cpython/Modules/timemodule.c
Serhiy Storchaka 3e65baee72
gh-86493: Fix possible leaks in some modules initialization (GH-106768)
Fix _ssl, _stat, _testinternalcapi, _threadmodule, cmath, math, posix, time.
2023-07-18 10:50:47 +03:00

2314 lines
63 KiB
C

/* Time module */
#include "Python.h"
#include "pycore_fileutils.h" // _Py_BEGIN_SUPPRESS_IPH
#include "pycore_moduleobject.h" // _PyModule_GetState()
#include "pycore_namespace.h" // _PyNamespace_New()
#include "pycore_runtime.h" // _Py_ID()
#include <ctype.h>
#ifdef HAVE_SYS_TIMES_H
# include <sys/times.h>
#endif
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#if defined(HAVE_SYS_RESOURCE_H)
# include <sys/resource.h>
#endif
#ifdef QUICKWIN
# include <io.h>
#endif
#if defined(HAVE_PTHREAD_H)
# include <pthread.h>
#endif
#if defined(_AIX)
# include <sys/thread.h>
#endif
#if defined(__WATCOMC__) && !defined(__QNX__)
# include <i86.h>
#else
# ifdef MS_WINDOWS
# ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# endif
# include <windows.h>
# endif /* MS_WINDOWS */
#endif /* !__WATCOMC__ || __QNX__ */
#ifdef _Py_MEMORY_SANITIZER
# include <sanitizer/msan_interface.h>
#endif
#ifdef _MSC_VER
# define _Py_timezone _timezone
# define _Py_daylight _daylight
# define _Py_tzname _tzname
#else
# define _Py_timezone timezone
# define _Py_daylight daylight
# define _Py_tzname tzname
#endif
#if defined(__APPLE__ ) && defined(__has_builtin)
# if __has_builtin(__builtin_available)
# define HAVE_CLOCK_GETTIME_RUNTIME __builtin_available(macOS 10.12, iOS 10.0, tvOS 10.0, watchOS 3.0, *)
# endif
#endif
#ifndef HAVE_CLOCK_GETTIME_RUNTIME
# define HAVE_CLOCK_GETTIME_RUNTIME 1
#endif
#define SEC_TO_NS (1000 * 1000 * 1000)
#if defined(HAVE_TIMES) || defined(HAVE_CLOCK)
static int
check_ticks_per_second(long tps, const char *context)
{
/* Effectively, check that _PyTime_MulDiv(t, SEC_TO_NS, ticks_per_second)
cannot overflow. */
if (tps >= 0 && (_PyTime_t)tps > _PyTime_MAX / SEC_TO_NS) {
PyErr_Format(PyExc_OverflowError, "%s is too large", context);
return -1;
}
return 0;
}
#endif /* HAVE_TIMES || HAVE_CLOCK */
#ifdef HAVE_TIMES
# define ticks_per_second _PyRuntime.time.ticks_per_second
static void
ensure_ticks_per_second(void)
{
if (_PyRuntime.time.ticks_per_second_initialized) {
return;
}
_PyRuntime.time.ticks_per_second_initialized = 1;
# if defined(HAVE_SYSCONF) && defined(_SC_CLK_TCK)
ticks_per_second = sysconf(_SC_CLK_TCK);
if (ticks_per_second < 1) {
ticks_per_second = -1;
}
# elif defined(HZ)
ticks_per_second = HZ;
# else
ticks_per_second = 60; /* magic fallback value; may be bogus */
# endif
}
#endif /* HAVE_TIMES */
PyStatus
_PyTime_Init(void)
{
#ifdef HAVE_TIMES
ensure_ticks_per_second();
#endif
return PyStatus_Ok();
}
/* Forward declarations */
static int pysleep(_PyTime_t timeout);
typedef struct {
PyTypeObject *struct_time_type;
} time_module_state;
static inline time_module_state*
get_time_state(PyObject *module)
{
void *state = _PyModule_GetState(module);
assert(state != NULL);
return (time_module_state *)state;
}
static PyObject*
_PyFloat_FromPyTime(_PyTime_t t)
{
double d = _PyTime_AsSecondsDouble(t);
return PyFloat_FromDouble(d);
}
static int
get_system_time(_PyTime_t *t)
{
// Avoid _PyTime_GetSystemClock() which silently ignores errors.
