
This function can support :ref:`paths relative to directory descriptors
<dir_fd>`.
.. audit-event:: os.rmdir path,dir_fd os.rmdir
.. versionadded:: 3.3
The *dir_fd* parameter.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: scandir(path='.')
Return an iterator of :class:`os.DirEntry` objects corresponding to the
entries in the directory given by *path*. The entries are yielded in
arbitrary order, and the special entries ``'.'`` and ``'..'`` are not
included. If a file is removed from or added to the directory after
creating the iterator, whether an entry for that file be included is
unspecified.
Using :func:`scandir` instead of :func:`listdir` can significantly
increase the performance of code that also needs file type or file
attribute information, because :class:`os.DirEntry` objects expose this
information if the operating system provides it when scanning a directory.
All :class:`os.DirEntry` methods may perform a system call, but
:func:`~os.DirEntry.is_dir` and :func:`~os.DirEntry.is_file` usually only
require a system call for symbolic links; :func:`os.DirEntry.stat`
always requires a system call on Unix but only requires one for
symbolic links on Windows.
*path* may be a :term:`path-like object`. If *path* is of type ``bytes``
(directly or indirectly through the :class:`PathLike` interface),
the type of the :attr:`~os.DirEntry.name` and :attr:`~os.DirEntry.path`
attributes of each :class:`os.DirEntry` will be ``bytes``; in all other
circumstances, they will be of type ``str``.
This function can also support :ref:`specifying a file descriptor
<path_fd>`; the file descriptor must refer to a directory.
.. audit-event:: os.scandir path os.scandir
The :func:`scandir` iterator supports the :term:`context manager` protocol
and has the following method:
.. method:: scandir.close()
Close the iterator and free acquired resources.
This is called automatically when the iterator is exhausted or garbage
collected, or when an error happens during iterating. However it
is advisable to call it explicitly or use the :keyword:`with`
statement.
.. versionadded:: 3.6
The following example shows a simple use of :func:`scandir` to display all
the files (excluding directories) in the given *path* that don't start with
``'.'``. The ``entry.is_file()`` call will generally not make an additional
system call::
with os.scandir(path) as it:
for entry in it:
if not entry.name.startswith('.') and entry.is_file():
print(entry.name)
.. note::
On Unix-based systems, :func:`scandir` uses the system's
`opendir() <http://pubs.opengroup.org/onlinepubs/009695399/functions/opendir.html>`_
and
`readdir() <http://pubs.opengroup.org/onlinepubs/009695399/functions/readdir_r.html>`_
functions. On Windows, it uses the Win32
`FindFirstFileW <https://msdn.microsoft.com/en-us/library/windows/desktop/aa364418(v=vs.85).aspx>`_
and
`FindNextFileW <https://msdn.microsoft.com/en-us/library/windows/desktop/aa364428(v=vs.85).aspx>`_
functions.
.. versionadded:: 3.5
.. versionadded:: 3.6
Added support for the :term:`context manager` protocol and the
:func:`~scandir.close()` method. If a :func:`scandir` iterator is neither
exhausted nor explicitly closed a :exc:`ResourceWarning` will be emitted
in its destructor.
The function accepts a :term:`path-like object`.
.. versionchanged:: 3.7
Added support for :ref:`file descriptors <path_fd>` on Unix.
.. class:: DirEntry
Object yielded by :func:`scandir` to expose the file path and other file
attributes of a directory entry.
:func:`scandir` will provide as much of this information as possible without
making additional system calls. When a ``stat()`` or ``lstat()`` system call
is made, the ``os.DirEntry`` object will cache the result.
``os.DirEntry`` instances are not intended to be stored in long-lived data
structures; if you know the file metadata has changed or if a long time has
elapsed since calling :func:`scandir`, call ``os.stat(entry.path)`` to fetch
up-to-date information.
Because the ``os.DirEntry`` methods can make operating system calls, they may
also raise :exc:`OSError`. If you need very fine-grained
control over errors, you can catch :exc:`OSError` when calling one of the
``os.DirEntry`` methods and handle as appropriate.
To be directly usable as a :term:`path-like object`, ``os.DirEntry``
implements the :class:`PathLike` interface.
Attributes and methods on a ``os.DirEntry`` instance are as follows:
.. attribute:: name
The entry's base filename, relative to the :func:`scandir` *path*
argument.
The :attr:`name` attribute will be ``bytes`` if the :func:`scandir`
*path* argument is of type ``bytes`` and ``str`` otherwise. Use
:func:`~os.fsdecode` to decode byte filenames.
.. attribute:: path
The entry's full path name: equivalent to ``os.path.join(scandir_path,
entry.name)`` where *scandir_path* is the :func:`scandir` *path*
argument. The path is only absolute if the :func:`scandir` *path*
argument was absolute. If the :func:`scandir` *path*
argument was a :ref:`file descriptor <path_fd>`, the :attr:`path`
attribute is the same as the :attr:`name` attribute.
The :attr:`path` attribute will be ``bytes`` if the :func:`scandir`
*path* argument is of type ``bytes`` and ``str`` otherwise. Use
:func:`~os.fsdecode` to decode byte filenames.
.. method:: inode()
Return the inode number of the entry.
The result is cached on the ``os.DirEntry`` object. Use
``os.stat(entry.path, follow_symlinks=False).st_ino`` to fetch up-to-date
information.
On the first, uncached call, a system call is required on Windows but
not on Unix.
.. method:: is_dir(*, follow_symlinks=True)
Return ``True`` if this entry is a directory or a symbolic link pointing
to a directory; return ``False`` if the entry is or points to any other
kind of file, or if it doesn't exist anymore.
If *follow_symlinks* is ``False``, return ``True`` only if this entry
is a directory (without following symlinks); return ``False`` if the
entry is any other kind of file or if it doesn't exist anymore.
The result is cached on the ``os.DirEntry`` object, with a separate cache
for *follow_symlinks* ``True`` and ``False``. Call :func:`os.stat` along
with :func:`stat.S_ISDIR` to fetch up-to-date information.
On the first, uncached call, no system call is required in most cases.
Specifically, for non-symlinks, neither Windows or Unix require a system
call, except on certain Unix file systems, such as network file systems,
that return ``dirent.d_type == DT_UNKNOWN``. If the entry is a symlink,
a system call will be required to follow the symlink unless
*follow_symlinks* is ``False``.
This method can raise :exc:`OSError`, such as :exc:`PermissionError`,
but :exc:`FileNotFoundError` is caught and not raised.
.. method:: is_file(*, follow_symlinks=True)
Return ``True`` if this entry is a file or a symbolic link pointing to a
file; return ``False`` if the entry is or points to a directory or other
non-file entry, or if it doesn't exist anymore.
If *follow_symlinks* is ``False``, return ``True`` only if this entry
is a file (without following symlinks); return ``False`` if the entry is
a directory or other non-file entry, or if it doesn't exist anymore.
The result is cached on the ``os.DirEntry`` object. Caching, system calls
made, and exceptions raised are as per :func:`~os.DirEntry.is_dir`.
.. method:: is_symlink()
Return ``True`` if this entry is a symbolic link (even if broken);
return ``False`` if the entry points to a directory or any kind of file,
or if it doesn't exist anymore.
The result is cached on the ``os.DirEntry`` object. Call
:func:`os.path.islink` to fetch up-to-date information.
On the first, uncached call, no system call is required in most cases.
Specifically, neither Windows or Unix require a system call, except on
certain Unix file systems, such as network file systems, that return
``dirent.d_type == DT_UNKNOWN``.
This method can raise :exc:`OSError`, such as :exc:`PermissionError`,
but :exc:`FileNotFoundError` is caught and not raised.
.. method:: stat(*, follow_symlinks=True)
Return a :class:`stat_result` object for this entry. This method
follows symbolic links by default; to stat a symbolic link add the
``follow_symlinks=False`` argument.
On Unix, this method always requires a system call. On Windows, it
only requires a system call if *follow_symlinks* is ``True`` and the
entry is a reparse point (for example, a symbolic link or directory
junction).
On Windows, the ``st_ino``, ``st_dev`` and ``st_nlink`` attributes of the
:class:`stat_result` are always set to zero. Call :func:`os.stat` to
get these attributes.
The result is cached on the ``os.DirEntry`` object, with a separate cache
for *follow_symlinks* ``True`` and ``False``. Call :func:`os.stat` to
fetch up-to-date information.
Note that there is a nice correspondence between several attributes
and methods of ``os.DirEntry`` and of :class:`pathlib.Path`. In
particular, the ``name`` attribute has the same
meaning, as do the ``is_dir()``, ``is_file()``, ``is_symlink()``
and ``stat()`` methods.
.. versionadded:: 3.5
.. versionchanged:: 3.6
Added support for the :class:`~os.PathLike` interface. Added support
for :class:`bytes` paths on Windows.
.. function:: stat(path, *, dir_fd=None, follow_symlinks=True)
Get the status of a file or a file descriptor. Perform the equivalent of a
:c:func:`stat` system call on the given path. *path* may be specified as
either a string or bytes -- directly or indirectly through the :class:`PathLike`
interface -- or as an open file descriptor. Return a :class:`stat_result`
object.
This function normally follows symlinks; to stat a symlink add the argument
``follow_symlinks=False``, or use :func:`lstat`.
This function can support :ref:`specifying a file descriptor <path_fd>` and
:ref:`not following symlinks <follow_symlinks>`.
On Windows, passing ``follow_symlinks=False`` will disable following all
name-surrogate reparse points, which includes symlinks and directory
junctions. Other types of reparse points that do not resemble links or that
the operating system is unable to follow will be opened directly. When
following a chain of multiple links, this may result in the original link
being returned instead of the non-link that prevented full traversal. To
obtain stat results for the final path in this case, use the
:func:`os.path.realpath` function to resolve the path name as far as
possible and call :func:`lstat` on the result. This does not apply to
dangling symlinks or junction points, which will raise the usual exceptions.
.. index:: module: stat
Example::
>>> import os
>>> statinfo = os.stat('somefile.txt')
>>> statinfo
os.stat_result(st_mode=33188, st_ino=7876932, st_dev=234881026,
st_nlink=1, st_uid=501, st_gid=501, st_size=264, st_atime=1297230295,
st_mtime=1297230027, st_ctime=1297230027)
>>> statinfo.st_size
264
.. seealso::
:func:`fstat` and :func:`lstat` functions.
.. versionadded:: 3.3
Added the *dir_fd* and *follow_symlinks* arguments, specifying a file
descriptor instead of a path.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. versionchanged:: 3.8
On Windows, all reparse points that can be resolved by the operating
system are now followed, and passing ``follow_symlinks=False``
disables following all name surrogate reparse points. If the operating
system reaches a reparse point that it is not able to follow, *stat* now
returns the information for the original path as if
``follow_symlinks=False`` had been specified instead of raising an error.
.. class:: stat_result
Object whose attributes correspond roughly to the members of the
:c:type:`stat` structure. It is used for the result of :func:`os.stat`,
:func:`os.fstat` and :func:`os.lstat`.
Attributes:
.. attribute:: st_mode
File mode: file type and file mode bits (permissions).
.. attribute:: st_ino
Platform dependent, but if non-zero, uniquely identifies the
file for a given value of ``st_dev``. Typically:
* the inode number on Unix,
* the `file index
<https://msdn.microsoft.com/en-us/library/aa363788>`_ on
Windows
.. attribute:: st_dev
Identifier of the device on which this file resides.
.. attribute:: st_nlink
Number of hard links.
.. attribute:: st_uid
User identifier of the file owner.
.. attribute:: st_gid
Group identifier of the file owner.
.. attribute:: st_size
Size of the file in bytes, if it is a regular file or a symbolic link.
The size of a symbolic link is the length of the pathname it contains,
without a terminating null byte.
Timestamps:
.. attribute:: st_atime
Time of most recent access expressed in seconds.
.. attribute:: st_mtime
Time of most recent content modification expressed in seconds.
.. attribute:: st_ctime
Platform dependent:
* the time of most recent metadata change on Unix,
* the time of creation on Windows, expressed in seconds.
.. attribute:: st_atime_ns
Time of most recent access expressed in nanoseconds as an integer.
.. attribute:: st_mtime_ns
Time of most recent content modification expressed in nanoseconds as an
integer.
.. attribute:: st_ctime_ns
Platform dependent:
* the time of most recent metadata change on Unix,
* the time of creation on Windows, expressed in nanoseconds as an
integer.
.. note::
The exact meaning and resolution of the :attr:`st_atime`,
:attr:`st_mtime`, and :attr:`st_ctime` attributes depend on the operating
system and the file system. For example, on Windows systems using the FAT
or FAT32 file systems, :attr:`st_mtime` has 2-second resolution, and
:attr:`st_atime` has only 1-day resolution. See your operating system
documentation for details.
Similarly, although :attr:`st_atime_ns`, :attr:`st_mtime_ns`,
and :attr:`st_ctime_ns` are always expressed in nanoseconds, many
systems do not provide nanosecond precision. On systems that do
provide nanosecond precision, the floating-point object used to
store :attr:`st_atime`, :attr:`st_mtime`, and :attr:`st_ctime`
cannot preserve all of it, and as such will be slightly inexact.
If you need the exact timestamps you should always use
:attr:`st_atime_ns`, :attr:`st_mtime_ns`, and :attr:`st_ctime_ns`.
On some Unix systems (such as Linux), the following attributes may also be
available:
.. attribute:: st_blocks
Number of 512-byte blocks allocated for file.
This may be smaller than :attr:`st_size`/512 when the file has holes.
.. attribute:: st_blksize
"Preferred" blocksize for efficient file system I/O. Writing to a file in
smaller chunks may cause an inefficient read-modify-rewrite.
.. attribute:: st_rdev
Type of device if an inode device.
.. attribute:: st_flags
User defined flags for file.
On other Unix systems (such as FreeBSD), the following attributes may be
available (but may be only filled out if root tries to use them):
.. attribute:: st_gen
File generation number.
.. attribute:: st_birthtime
Time of file creation.
On Solaris and derivatives, the following attributes may also be
available:
.. attribute:: st_fstype
String that uniquely identifies the type of the filesystem that
contains the file.
On Mac OS systems, the following attributes may also be available:
.. attribute:: st_rsize
Real size of the file.
.. attribute:: st_creator
Creator of the file.
.. attribute:: st_type
File type.
On Windows systems, the following attributes are also available:
.. attribute:: st_file_attributes
Windows file attributes: ``dwFileAttributes`` member of the
``BY_HANDLE_FILE_INFORMATION`` structure returned by
:c:func:`GetFileInformationByHandle`. See the ``FILE_ATTRIBUTE_*``
constants in the :mod:`stat` module.
.. attribute:: st_reparse_tag
When :attr:`st_file_attributes` has the ``FILE_ATTRIBUTE_REPARSE_POINT``
set, this field contains the tag identifying the type of reparse point.
See the ``IO_REPARSE_TAG_*`` constants in the :mod:`stat` module.
The standard module :mod:`stat` defines functions and constants that are
useful for extracting information from a :c:type:`stat` structure. (On
Windows, some items are filled with dummy values.)
For backward compatibility, a :class:`stat_result` instance is also
accessible as a tuple of at least 10 integers giving the most important (and
portable) members of the :c:type:`stat` structure, in the order
:attr:`st_mode`, :attr:`st_ino`, :attr:`st_dev`, :attr:`st_nlink`,
:attr:`st_uid`, :attr:`st_gid`, :attr:`st_size`, :attr:`st_atime`,
:attr:`st_mtime`, :attr:`st_ctime`. More items may be added at the end by
some implementations. For compatibility with older Python versions,
accessing :class:`stat_result` as a tuple always returns integers.
.. versionadded:: 3.3
Added the :attr:`st_atime_ns`, :attr:`st_mtime_ns`, and
:attr:`st_ctime_ns` members.
.. versionadded:: 3.5
Added the :attr:`st_file_attributes` member on Windows.
.. versionchanged:: 3.5
Windows now returns the file index as :attr:`st_ino` when
available.
.. versionadded:: 3.7
Added the :attr:`st_fstype` member to Solaris/derivatives.
.. versionadded:: 3.8
Added the :attr:`st_reparse_tag` member on Windows.
.. versionchanged:: 3.8
On Windows, the :attr:`st_mode` member now identifies special
files as :const:`S_IFCHR`, :const:`S_IFIFO` or :const:`S_IFBLK`
as appropriate.
.. function:: statvfs(path)
Perform a :c:func:`statvfs` system call on the given path. The return value is
an object whose attributes describe the filesystem on the given path, and
correspond to the members of the :c:type:`statvfs` structure, namely:
:attr:`f_bsize`, :attr:`f_frsize`, :attr:`f_blocks`, :attr:`f_bfree`,
:attr:`f_bavail`, :attr:`f_files`, :attr:`f_ffree`, :attr:`f_favail`,
:attr:`f_flag`, :attr:`f_namemax`, :attr:`f_fsid`.
Two module-level constants are defined for the :attr:`f_flag` attribute's
bit-flags: if :const:`ST_RDONLY` is set, the filesystem is mounted
read-only, and if :const:`ST_NOSUID` is set, the semantics of
setuid/setgid bits are disabled or not supported.
Additional module-level constants are defined for GNU/glibc based systems.
These are :const:`ST_NODEV` (disallow access to device special files),
:const:`ST_NOEXEC` (disallow program execution), :const:`ST_SYNCHRONOUS`
(writes are synced at once), :const:`ST_MANDLOCK` (allow mandatory locks on an FS),
:const:`ST_WRITE` (write on file/directory/symlink), :const:`ST_APPEND`
(append-only file), :const:`ST_IMMUTABLE` (immutable file), :const:`ST_NOATIME`
(do not update access times), :const:`ST_NODIRATIME` (do not update directory access
times), :const:`ST_RELATIME` (update atime relative to mtime/ctime).
This function can support :ref:`specifying a file descriptor <path_fd>`.
.. availability:: Unix.
.. versionchanged:: 3.2
The :const:`ST_RDONLY` and :const:`ST_NOSUID` constants were added.
.. versionadded:: 3.3
Added support for specifying *path* as an open file descriptor.
.. versionchanged:: 3.4
The :const:`ST_NODEV`, :const:`ST_NOEXEC`, :const:`ST_SYNCHRONOUS`,
:const:`ST_MANDLOCK`, :const:`ST_WRITE`, :const:`ST_APPEND`,
:const:`ST_IMMUTABLE`, :const:`ST_NOATIME`, :const:`ST_NODIRATIME`,
and :const:`ST_RELATIME` constants were added.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. versionadded:: 3.7
Added :attr:`f_fsid`.
.. data:: supports_dir_fd
A :class:`set` object indicating which functions in the :mod:`os`
module accept an open file descriptor for their *dir_fd* parameter.
Different platforms provide different features, and the underlying
functionality Python uses to implement the *dir_fd* parameter is not
available on all platforms Python supports. For consistency's sake,
functions that may support *dir_fd* always allow specifying the
parameter, but will throw an exception if the functionality is used
when it's not locally available. (Specifying ``None`` for *dir_fd*
is always supported on all platforms.)
To check whether a particular function accepts an open file descriptor
for its *dir_fd* parameter, use the ``in`` operator on ``supports_dir_fd``.
As an example, this expression evaluates to ``True`` if :func:`os.stat`
accepts open file descriptors for *dir_fd* on the local platform::
os.stat in os.supports_dir_fd
Currently *dir_fd* parameters only work on Unix platforms;
none of them work on Windows.
.. versionadded:: 3.3
.. data:: supports_effective_ids
A :class:`set` object indicating whether :func:`os.access` permits
specifying ``True`` for its *effective_ids* parameter on the local platform.
(Specifying ``False`` for *effective_ids* is always supported on all
platforms.) If the local platform supports it, the collection will contain
:func:`os.access`; otherwise it will be empty.
This expression evaluates to ``True`` if :func:`os.access` supports
``effective_ids=True`` on the local platform::
os.access in os.supports_effective_ids
Currently *effective_ids* is only supported on Unix platforms;
it does not work on Windows.
.. versionadded:: 3.3
.. data:: supports_fd
A :class:`set` object indicating which functions in the
:mod:`os` module permit specifying their *path* parameter as an open file
descriptor on the local platform. Different platforms provide different
features, and the underlying functionality Python uses to accept open file
descriptors as *path* arguments is not available on all platforms Python
supports.