return _PyTime_GetSystemClockWithInfo(t, NULL);
}
static PyObject *
time_time(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (get_system_time(&t) < 0) {
return NULL;
}
return _PyFloat_FromPyTime(t);
}
PyDoc_STRVAR(time_doc,
"time() -> floating point number\n\
\n\
Return the current time in seconds since the Epoch.\n\
Fractions of a second may be present if the system clock provides them.");
static PyObject *
time_time_ns(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (get_system_time(&t) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}
PyDoc_STRVAR(time_ns_doc,
"time_ns() -> int\n\
\n\
Return the current time in nanoseconds since the Epoch.");
#if defined(HAVE_CLOCK)
#ifndef CLOCKS_PER_SEC
# ifdef CLK_TCK
# define CLOCKS_PER_SEC CLK_TCK
# else
# define CLOCKS_PER_SEC 1000000
# endif
#endif
static int
_PyTime_GetClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
if (check_ticks_per_second(CLOCKS_PER_SEC, "CLOCKS_PER_SEC") < 0) {
return -1;
}
if (info) {
info->implementation = "clock()";
info->resolution = 1.0 / (double)CLOCKS_PER_SEC;
info->monotonic = 1;
info->adjustable = 0;
}
clock_t ticks = clock();
if (ticks == (clock_t)-1) {
PyErr_SetString(PyExc_RuntimeError,
"the processor time used is not available "
"or its value cannot be represented");
return -1;
}
_PyTime_t ns = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)CLOCKS_PER_SEC);
*tp = _PyTime_FromNanoseconds(ns);
return 0;
}
#endif /* HAVE_CLOCK */
#ifdef HAVE_CLOCK_GETTIME
#ifdef __APPLE__
/*
* The clock_* functions will be removed from the module
* dict entirely when the C API is not available.
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunguarded-availability"
#endif
static PyObject *
time_clock_gettime(PyObject *self, PyObject *args)
{
int ret;
struct timespec tp;
#if defined(_AIX) && (SIZEOF_LONG == 8)
long clk_id;
if (!PyArg_ParseTuple(args, "l:clock_gettime", &clk_id)) {
#else
int clk_id;
if (!PyArg_ParseTuple(args, "i:clock_gettime", &clk_id)) {
#endif
return NULL;
}
ret = clock_gettime((clockid_t)clk_id, &tp);
if (ret != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
}
PyDoc_STRVAR(clock_gettime_doc,
"clock_gettime(clk_id) -> float\n\
\n\
Return the time of the specified clock clk_id.");
static PyObject *
time_clock_gettime_ns(PyObject *self, PyObject *args)
{
int ret;
int clk_id;
struct timespec ts;
_PyTime_t t;
if (!PyArg_ParseTuple(args, "i:clock_gettime", &clk_id)) {
return NULL;
}
ret = clock_gettime((clockid_t)clk_id, &ts);
if (ret != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
if (_PyTime_FromTimespec(&t, &ts) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}
PyDoc_STRVAR(clock_gettime_ns_doc,
"clock_gettime_ns(clk_id) -> int\n\
\n\
Return the time of the specified clock clk_id as nanoseconds.");
#endif /* HAVE_CLOCK_GETTIME */
#ifdef HAVE_CLOCK_SETTIME
static PyObject *
time_clock_settime(PyObject *self, PyObject *args)
{
int clk_id;
PyObject *obj;
_PyTime_t t;
struct timespec tp;
int ret;
if (!PyArg_ParseTuple(args, "iO:clock_settime", &clk_id, &obj))
return NULL;
if (_PyTime_FromSecondsObject(&t, obj, _PyTime_ROUND_FLOOR) < 0)
return NULL;
if (_PyTime_AsTimespec(t, &tp) == -1)
return NULL;
ret = clock_settime((clockid_t)clk_id, &tp);
if (ret != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(clock_settime_doc,
"clock_settime(clk_id, time)\n\
\n\
Set the time of the specified clock clk_id.");
static PyObject *
time_clock_settime_ns(PyObject *self, PyObject *args)
{
int clk_id;
PyObject *obj;
_PyTime_t t;
struct timespec ts;
int ret;