To determine whether a particular function permits specifying an open file
descriptor for its *path* parameter, use the ``in`` operator on
``supports_fd``. As an example, this expression evaluates to ``True`` if
:func:`os.chdir` accepts open file descriptors for *path* on your local
platform::
os.chdir in os.supports_fd
.. versionadded:: 3.3
.. data:: supports_follow_symlinks
A :class:`set` object indicating which functions in the :mod:`os` module
accept ``False`` for their *follow_symlinks* parameter on the local platform.
Different platforms provide different features, and the underlying
functionality Python uses to implement *follow_symlinks* is not available
on all platforms Python supports. For consistency's sake, functions that
may support *follow_symlinks* always allow specifying the parameter, but
will throw an exception if the functionality is used when it's not locally
available. (Specifying ``True`` for *follow_symlinks* is always supported
on all platforms.)
To check whether a particular function accepts ``False`` for its
*follow_symlinks* parameter, use the ``in`` operator on
``supports_follow_symlinks``. As an example, this expression evaluates
to ``True`` if you may specify ``follow_symlinks=False`` when calling
:func:`os.stat` on the local platform::
os.stat in os.supports_follow_symlinks
.. versionadded:: 3.3
.. function:: symlink(src, dst, target_is_directory=False, *, dir_fd=None)
Create a symbolic link pointing to *src* named *dst*.
On Windows, a symlink represents either a file or a directory, and does not
morph to the target dynamically. If the target is present, the type of the
symlink will be created to match. Otherwise, the symlink will be created
as a directory if *target_is_directory* is ``True`` or a file symlink (the
default) otherwise. On non-Windows platforms, *target_is_directory* is ignored.
This function can support :ref:`paths relative to directory descriptors
<dir_fd>`.
.. note::
On newer versions of Windows 10, unprivileged accounts can create symlinks
if Developer Mode is enabled. When Developer Mode is not available/enabled,
the *SeCreateSymbolicLinkPrivilege* privilege is required, or the process
must be run as an administrator.
:exc:`OSError` is raised when the function is called by an unprivileged
user.
.. audit-event:: os.symlink src,dst,dir_fd os.symlink
.. availability:: Unix, Windows.
.. versionchanged:: 3.2
Added support for Windows 6.0 (Vista) symbolic links.
.. versionadded:: 3.3
Added the *dir_fd* argument, and now allow *target_is_directory*
on non-Windows platforms.
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *src* and *dst*.
.. versionchanged:: 3.8
Added support for unelevated symlinks on Windows with Developer Mode.
.. function:: sync()
Force write of everything to disk.
.. availability:: Unix.
.. versionadded:: 3.3
.. function:: truncate(path, length)
Truncate the file corresponding to *path*, so that it is at most
*length* bytes in size.
This function can support :ref:`specifying a file descriptor <path_fd>`.
.. audit-event:: os.truncate path,length os.truncate
.. availability:: Unix, Windows.
.. versionadded:: 3.3
.. versionchanged:: 3.5
Added support for Windows
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: unlink(path, *, dir_fd=None)
Remove (delete) the file *path*. This function is semantically
identical to :func:`remove`; the ``unlink`` name is its
traditional Unix name. Please see the documentation for
:func:`remove` for further information.
.. audit-event:: os.remove path,dir_fd os.unlink
.. versionadded:: 3.3
The *dir_fd* parameter.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: utime(path, times=None, *[, ns], dir_fd=None, follow_symlinks=True)
Set the access and modified times of the file specified by *path*.
:func:`utime` takes two optional parameters, *times* and *ns*.
These specify the times set on *path* and are used as follows:
- If *ns* is specified,
it must be a 2-tuple of the form ``(atime_ns, mtime_ns)``
where each member is an int expressing nanoseconds.
- If *times* is not ``None``,
it must be a 2-tuple of the form ``(atime, mtime)``
where each member is an int or float expressing seconds.
- If *times* is ``None`` and *ns* is unspecified,
this is equivalent to specifying ``ns=(atime_ns, mtime_ns)``
where both times are the current time.
It is an error to specify tuples for both *times* and *ns*.
Note that the exact times you set here may not be returned by a subsequent
:func:`~os.stat` call, depending on the resolution with which your operating
system records access and modification times; see :func:`~os.stat`. The best
way to preserve exact times is to use the *st_atime_ns* and *st_mtime_ns*
fields from the :func:`os.stat` result object with the *ns* parameter to
`utime`.
This function can support :ref:`specifying a file descriptor <path_fd>`,
:ref:`paths relative to directory descriptors <dir_fd>` and :ref:`not
following symlinks <follow_symlinks>`.
.. audit-event:: os.utime path,times,ns,dir_fd os.utime
.. versionadded:: 3.3
Added support for specifying *path* as an open file descriptor,
and the *dir_fd*, *follow_symlinks*, and *ns* parameters.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: walk(top, topdown=True, onerror=None, followlinks=False)
.. index::
single: directory; walking
single: directory; traversal
Generate the file names in a directory tree by walking the tree
either top-down or bottom-up. For each directory in the tree rooted at directory
*top* (including *top* itself), it yields a 3-tuple ``(dirpath, dirnames,
filenames)``.
*dirpath* is a string, the path to the directory. *dirnames* is a list of the
names of the subdirectories in *dirpath* (excluding ``'.'`` and ``'..'``).
*filenames* is a list of the names of the non-directory files in *dirpath*.
Note that the names in the lists contain no path components. To get a full path
(which begins with *top*) to a file or directory in *dirpath*, do
``os.path.join(dirpath, name)``. Whether or not the lists are sorted
depends on the file system. If a file is removed from or added to the
*dirpath* directory during generating the lists, whether a name for that
file be included is unspecified.
If optional argument *topdown* is ``True`` or not specified, the triple for a
directory is generated before the triples for any of its subdirectories
(directories are generated top-down). If *topdown* is ``False``, the triple
for a directory is generated after the triples for all of its subdirectories
(directories are generated bottom-up). No matter the value of *topdown*, the
list of subdirectories is retrieved before the tuples for the directory and
its subdirectories are generated.
When *topdown* is ``True``, the caller can modify the *dirnames* list in-place
(perhaps using :keyword:`del` or slice assignment), and :func:`walk` will only
recurse into the subdirectories whose names remain in *dirnames*; this can be
used to prune the search, impose a specific order of visiting, or even to inform
:func:`walk` about directories the caller creates or renames before it resumes
:func:`walk` again. Modifying *dirnames* when *topdown* is ``False`` has
no effect on the behavior of the walk, because in bottom-up mode the directories
in *dirnames* are generated before *dirpath* itself is generated.
By default, errors from the :func:`scandir` call are ignored. If optional
argument *onerror* is specified, it should be a function; it will be called with
one argument, an :exc:`OSError` instance. It can report the error to continue
with the walk, or raise the exception to abort the walk. Note that the filename
is available as the ``filename`` attribute of the exception object.
By default, :func:`walk` will not walk down into symbolic links that resolve to
directories. Set *followlinks* to ``True`` to visit directories pointed to by
symlinks, on systems that support them.
.. note::
Be aware that setting *followlinks* to ``True`` can lead to infinite
recursion if a link points to a parent directory of itself. :func:`walk`
does not keep track of the directories it visited already.
.. note::
If you pass a relative pathname, don't change the current working directory
between resumptions of :func:`walk`. :func:`walk` never changes the current
directory, and assumes that its caller doesn't either.
This example displays the number of bytes taken by non-directory files in each
directory under the starting directory, except that it doesn't look under any
CVS subdirectory::
import os
from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email'):
print(root, "consumes", end=" ")
print(sum(getsize(join(root, name)) for name in files), end=" ")
print("bytes in", len(files), "non-directory files")
if 'CVS' in dirs:
dirs.remove('CVS') # don't visit CVS directories
In the next example (simple implementation of :func:`shutil.rmtree`),
walking the tree bottom-up is essential, :func:`rmdir` doesn't allow
deleting a directory before the directory is empty::
# Delete everything reachable from the directory named in "top",
# assuming there are no symbolic links.
# CAUTION: This is dangerous! For example, if top == '/', it
# could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))
.. audit-event:: os.walk top,topdown,onerror,followlinks os.walk
.. versionchanged:: 3.5
This function now calls :func:`os.scandir` instead of :func:`os.listdir`,
making it faster by reducing the number of calls to :func:`os.stat`.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: fwalk(top='.', topdown=True, onerror=None, *, follow_symlinks=False, dir_fd=None)
.. index::
single: directory; walking
single: directory; traversal
This behaves exactly like :func:`walk`, except that it yields a 4-tuple
``(dirpath, dirnames, filenames, dirfd)``, and it supports ``dir_fd``.
*dirpath*, *dirnames* and *filenames* are identical to :func:`walk` output,
and *dirfd* is a file descriptor referring to the directory *dirpath*.
This function always supports :ref:`paths relative to directory descriptors
<dir_fd>` and :ref:`not following symlinks <follow_symlinks>`. Note however
that, unlike other functions, the :func:`fwalk` default value for
*follow_symlinks* is ``False``.
.. note::
Since :func:`fwalk` yields file descriptors, those are only valid until
the next iteration step, so you should duplicate them (e.g. with
:func:`dup`) if you want to keep them longer.
This example displays the number of bytes taken by non-directory files in each
directory under the starting directory, except that it doesn't look under any
CVS subdirectory::
import os
for root, dirs, files, rootfd in os.fwalk('python/Lib/email'):
print(root, "consumes", end="")
print(sum([os.stat(name, dir_fd=rootfd).st_size for name in files]),
end="")
print("bytes in", len(files), "non-directory files")
if 'CVS' in dirs:
dirs.remove('CVS') # don't visit CVS directories
In the next example, walking the tree bottom-up is essential:
:func:`rmdir` doesn't allow deleting a directory before the directory is
empty::
# Delete everything reachable from the directory named in "top",
# assuming there are no symbolic links.
# CAUTION: This is dangerous! For example, if top == '/', it
# could delete all your disk files.
import os
for root, dirs, files, rootfd in os.fwalk(top, topdown=False):
for name in files:
os.unlink(name, dir_fd=rootfd)
for name in dirs:
os.rmdir(name, dir_fd=rootfd)
.. audit-event:: os.fwalk top,topdown,onerror,follow_symlinks,dir_fd os.fwalk
.. availability:: Unix.
.. versionadded:: 3.3
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. versionchanged:: 3.7
Added support for :class:`bytes` paths.
.. function:: memfd_create(name[, flags=os.MFD_CLOEXEC])
Create an anonymous file and return a file descriptor that refers to it.
*flags* must be one of the ``os.MFD_*`` constants available on the system
(or a bitwise ORed combination of them). By default, the new file
descriptor is :ref:`non-inheritable <fd_inheritance>`.
The name supplied in *name* is used as a filename and will be displayed as
the target of the corresponding symbolic link in the directory
``/proc/self/fd/``. The displayed name is always prefixed with ``memfd:``
and serves only for debugging purposes. Names do not affect the behavior of
the file descriptor, and as such multiple files can have the same name
without any side effects.
.. availability:: Linux 3.17 or newer with glibc 2.27 or newer.
.. versionadded:: 3.8
.. data:: MFD_CLOEXEC
MFD_ALLOW_SEALING
MFD_HUGETLB
MFD_HUGE_SHIFT
MFD_HUGE_MASK
MFD_HUGE_64KB
MFD_HUGE_512KB
MFD_HUGE_1MB
MFD_HUGE_2MB
MFD_HUGE_8MB
MFD_HUGE_16MB
MFD_HUGE_32MB
MFD_HUGE_256MB
MFD_HUGE_512MB
MFD_HUGE_1GB
MFD_HUGE_2GB
MFD_HUGE_16GB
These flags can be passed to :func:`memfd_create`.
.. availability:: Linux 3.17 or newer with glibc 2.27 or newer. The
``MFD_HUGE*`` flags are only available since Linux 4.14.
.. versionadded:: 3.8
.. function:: eventfd(initval[, flags=os.EFD_CLOEXEC])
Create and return an event file descriptor. The file descriptors supports
raw :func:`read` and :func:`write` with a buffer size of 8,
:func:`~select.select`, :func:`~select.poll` and similar. See man page
:manpage:`eventfd(2)` for more information. By default, the
new file descriptor is :ref:`non-inheritable <fd_inheritance>`.
*initval* is the initial value of the event counter. The initial value
must be an 32 bit unsigned integer. Please note that the initial value is
limited to a 32 bit unsigned int although the event counter is an unsigned
64 bit integer with a maximum value of 2\ :sup:`64`\ -\ 2.
*flags* can be constructed from :const:`EFD_CLOEXEC`,
:const:`EFD_NONBLOCK`, and :const:`EFD_SEMAPHORE`.
If :const:`EFD_SEMAPHORE` is specified and the event counter is non-zero,
:func:`eventfd_read` returns 1 and decrements the counter by one.
If :const:`EFD_SEMAPHORE` is not specified and the event counter is
non-zero, :func:`eventfd_read` returns the current event counter value and
resets the counter to zero.
If the event counter is zero and :const:`EFD_NONBLOCK` is not
specified, :func:`eventfd_read` blocks.
:func:`eventfd_write` increments the event counter. Write blocks if the
write operation would increment the counter to a value larger than
2\ :sup:`64`\ -\ 2.
Example::
import os
# semaphore with start value '1'
fd = os.eventfd(1, os.EFD_SEMAPHORE | os.EFC_CLOEXEC)
try:
# acquire semaphore
v = os.eventfd_read(fd)
try:
do_work()
finally:
# release semaphore
os.eventfd_write(fd, v)
finally:
os.close(fd)
.. availability:: Linux 2.6.27 or newer with glibc 2.8 or newer.
.. versionadded:: 3.10
.. function:: eventfd_read(fd)
Read value from an :func:`eventfd` file descriptor and return a 64 bit
unsigned int. The function does not verify that *fd* is an :func:`eventfd`.
.. availability:: See :func:`eventfd`
.. versionadded:: 3.10
.. function:: eventfd_write(fd, value)
Add value to an :func:`eventfd` file descriptor. *value* must be a 64 bit
unsigned int. The function does not verify that *fd* is an :func:`eventfd`.
.. availability:: See :func:`eventfd`
.. versionadded:: 3.10
.. data:: EFD_CLOEXEC
Set close-on-exec flag for new :func:`eventfd` file descriptor.
.. availability:: See :func:`eventfd`
.. versionadded:: 3.10
.. data:: EFD_NONBLOCK
Set :const:`O_NONBLOCK` status flag for new :func:`eventfd` file
descriptor.
.. availability:: See :func:`eventfd`
.. versionadded:: 3.10
.. data:: EFD_SEMAPHORE
Provide semaphore-like semantics for reads from a :func:`eventfd` file
descriptor. On read the internal counter is decremented by one.
.. availability:: Linux 2.6.30 or newer with glibc 2.8 or newer.
.. versionadded:: 3.10
Linux extended attributes
~~~~~~~~~~~~~~~~~~~~~~~~~
.. versionadded:: 3.3
These functions are all available on Linux only.
.. function:: getxattr(path, attribute, *, follow_symlinks=True)
Return the value of the extended filesystem attribute *attribute* for
*path*. *attribute* can be bytes or str (directly or indirectly through the
:class:`PathLike` interface). If it is str, it is encoded with the filesystem
encoding.
This function can support :ref:`specifying a file descriptor <path_fd>` and
:ref:`not following symlinks <follow_symlinks>`.
.. audit-event:: os.getxattr path,attribute os.getxattr
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *path* and *attribute*.
.. function:: listxattr(path=None, *, follow_symlinks=True)
Return a list of the extended filesystem attributes on *path*. The
attributes in the list are represented as strings decoded with the filesystem
encoding. If *path* is ``None``, :func:`listxattr` will examine the current
directory.
This function can support :ref:`specifying a file descriptor <path_fd>` and
:ref:`not following symlinks <follow_symlinks>`.
.. audit-event:: os.listxattr path os.listxattr
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: removexattr(path, attribute, *, follow_symlinks=True)
Removes the extended filesystem attribute *attribute* from *path*.
*attribute* should be bytes or str (directly or indirectly through the
:class:`PathLike` interface). If it is a string, it is encoded
with the :term:`filesystem encoding and error handler`.
This function can support :ref:`specifying a file descriptor <path_fd>` and
:ref:`not following symlinks <follow_symlinks>`.
.. audit-event:: os.removexattr path,attribute os.removexattr
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *path* and *attribute*.
.. function:: setxattr(path, attribute, value, flags=0, *, follow_symlinks=True)
Set the extended filesystem attribute *attribute* on *path* to *value*.
*attribute* must be a bytes or str with no embedded NULs (directly or
indirectly through the :class:`PathLike` interface). If it is a str,
it is encoded with the :term:`filesystem encoding and error handler`. *flags* may be
:data:`XATTR_REPLACE` or :data:`XATTR_CREATE`. If :data:`XATTR_REPLACE` is
given and the attribute does not exist, ``ENODATA`` will be raised.
If :data:`XATTR_CREATE` is given and the attribute already exists, the
attribute will not be created and ``EEXISTS`` will be raised.
This function can support :ref:`specifying a file descriptor <path_fd>` and
:ref:`not following symlinks <follow_symlinks>`.
.. note::
A bug in Linux kernel versions less than 2.6.39 caused the flags argument
to be ignored on some filesystems.
.. audit-event:: os.setxattr path,attribute,value,flags os.setxattr
.. versionchanged:: 3.6
Accepts a :term:`path-like object` for *path* and *attribute*.
.. data:: XATTR_SIZE_MAX
The maximum size the value of an extended attribute can be. Currently, this
is 64 KiB on Linux.
.. data:: XATTR_CREATE
This is a possible value for the flags argument in :func:`setxattr`. It
indicates the operation must create an attribute.
.. data:: XATTR_REPLACE
This is a possible value for the flags argument in :func:`setxattr`. It
indicates the operation must replace an existing attribute.
.. _os-process:
Process Management
------------------
These functions may be used to create and manage processes.
The various :func:`exec\* <execl>` functions take a list of arguments for the new
program loaded into the process. In each case, the first of these arguments is
passed to the new program as its own name rather than as an argument a user may
have typed on a command line. For the C programmer, this is the ``argv[0]``
passed to a program's :c:func:`main`. For example, ``os.execv('/bin/echo',
['foo', 'bar'])`` will only print ``bar`` on standard output; ``foo`` will seem
to be ignored.
.. function:: abort()
Generate a :const:`SIGABRT` signal to the current process. On Unix, the default
behavior is to produce a core dump; on Windows, the process immediately returns
an exit code of ``3``. Be aware that calling this function will not call the
Python signal handler registered for :const:`SIGABRT` with
:func:`signal.signal`.
.. function:: add_dll_directory(path)
Add a path to the DLL search path.
This search path is used when resolving dependencies for imported
extension modules (the module itself is resolved through sys.path),
and also by :mod:`ctypes`.
Remove the directory by calling **close()** on the returned object
or using it in a :keyword:`with` statement.
See the `Microsoft documentation
<https://msdn.microsoft.com/44228cf2-6306-466c-8f16-f513cd3ba8b5>`_
for more information about how DLLs are loaded.
.. audit-event:: os.add_dll_directory path os.add_dll_directory
.. availability:: Windows.
.. versionadded:: 3.8
Previous versions of CPython would resolve DLLs using the default
behavior for the current process. This led to inconsistencies,
such as only sometimes searching :envvar:`PATH` or the current
working directory, and OS functions such as ``AddDllDirectory``
having no effect.
In 3.8, the two primary ways DLLs are loaded now explicitly
override the process-wide behavior to ensure consistency. See the
:ref:`porting notes <bpo-36085-whatsnew>` for information on
updating libraries.
.. function:: execl(path, arg0, arg1, ...)
execle(path, arg0, arg1, ..., env)
execlp(file, arg0, arg1, ...)
execlpe(file, arg0, arg1, ..., env)
execv(path, args)
execve(path, args, env)
execvp(file, args)
execvpe(file, args, env)
These functions all execute a new program, replacing the current process; they
do not return. On Unix, the new executable is loaded into the current process,
and will have the same process id as the caller. Errors will be reported as
:exc:`OSError` exceptions.
The current process is replaced immediately. Open file objects and
descriptors are not flushed, so if there may be data buffered
on these open files, you should flush them using
:func:`sys.stdout.flush` or :func:`os.fsync` before calling an
:func:`exec\* <execl>` function.
The "l" and "v" variants of the :func:`exec\* <execl>` functions differ in how
command-line arguments are passed. The "l" variants are perhaps the easiest
to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters to the :func:`execl\*`
functions. The "v" variants are good when the number of parameters is
variable, with the arguments being passed in a list or tuple as the *args*
parameter. In either case, the arguments to the child process should start with
the name of the command being run, but this is not enforced.
The variants which include a "p" near the end (:func:`execlp`,
:func:`execlpe`, :func:`execvp`, and :func:`execvpe`) will use the
:envvar:`PATH` environment variable to locate the program *file*. When the
environment is being replaced (using one of the :func:`exec\*e <execl>` variants,
discussed in the next paragraph), the new environment is used as the source of
the :envvar:`PATH` variable. The other variants, :func:`execl`, :func:`execle`,
:func:`execv`, and :func:`execve`, will not use the :envvar:`PATH` variable to
locate the executable; *path* must contain an appropriate absolute or relative
path.
For :func:`execle`, :func:`execlpe`, :func:`execve`, and :func:`execvpe` (note
that these all end in "e"), the *env* parameter must be a mapping which is
used to define the environment variables for the new process (these are used
instead of the current process' environment); the functions :func:`execl`,
:func:`execlp`, :func:`execv`, and :func:`execvp` all cause the new process to
inherit the environment of the current process.
For :func:`execve` on some platforms, *path* may also be specified as an open
file descriptor. This functionality may not be supported on your platform;
you can check whether or not it is available using :data:`os.supports_fd`.
If it is unavailable, using it will raise a :exc:`NotImplementedError`.
.. audit-event:: os.exec path,args,env os.execl
.. availability:: Unix, Windows.
.. versionadded:: 3.3
Added support for specifying *path* as an open file descriptor
for :func:`execve`.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. function:: _exit(n)
Exit the process with status *n*, without calling cleanup handlers, flushing
stdio buffers, etc.
.. note::
The standard way to exit is ``sys.exit(n)``. :func:`_exit` should
normally only be used in the child process after a :func:`fork`.
The following exit codes are defined and can be used with :func:`_exit`,
although they are not required. These are typically used for system programs
written in Python, such as a mail server's external command delivery program.
.. note::
Some of these may not be available on all Unix platforms, since there is some
variation. These constants are defined where they are defined by the underlying
platform.
.. data:: EX_OK
Exit code that means no error occurred.
.. availability:: Unix.
.. data:: EX_USAGE
Exit code that means the command was used incorrectly, such as when the wrong
number of arguments are given.
.. availability:: Unix.
.. data:: EX_DATAERR
Exit code that means the input data was incorrect.
.. availability:: Unix.
.. data:: EX_NOINPUT
Exit code that means an input file did not exist or was not readable.
.. availability:: Unix.
.. data:: EX_NOUSER
Exit code that means a specified user did not exist.
.. availability:: Unix.
.. data:: EX_NOHOST
Exit code that means a specified host did not exist.
.. availability:: Unix.
.. data:: EX_UNAVAILABLE
Exit code that means that a required service is unavailable.
.. availability:: Unix.
.. data:: EX_SOFTWARE
Exit code that means an internal software error was detected.
.. availability:: Unix.
.. data:: EX_OSERR
Exit code that means an operating system error was detected, such as the
inability to fork or create a pipe.
.. availability:: Unix.
.. data:: EX_OSFILE
Exit code that means some system file did not exist, could not be opened, or had
some other kind of error.
.. availability:: Unix.
.. data:: EX_CANTCREAT
Exit code that means a user specified output file could not be created.
.. availability:: Unix.
.. data:: EX_IOERR
Exit code that means that an error occurred while doing I/O on some file.
.. availability:: Unix.
.. data:: EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indicates something
that may not really be an error, such as a network connection that couldn't be
made during a retryable operation.
.. availability:: Unix.
.. data:: EX_PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not
understood.
.. availability:: Unix.
.. data:: EX_NOPERM
Exit code that means that there were insufficient permissions to perform the
operation (but not intended for file system problems).
.. availability:: Unix.
.. data:: EX_CONFIG
Exit code that means that some kind of configuration error occurred.
.. availability:: Unix.
.. data:: EX_NOTFOUND
Exit code that means something like "an entry was not found".
.. availability:: Unix.
.. function:: fork()
Fork a child process. Return ``0`` in the child and the child's process id in the
parent. If an error occurs :exc:`OSError` is raised.
Note that some platforms including FreeBSD <= 6.3 and Cygwin have
known issues when using ``fork()`` from a thread.
.. audit-event:: os.fork "" os.fork
.. versionchanged:: 3.8
Calling ``fork()`` in a subinterpreter is no longer supported
(:exc:`RuntimeError` is raised).
.. warning::
See :mod:`ssl` for applications that use the SSL module with fork().
.. availability:: Unix.
.. function:: forkpty()
Fork a child process, using a new pseudo-terminal as the child's controlling
terminal. Return a pair of ``(pid, fd)``, where *pid* is ``0`` in the child, the
new child's process id in the parent, and *fd* is the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, use the
:mod:`pty` module. If an error occurs :exc:`OSError` is raised.
.. audit-event:: os.forkpty "" os.forkpty
.. versionchanged:: 3.8
Calling ``forkpty()`` in a subinterpreter is no longer supported
(:exc:`RuntimeError` is raised).
.. availability:: some flavors of Unix.
.. function:: kill(pid, sig)
.. index::
single: process; killing
single: process; signalling
Send signal *sig* to the process *pid*. Constants for the specific signals
available on the host platform are defined in the :mod:`signal` module.
Windows: The :data:`signal.CTRL_C_EVENT` and
:data:`signal.CTRL_BREAK_EVENT` signals are special signals which can
only be sent to console processes which share a common console window,
e.g., some subprocesses. Any other value for *sig* will cause the process
to be unconditionally killed by the TerminateProcess API, and the exit code
will be set to *sig*. The Windows version of :func:`kill` additionally takes
process handles to be killed.
See also :func:`signal.pthread_kill`.
.. audit-event:: os.kill pid,sig os.kill
.. versionadded:: 3.2
Windows support.
.. function:: killpg(pgid, sig)
.. index::
single: process; killing
single: process; signalling
Send the signal *sig* to the process group *pgid*.
.. audit-event:: os.killpg pgid,sig os.killpg
.. availability:: Unix.
.. function:: nice(increment)
Add *increment* to the process's "niceness". Return the new niceness.
.. availability:: Unix.
.. function:: pidfd_open(pid, flags=0)
Return a file descriptor referring to the process *pid*. This descriptor can
be used to perform process management without races and signals. The *flags*
argument is provided for future extensions; no flag values are currently
defined.
See the :manpage:`pidfd_open(2)` man page for more details.
.. availability:: Linux 5.3+
.. versionadded:: 3.9
.. function:: plock(op)
Lock program segments into memory. The value of *op* (defined in
``<sys/lock.h>``) determines which segments are locked.
.. availability:: Unix.
.. function:: popen(cmd, mode='r', buffering=-1)
Open a pipe to or from command *cmd*.
The return value is an open file object
connected to the pipe, which can be read or written depending on whether *mode*
is ``'r'`` (default) or ``'w'``. The *buffering* argument has the same meaning as
the corresponding argument to the built-in :func:`open` function. The
returned file object reads or writes text strings rather than bytes.
The ``close`` method returns :const:`None` if the subprocess exited
successfully, or the subprocess's return code if there was an
error. On POSIX systems, if the return code is positive it
represents the return value of the process left-shifted by one
byte. If the return code is negative, the process was terminated
by the signal given by the negated value of the return code. (For
example, the return value might be ``- signal.SIGKILL`` if the
subprocess was killed.) On Windows systems, the return value
contains the signed integer return code from the child process.
On Unix, :func:`waitstatus_to_exitcode` can be used to convert the ``close``
method result (exit status) into an exit code if it is not ``None``. On
Windows, the ``close`` method result is directly the exit code
(or ``None``).
This is implemented using :class:`subprocess.Popen`; see that class's
documentation for more powerful ways to manage and communicate with
subprocesses.
.. function:: posix_spawn(path, argv, env, *, file_actions=None, \
setpgroup=None, resetids=False, setsid=False, setsigmask=(), \
setsigdef=(), scheduler=None)
Wraps the :c:func:`posix_spawn` C library API for use from Python.
Most users should use :func:`subprocess.run` instead of :func:`posix_spawn`.
The positional-only arguments *path*, *args*, and *env* are similar to
:func:`execve`.
The *path* parameter is the path to the executable file. The *path* should
contain a directory. Use :func:`posix_spawnp` to pass an executable file
without directory.
The *file_actions* argument may be a sequence of tuples describing actions
to take on specific file descriptors in the child process between the C
library implementation's :c:func:`fork` and :c:func:`exec` steps.
The first item in each tuple must be one of the three type indicator
listed below describing the remaining tuple elements:
.. data:: POSIX_SPAWN_OPEN
(``os.POSIX_SPAWN_OPEN``, *fd*, *path*, *flags*, *mode*)
Performs ``os.dup2(os.open(path, flags, mode), fd)``.
.. data:: POSIX_SPAWN_CLOSE
(``os.POSIX_SPAWN_CLOSE``, *fd*)
Performs ``os.close(fd)``.
.. data:: POSIX_SPAWN_DUP2
(``os.POSIX_SPAWN_DUP2``, *fd*, *new_fd*)
Performs ``os.dup2(fd, new_fd)``.
These tuples correspond to the C library
:c:func:`posix_spawn_file_actions_addopen`,
:c:func:`posix_spawn_file_actions_addclose`, and
:c:func:`posix_spawn_file_actions_adddup2` API calls used to prepare
for the :c:func:`posix_spawn` call itself.
The *setpgroup* argument will set the process group of the child to the value
specified. If the value specified is 0, the child's process group ID will be
made the same as its process ID. If the value of *setpgroup* is not set, the
child will inherit the parent's process group ID. This argument corresponds
to the C library :c:data:`POSIX_SPAWN_SETPGROUP` flag.
If the *resetids* argument is ``True`` it will reset the effective UID and
GID of the child to the real UID and GID of the parent process. If the
argument is ``False``, then the child retains the effective UID and GID of
the parent. In either case, if the set-user-ID and set-group-ID permission
bits are enabled on the executable file, their effect will override the
setting of the effective UID and GID. This argument corresponds to the C
library :c:data:`POSIX_SPAWN_RESETIDS` flag.
If the *setsid* argument is ``True``, it will create a new session ID
for `posix_spawn`. *setsid* requires :c:data:`POSIX_SPAWN_SETSID`
or :c:data:`POSIX_SPAWN_SETSID_NP` flag. Otherwise, :exc:`NotImplementedError`
is raised.
The *setsigmask* argument will set the signal mask to the signal set
specified. If the parameter is not used, then the child inherits the
parent's signal mask. This argument corresponds to the C library
:c:data:`POSIX_SPAWN_SETSIGMASK` flag.
The *sigdef* argument will reset the disposition of all signals in the set
specified. This argument corresponds to the C library
:c:data:`POSIX_SPAWN_SETSIGDEF` flag.
The *scheduler* argument must be a tuple containing the (optional) scheduler
policy and an instance of :class:`sched_param` with the scheduler parameters.
A value of ``None`` in the place of the scheduler policy indicates that is
not being provided. This argument is a combination of the C library
:c:data:`POSIX_SPAWN_SETSCHEDPARAM` and :c:data:`POSIX_SPAWN_SETSCHEDULER`
flags.
.. audit-event:: os.posix_spawn path,argv,env os.posix_spawn
.. versionadded:: 3.8
.. availability:: Unix.
.. function:: posix_spawnp(path, argv, env, *, file_actions=None, \
setpgroup=None, resetids=False, setsid=False, setsigmask=(), \
setsigdef=(), scheduler=None)
Wraps the :c:func:`posix_spawnp` C library API for use from Python.
Similar to :func:`posix_spawn` except that the system searches
for the *executable* file in the list of directories specified by the
:envvar:`PATH` environment variable (in the same way as for ``execvp(3)``).
.. audit-event:: os.posix_spawn path,argv,env os.posix_spawnp
.. versionadded:: 3.8
.. availability:: See :func:`posix_spawn` documentation.
.. function:: register_at_fork(*, before=None, after_in_parent=None, \
after_in_child=None)
Register callables to be executed when a new child process is forked
using :func:`os.fork` or similar process cloning APIs.
The parameters are optional and keyword-only.
Each specifies a different call point.
* *before* is a function called before forking a child process.
* *after_in_parent* is a function called from the parent process
after forking a child process.
* *after_in_child* is a function called from the child process.
These calls are only made if control is expected to return to the
Python interpreter. A typical :mod:`subprocess` launch will not
trigger them as the child is not going to re-enter the interpreter.
Functions registered for execution before forking are called in
reverse registration order. Functions registered for execution
after forking (either in the parent or in the child) are called
in registration order.
Note that :c:func:`fork` calls made by third-party C code may not
call those functions, unless it explicitly calls :c:func:`PyOS_BeforeFork`,
:c:func:`PyOS_AfterFork_Parent` and :c:func:`PyOS_AfterFork_Child`.
There is no way to unregister a function.
.. availability:: Unix.
.. versionadded:: 3.7
.. function:: spawnl(mode, path, ...)
spawnle(mode, path, ..., env)
spawnlp(mode, file, ...)
spawnlpe(mode, file, ..., env)
spawnv(mode, path, args)
spawnve(mode, path, args, env)
spawnvp(mode, file, args)
spawnvpe(mode, file, args, env)
Execute the program *path* in a new process.
(Note that the :mod:`subprocess` module provides more powerful facilities for
spawning new processes and retrieving their results; using that module is
preferable to using these functions. Check especially the
:ref:`subprocess-replacements` section.)
If *mode* is :const:`P_NOWAIT`, this function returns the process id of the new
process; if *mode* is :const:`P_WAIT`, returns the process's exit code if it
exits normally, or ``-signal``, where *signal* is the signal that killed the
process. On Windows, the process id will actually be the process handle, so can
be used with the :func:`waitpid` function.
Note on VxWorks, this function doesn't return ``-signal`` when the new process is
killed. Instead it raises OSError exception.
The "l" and "v" variants of the :func:`spawn\* <spawnl>` functions differ in how
command-line arguments are passed. The "l" variants are perhaps the easiest
to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters to the
:func:`spawnl\*` functions. The "v" variants are good when the number of
parameters is variable, with the arguments being passed in a list or tuple as
the *args* parameter. In either case, the arguments to the child process must
start with the name of the command being run.
The variants which include a second "p" near the end (:func:`spawnlp`,
:func:`spawnlpe`, :func:`spawnvp`, and :func:`spawnvpe`) will use the
:envvar:`PATH` environment variable to locate the program *file*. When the
environment is being replaced (using one of the :func:`spawn\*e <spawnl>` variants,
discussed in the next paragraph), the new environment is used as the source of
the :envvar:`PATH` variable. The other variants, :func:`spawnl`,
:func:`spawnle`, :func:`spawnv`, and :func:`spawnve`, will not use the
:envvar:`PATH` variable to locate the executable; *path* must contain an
appropriate absolute or relative path.
For :func:`spawnle`, :func:`spawnlpe`, :func:`spawnve`, and :func:`spawnvpe`
(note that these all end in "e"), the *env* parameter must be a mapping
which is used to define the environment variables for the new process (they are
used instead of the current process' environment); the functions
:func:`spawnl`, :func:`spawnlp`, :func:`spawnv`, and :func:`spawnvp` all cause
the new process to inherit the environment of the current process. Note that
keys and values in the *env* dictionary must be strings; invalid keys or
values will cause the function to fail, with a return value of ``127``.
As an example, the following calls to :func:`spawnlp` and :func:`spawnvpe` are
equivalent::
import os
os.spawnlp(os.P_WAIT, 'cp', 'cp', 'index.html', '/dev/null')
L = ['cp', 'index.html', '/dev/null']
os.spawnvpe(os.P_WAIT, 'cp', L, os.environ)
.. audit-event:: os.spawn mode,path,args,env os.spawnl
.. availability:: Unix, Windows. :func:`spawnlp`, :func:`spawnlpe`, :func:`spawnvp`
and :func:`spawnvpe` are not available on Windows. :func:`spawnle` and
:func:`spawnve` are not thread-safe on Windows; we advise you to use the
:mod:`subprocess` module instead.
.. versionchanged:: 3.6
Accepts a :term:`path-like object`.
.. data:: P_NOWAIT
P_NOWAITO
Possible values for the *mode* parameter to the :func:`spawn\* <spawnl>` family of
functions. If either of these values is given, the :func:`spawn\*` functions
will return as soon as the new process has been created, with the process id as
the return value.
.. availability:: Unix, Windows.
.. data:: P_WAIT
Possible value for the *mode* parameter to the :func:`spawn\* <spawnl>` family of
functions. If this is given as *mode*, the :func:`spawn\*` functions will not
return until the new process has run to completion and will return the exit code
of the process the run is successful, or ``-signal`` if a signal kills the
process.
.. availability:: Unix, Windows.
.. data:: P_DETACH
P_OVERLAY
Possible values for the *mode* parameter to the :func:`spawn\* <spawnl>` family of
functions. These are less portable than those listed above. :const:`P_DETACH`
is similar to :const:`P_NOWAIT`, but the new process is detached from the
console of the calling process. If :const:`P_OVERLAY` is used, the current
process will be replaced; the :func:`spawn\* <spawnl>` function will not return.
.. availability:: Windows.
.. function:: startfile(path, [operation], [arguments], [cwd], [show_cmd])
Start a file with its associated application.
When *operation* is not specified or ``'open'``, this acts like double-clicking
the file in Windows Explorer, or giving the file name as an argument to the
:program:`start` command from the interactive command shell: the file is opened
with whatever application (if any) its extension is associated.
When another *operation* is given, it must be a "command verb" that specifies
what should be done with the file. Common verbs documented by Microsoft are
``'print'`` and ``'edit'`` (to be used on files) as well as ``'explore'`` and
``'find'`` (to be used on directories).
When launching an application, specify *arguments* to be passed as a single
string. This argument may have no effect when using this function to launch a
document.
The default working directory is inherited, but may be overridden by the *cwd*
argument. This should be an absolute path. A relative *path* will be resolved
against this argument.
Use *show_cmd* to override the default window style. Whether this has any
effect will depend on the application being launched. Values are integers as
supported by the Win32 :c:func:`ShellExecute` function.
:func:`startfile` returns as soon as the associated application is launched.
There is no option to wait for the application to close, and no way to retrieve
the application's exit status. The *path* parameter is relative to the current
directory or *cwd*. If you want to use an absolute path, make sure the first
character is not a slash (``'/'``) Use :mod:`pathlib` or the
:func:`os.path.normpath` function to ensure that paths are properly encoded for
Win32.
To reduce interpreter startup overhead, the Win32 :c:func:`ShellExecute`
function is not resolved until this function is first called. If the function
cannot be resolved, :exc:`NotImplementedError` will be raised.
.. audit-event:: os.startfile path,operation os.startfile
.. audit-event:: os.startfile/2 path,operation,arguments,cwd,show_cmd os.startfile
.. availability:: Windows.
.. versionchanged:: 3.10
Added the *arguments*, *cwd* and *show_cmd* arguments, and the
``os.startfile/2`` audit event.
.. function:: system(command)
Execute the command (a string) in a subshell. This is implemented by calling
the Standard C function :c:func:`system`, and has the same limitations.
Changes to :data:`sys.stdin`, etc. are not reflected in the environment of
the executed command. If *command* generates any output, it will be sent to
the interpreter standard output stream. The C standard does not
specify the meaning of the return value of the C function, so the return
value of the Python function is system-dependent.
On Unix, the return value is the exit status of the process encoded in the
format specified for :func:`wait`.
On Windows, the return value is that returned by the system shell after
running *command*. The shell is given by the Windows environment variable
:envvar:`COMSPEC`: it is usually :program:`cmd.exe`, which returns the exit
status of the command run; on systems using a non-native shell, consult your
shell documentation.
The :mod:`subprocess` module provides more powerful facilities for spawning
new processes and retrieving their results; using that module is preferable
to using this function. See the :ref:`subprocess-replacements` section in
the :mod:`subprocess` documentation for some helpful recipes.
On Unix, :func:`waitstatus_to_exitcode` can be used to convert the result
(exit status) into an exit code. On Windows, the result is directly the exit
code.
.. audit-event:: os.system command os.system
.. availability:: Unix, Windows.
.. function:: times()
Returns the current global process times.
The return value is an object with five attributes:
* :attr:`user` - user time
* :attr:`system` - system time
* :attr:`children_user` - user time of all child processes
* :attr:`children_system` - system time of all child processes
* :attr:`elapsed` - elapsed real time since a fixed point in the past
For backwards compatibility, this object also behaves like a five-tuple
containing :attr:`user`, :attr:`system`, :attr:`children_user`,
:attr:`children_system`, and :attr:`elapsed` in that order.
See the Unix manual page
:manpage:`times(2)` and :manpage:`times(3)` manual page on Unix or `the GetProcessTimes MSDN
<https://docs.microsoft.com/windows/win32/api/processthreadsapi/nf-processthreadsapi-getprocesstimes>`_
on Windows. On Windows, only :attr:`user` and :attr:`system` are known; the other attributes are zero.
.. availability:: Unix, Windows.
.. versionchanged:: 3.3
Return type changed from a tuple to a tuple-like object
with named attributes.
.. function:: wait()
Wait for completion of a child process, and return a tuple containing its pid
and exit status indication: a 16-bit number, whose low byte is the signal number
that killed the process, and whose high byte is the exit status (if the signal
number is zero); the high bit of the low byte is set if a core file was
produced.
:func:`waitstatus_to_exitcode` can be used to convert the exit status into an
exit code.
.. availability:: Unix.
.. seealso::
:func:`waitpid` can be used to wait for the completion of a specific
child process and has more options.
.. function:: waitid(idtype, id, options)
Wait for the completion of one or more child processes.
*idtype* can be :data:`P_PID`, :data:`P_PGID`, :data:`P_ALL`, or
:data:`P_PIDFD` on Linux.
*id* specifies the pid to wait on.
*options* is constructed from the ORing of one or more of :data:`WEXITED`,
:data:`WSTOPPED` or :data:`WCONTINUED` and additionally may be ORed with
:data:`WNOHANG` or :data:`WNOWAIT`. The return value is an object
representing the data contained in the :c:type:`siginfo_t` structure, namely:
:attr:`si_pid`, :attr:`si_uid`, :attr:`si_signo`, :attr:`si_status`,
:attr:`si_code` or ``None`` if :data:`WNOHANG` is specified and there are no
children in a waitable state.
.. availability:: Unix.
.. versionadded:: 3.3
.. data:: P_PID
P_PGID
P_ALL
These are the possible values for *idtype* in :func:`waitid`. They affect
how *id* is interpreted.
.. availability:: Unix.
.. versionadded:: 3.3
.. data:: P_PIDFD
This is a Linux-specific *idtype* that indicates that *id* is a file
descriptor that refers to a process.
.. availability:: Linux 5.4+
.. versionadded:: 3.9
.. data:: WEXITED
WSTOPPED
WNOWAIT
Flags that can be used in *options* in :func:`waitid` that specify what
child signal to wait for.
.. availability:: Unix.
.. versionadded:: 3.3
.. data:: CLD_EXITED
CLD_KILLED
CLD_DUMPED
CLD_TRAPPED
CLD_STOPPED
CLD_CONTINUED
These are the possible values for :attr:`si_code` in the result returned by
:func:`waitid`.
.. availability:: Unix.
.. versionadded:: 3.3
.. versionchanged:: 3.9
Added :data:`CLD_KILLED` and :data:`CLD_STOPPED` values.
.. function:: waitpid(pid, options)
The details of this function differ on Unix and Windows.
On Unix: Wait for completion of a child process given by process id *pid*, and
return a tuple containing its process id and exit status indication (encoded as
for :func:`wait`). The semantics of the call are affected by the value of the
integer *options*, which should be ``0`` for normal operation.
If *pid* is greater than ``0``, :func:`waitpid` requests status information for
that specific process. If *pid* is ``0``, the request is for the status of any
child in the process group of the current process. If *pid* is ``-1``, the
request pertains to any child of the current process. If *pid* is less than
``-1``, status is requested for any process in the process group ``-pid`` (the
absolute value of *pid*).
An :exc:`OSError` is raised with the value of errno when the syscall
returns -1.
On Windows: Wait for completion of a process given by process handle *pid*, and
return a tuple containing *pid*, and its exit status shifted left by 8 bits
(shifting makes cross-platform use of the function easier). A *pid* less than or
equal to ``0`` has no special meaning on Windows, and raises an exception. The
value of integer *options* has no effect. *pid* can refer to any process whose
id is known, not necessarily a child process. The :func:`spawn\* <spawnl>`
functions called with :const:`P_NOWAIT` return suitable process handles.
:func:`waitstatus_to_exitcode` can be used to convert the exit status into an
exit code.
.. versionchanged:: 3.5
If the system call is interrupted and the signal handler does not raise an
exception, the function now retries the system call instead of raising an
:exc:`InterruptedError` exception (see :pep:`475` for the rationale).
.. function:: wait3(options)
Similar to :func:`waitpid`, except no process id argument is given and a
3-element tuple containing the child's process id, exit status indication,
and resource usage information is returned. Refer to
:mod:`resource`.\ :func:`~resource.getrusage` for details on resource usage
information. The option argument is the same as that provided to
:func:`waitpid` and :func:`wait4`.
:func:`waitstatus_to_exitcode` can be used to convert the exit status into an
exitcode.
.. availability:: Unix.
.. function:: wait4(pid, options)
Similar to :func:`waitpid`, except a 3-element tuple, containing the child's
process id, exit status indication, and resource usage information is returned.
Refer to :mod:`resource`.\ :func:`~resource.getrusage` for details on
resource usage information. The arguments to :func:`wait4` are the same
as those provided to :func:`waitpid`.
:func:`waitstatus_to_exitcode` can be used to convert the exit status into an
exitcode.
.. availability:: Unix.
.. function:: waitstatus_to_exitcode(status)
Convert a wait status to an exit code.
On Unix:
* If the process exited normally (if ``WIFEXITED(status)`` is true),
return the process exit status (return ``WEXITSTATUS(status)``):
result greater than or equal to 0.
* If the process was terminated by a signal (if ``WIFSIGNALED(status)`` is
true), return ``-signum`` where *signum* is the number of the signal that
caused the process to terminate (return ``-WTERMSIG(status)``):
result less than 0.
* Otherwise, raise a :exc:`ValueError`.
On Windows, return *status* shifted right by 8 bits.
On Unix, if the process is being traced or if :func:`waitpid` was called
with :data:`WUNTRACED` option, the caller must first check if
``WIFSTOPPED(status)`` is true. This function must not be called if
``WIFSTOPPED(status)`` is true.
.. seealso::
:func:`WIFEXITED`, :func:`WEXITSTATUS`, :func:`WIFSIGNALED`,
:func:`WTERMSIG`, :func:`WIFSTOPPED`, :func:`WSTOPSIG` functions.
.. versionadded:: 3.9
.. data:: WNOHANG
The option for :func:`waitpid` to return immediately if no child process status
is available immediately. The function returns ``(0, 0)`` in this case.
.. availability:: Unix.
.. data:: WCONTINUED
This option causes child processes to be reported if they have been continued
from a job control stop since their status was last reported.
.. availability:: some Unix systems.
.. data:: WUNTRACED
This option causes child processes to be reported if they have been stopped but
their current state has not been reported since they were stopped.
.. availability:: Unix.
The following functions take a process status code as returned by
:func:`system`, :func:`wait`, or :func:`waitpid` as a parameter. They may be
used to determine the disposition of a process.
.. function:: WCOREDUMP(status)
Return ``True`` if a core dump was generated for the process, otherwise
return ``False``.
This function should be employed only if :func:`WIFSIGNALED` is true.
.. availability:: Unix.
.. function:: WIFCONTINUED(status)
Return ``True`` if a stopped child has been resumed by delivery of
:data:`~signal.SIGCONT` (if the process has been continued from a job
control stop), otherwise return ``False``.
See :data:`WCONTINUED` option.
.. availability:: Unix.
.. function:: WIFSTOPPED(status)
Return ``True`` if the process was stopped by delivery of a signal,
otherwise return ``False``.
:func:`WIFSTOPPED` only returns ``True`` if the :func:`waitpid` call was
done using :data:`WUNTRACED` option or when the process is being traced (see
:manpage:`ptrace(2)`).
.. availability:: Unix.
.. function:: WIFSIGNALED(status)
Return ``True`` if the process was terminated by a signal, otherwise return
``False``.
.. availability:: Unix.
.. function:: WIFEXITED(status)
Return ``True`` if the process exited terminated normally, that is,
by calling ``exit()`` or ``_exit()``, or by returning from ``main()``;
otherwise return ``False``.
.. availability:: Unix.
.. function:: WEXITSTATUS(status)
Return the process exit status.
This function should be employed only if :func:`WIFEXITED` is true.
.. availability:: Unix.
.. function:: WSTOPSIG(status)
Return the signal which caused the process to stop.
This function should be employed only if :func:`WIFSTOPPED` is true.
.. availability:: Unix.
.. function:: WTERMSIG(status)
Return the number of the signal that caused the process to terminate.
This function should be employed only if :func:`WIFSIGNALED` is true.
.. availability:: Unix.
Interface to the scheduler
--------------------------
These functions control how a process is allocated CPU time by the operating
system. They are only available on some Unix platforms. For more detailed
information, consult your Unix manpages.
.. versionadded:: 3.3
The following scheduling policies are exposed if they are supported by the
operating system.
.. data:: SCHED_OTHER
The default scheduling policy.
.. data:: SCHED_BATCH
Scheduling policy for CPU-intensive processes that tries to preserve
interactivity on the rest of the computer.
.. data:: SCHED_IDLE
Scheduling policy for extremely low priority background tasks.
.. data:: SCHED_SPORADIC
Scheduling policy for sporadic server programs.
.. data:: SCHED_FIFO
A First In First Out scheduling policy.
.. data:: SCHED_RR
A round-robin scheduling policy.
.. data:: SCHED_RESET_ON_FORK
This flag can be OR'ed with any other scheduling policy. When a process with
this flag set forks, its child's scheduling policy and priority are reset to
the default.
.. class:: sched_param(sched_priority)
This class represents tunable scheduling parameters used in
:func:`sched_setparam`, :func:`sched_setscheduler`, and
:func:`sched_getparam`. It is immutable.
At the moment, there is only one possible parameter:
.. attribute:: sched_priority
The scheduling priority for a scheduling policy.
.. function:: sched_get_priority_min(policy)
Get the minimum priority value for *policy*. *policy* is one of the
scheduling policy constants above.
.. function:: sched_get_priority_max(policy)
Get the maximum priority value for *policy*. *policy* is one of the
scheduling policy constants above.
.. function:: sched_setscheduler(pid, policy, param)
Set the scheduling policy for the process with PID *pid*. A *pid* of 0 means
the calling process. *policy* is one of the scheduling policy constants
above. *param* is a :class:`sched_param` instance.
.. function:: sched_getscheduler(pid)
Return the scheduling policy for the process with PID *pid*. A *pid* of 0
means the calling process. The result is one of the scheduling policy
constants above.
.. function:: sched_setparam(pid, param)
Set the scheduling parameters for the process with PID *pid*. A *pid* of 0 means
the calling process. *param* is a :class:`sched_param` instance.
.. function:: sched_getparam(pid)
Return the scheduling parameters as a :class:`sched_param` instance for the
process with PID *pid*. A *pid* of 0 means the calling process.
.. function:: sched_rr_get_interval(pid)
Return the round-robin quantum in seconds for the process with PID *pid*. A
*pid* of 0 means the calling process.
.. function:: sched_yield()
Voluntarily relinquish the CPU.
.. function:: sched_setaffinity(pid, mask)
Restrict the process with PID *pid* (or the current process if zero) to a
set of CPUs. *mask* is an iterable of integers representing the set of
CPUs to which the process should be restricted.
.. function:: sched_getaffinity(pid)
Return the set of CPUs the process with PID *pid* (or the current process
if zero) is restricted to.
.. _os-path:
Miscellaneous System Information
--------------------------------
.. function:: confstr(name)
Return string-valued system configuration values. *name* specifies the
configuration value to retrieve; it may be a string which is the name of a
defined system value; these names are specified in a number of standards (POSIX,
Unix 95, Unix 98, and others). Some platforms define additional names as well.
The names known to the host operating system are given as the keys of the
``confstr_names`` dictionary. For configuration variables not included in that
mapping, passing an integer for *name* is also accepted.
If the configuration value specified by *name* isn't defined, ``None`` is
returned.
If *name* is a string and is not known, :exc:`ValueError` is raised. If a
specific value for *name* is not supported by the host system, even if it is
included in ``confstr_names``, an :exc:`OSError` is raised with
:const:`errno.EINVAL` for the error number.
.. availability:: Unix.
.. data:: confstr_names
Dictionary mapping names accepted by :func:`confstr` to the integer values
defined for those names by the host operating system. This can be used to
determine the set of names known to the system.
.. availability:: Unix.
.. function:: cpu_count()
Return the number of CPUs in the system. Returns ``None`` if undetermined.
This number is not equivalent to the number of CPUs the current process can
use. The number of usable CPUs can be obtained with
``len(os.sched_getaffinity(0))``
.. versionadded:: 3.4
.. function:: getloadavg()
Return the number of processes in the system run queue averaged over the last
1, 5, and 15 minutes or raises :exc:`OSError` if the load average was
unobtainable.
.. availability:: Unix.
.. function:: sysconf(name)
Return integer-valued system configuration values. If the configuration value
specified by *name* isn't defined, ``-1`` is returned. The comments regarding
the *name* parameter for :func:`confstr` apply here as well; the dictionary that
provides information on the known names is given by ``sysconf_names``.
.. availability:: Unix.
.. data:: sysconf_names
Dictionary mapping names accepted by :func:`sysconf` to the integer values
defined for those names by the host operating system. This can be used to
determine the set of names known to the system.
.. availability:: Unix.
The following data values are used to support path manipulation operations. These
are defined for all platforms.
Higher-level operations on pathnames are defined in the :mod:`os.path` module.
.. index:: single: . (dot); in pathnames
.. data:: curdir
The constant string used by the operating system to refer to the current
directory. This is ``'.'`` for Windows and POSIX. Also available via
:mod:`os.path`.
.. index:: single: ..; in pathnames
.. data:: pardir
The constant string used by the operating system to refer to the parent
directory. This is ``'..'`` for Windows and POSIX. Also available via
:mod:`os.path`.
.. index:: single: / (slash); in pathnames
.. index:: single: \ (backslash); in pathnames (Windows)
.. data:: sep
The character used by the operating system to separate pathname components.
This is ``'/'`` for POSIX and ``'\\'`` for Windows. Note that knowing this
is not sufficient to be able to parse or concatenate pathnames --- use
:func:`os.path.split` and :func:`os.path.join` --- but it is occasionally
useful. Also available via :mod:`os.path`.
.. index:: single: / (slash); in pathnames
.. data:: altsep
An alternative character used by the operating system to separate pathname
components, or ``None`` if only one separator character exists. This is set to
``'/'`` on Windows systems where ``sep`` is a backslash. Also available via
:mod:`os.path`.
.. index:: single: . (dot); in pathnames
.. data:: extsep
The character which separates the base filename from the extension; for example,
the ``'.'`` in :file:`os.py`. Also available via :mod:`os.path`.
.. index:: single: : (colon); path separator (POSIX)
single: ; (semicolon)
.. data:: pathsep
The character conventionally used by the operating system to separate search
path components (as in :envvar:`PATH`), such as ``':'`` for POSIX or ``';'`` for
Windows. Also available via :mod:`os.path`.
.. data:: defpath
The default search path used by :func:`exec\*p\* <execl>` and
:func:`spawn\*p\* <spawnl>` if the environment doesn't have a ``'PATH'``
key. Also available via :mod:`os.path`.
.. data:: linesep
The string used to separate (or, rather, terminate) lines on the current
platform. This may be a single character, such as ``'\n'`` for POSIX, or
multiple characters, for example, ``'\r\n'`` for Windows. Do not use
*os.linesep* as a line terminator when writing files opened in text mode (the
default); use a single ``'\n'`` instead, on all platforms.
.. data:: devnull
The file path of the null device. For example: ``'/dev/null'`` for
POSIX, ``'nul'`` for Windows. Also available via :mod:`os.path`.
.. data:: RTLD_LAZY
RTLD_NOW
RTLD_GLOBAL
RTLD_LOCAL
RTLD_NODELETE
RTLD_NOLOAD
RTLD_DEEPBIND
Flags for use with the :func:`~sys.setdlopenflags` and
:func:`~sys.getdlopenflags` functions. See the Unix manual page
:manpage:`dlopen(3)` for what the different flags mean.
.. versionadded:: 3.3
Random numbers
--------------
.. function:: getrandom(size, flags=0)
Get up to *size* random bytes. The function can return less bytes than
requested.
These bytes can be used to seed user-space random number generators or for
cryptographic purposes.
``getrandom()`` relies on entropy gathered from device drivers and other
sources of environmental noise. Unnecessarily reading large quantities of
data will have a negative impact on other users of the ``/dev/random`` and
``/dev/urandom`` devices.
The flags argument is a bit mask that can contain zero or more of the
following values ORed together: :py:data:`os.GRND_RANDOM` and
:py:data:`GRND_NONBLOCK`.
See also the `Linux getrandom() manual page
<http://man7.org/linux/man-pages/man2/getrandom.2.html>`_.
.. availability:: Linux 3.17 and newer.
.. versionadded:: 3.6
.. function:: urandom(size)
Return a string of *size* random bytes suitable for cryptographic use.
This function returns random bytes from an OS-specific randomness source. The
returned data should be unpredictable enough for cryptographic applications,
though its exact quality depends on the OS implementation.
On Linux, if the ``getrandom()`` syscall is available, it is used in
blocking mode: block until the system urandom entropy pool is initialized
(128 bits of entropy are collected by the kernel). See the :pep:`524` for
the rationale. On Linux, the :func:`getrandom` function can be used to get
random bytes in non-blocking mode (using the :data:`GRND_NONBLOCK` flag) or
to poll until the system urandom entropy pool is initialized.
On a Unix-like system, random bytes are read from the ``/dev/urandom``
device. If the ``/dev/urandom`` device is not available or not readable, the
:exc:`NotImplementedError` exception is raised.
On Windows, it will use ``CryptGenRandom()``.
.. seealso::
The :mod:`secrets` module provides higher level functions. For an
easy-to-use interface to the random number generator provided by your
platform, please see :class:`random.SystemRandom`.
.. versionchanged:: 3.6.0
On Linux, ``getrandom()`` is now used in blocking mode to increase the
security.
.. versionchanged:: 3.5.2
On Linux, if the ``getrandom()`` syscall blocks (the urandom entropy pool
is not initialized yet), fall back on reading ``/dev/urandom``.
.. versionchanged:: 3.5
On Linux 3.17 and newer, the ``getrandom()`` syscall is now used
when available. On OpenBSD 5.6 and newer, the C ``getentropy()``
function is now used. These functions avoid the usage of an internal file
descriptor.
.. data:: GRND_NONBLOCK
By default, when reading from ``/dev/random``, :func:`getrandom` blocks if
no random bytes are available, and when reading from ``/dev/urandom``, it blocks
if the entropy pool has not yet been initialized.
If the :py:data:`GRND_NONBLOCK` flag is set, then :func:`getrandom` does not
block in these cases, but instead immediately raises :exc:`BlockingIOError`.
.. versionadded:: 3.6
.. data:: GRND_RANDOM
If this bit is set, then random bytes are drawn from the
``/dev/random`` pool instead of the ``/dev/urandom`` pool.
.. versionadded:: 3.6