if (!PyArg_ParseTuple(args, "iO:clock_settime", &clk_id, &obj)) {
return NULL;
}
if (_PyTime_FromNanosecondsObject(&t, obj) < 0) {
return NULL;
}
if (_PyTime_AsTimespec(t, &ts) == -1) {
return NULL;
}
ret = clock_settime((clockid_t)clk_id, &ts);
if (ret != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(clock_settime_ns_doc,
"clock_settime_ns(clk_id, time)\n\
\n\
Set the time of the specified clock clk_id with nanoseconds.");
#endif /* HAVE_CLOCK_SETTIME */
#ifdef HAVE_CLOCK_GETRES
static PyObject *
time_clock_getres(PyObject *self, PyObject *args)
{
int ret;
int clk_id;
struct timespec tp;
if (!PyArg_ParseTuple(args, "i:clock_getres", &clk_id))
return NULL;
ret = clock_getres((clockid_t)clk_id, &tp);
if (ret != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
return PyFloat_FromDouble(tp.tv_sec + tp.tv_nsec * 1e-9);
}
PyDoc_STRVAR(clock_getres_doc,
"clock_getres(clk_id) -> floating point number\n\
\n\
Return the resolution (precision) of the specified clock clk_id.");
#ifdef __APPLE__
#pragma clang diagnostic pop
#endif
#endif /* HAVE_CLOCK_GETRES */
#ifdef HAVE_PTHREAD_GETCPUCLOCKID
static PyObject *
time_pthread_getcpuclockid(PyObject *self, PyObject *args)
{
unsigned long thread_id;
int err;
clockid_t clk_id;
if (!PyArg_ParseTuple(args, "k:pthread_getcpuclockid", &thread_id)) {
return NULL;
}
err = pthread_getcpuclockid((pthread_t)thread_id, &clk_id);
if (err) {
errno = err;
PyErr_SetFromErrno(PyExc_OSError);
return NULL;
}
#ifdef _Py_MEMORY_SANITIZER
__msan_unpoison(&clk_id, sizeof(clk_id));
#endif
return PyLong_FromLong(clk_id);
}
PyDoc_STRVAR(pthread_getcpuclockid_doc,
"pthread_getcpuclockid(thread_id) -> int\n\
\n\
Return the clk_id of a thread's CPU time clock.");
#endif /* HAVE_PTHREAD_GETCPUCLOCKID */
static PyObject *
time_sleep(PyObject *self, PyObject *timeout_obj)
{
_PyTime_t timeout;
if (_PyTime_FromSecondsObject(&timeout, timeout_obj, _PyTime_ROUND_TIMEOUT))
return NULL;
if (timeout < 0) {
PyErr_SetString(PyExc_ValueError,
"sleep length must be non-negative");
return NULL;
}
if (pysleep(timeout) != 0) {
return NULL;
}
Py_RETURN_NONE;
}
PyDoc_STRVAR(sleep_doc,
"sleep(seconds)\n\
\n\
Delay execution for a given number of seconds. The argument may be\n\
a floating point number for subsecond precision.");
static PyStructSequence_Field struct_time_type_fields[] = {
{"tm_year", "year, for example, 1993"},
{"tm_mon", "month of year, range [1, 12]"},
{"tm_mday", "day of month, range [1, 31]"},
{"tm_hour", "hours, range [0, 23]"},
{"tm_min", "minutes, range [0, 59]"},
{"tm_sec", "seconds, range [0, 61])"},
{"tm_wday", "day of week, range [0, 6], Monday is 0"},
{"tm_yday", "day of year, range [1, 366]"},
{"tm_isdst", "1 if summer time is in effect, 0 if not, and -1 if unknown"},
{"tm_zone", "abbreviation of timezone name"},
{"tm_gmtoff", "offset from UTC in seconds"},
{0}
};
static PyStructSequence_Desc struct_time_type_desc = {
"time.struct_time",
"The time value as returned by gmtime(), localtime(), and strptime(), and\n"
" accepted by asctime(), mktime() and strftime(). May be considered as a\n"
" sequence of 9 integers.\n\n"
" Note that several fields' values are not the same as those defined by\n"
" the C language standard for struct tm. For example, the value of the\n"
" field tm_year is the actual year, not year - 1900. See individual\n"
" fields' descriptions for details.",
struct_time_type_fields,
9,
};
#if defined(MS_WINDOWS)
#ifndef CREATE_WAITABLE_TIMER_HIGH_RESOLUTION
#define CREATE_WAITABLE_TIMER_HIGH_RESOLUTION 0x00000002
#endif
static DWORD timer_flags = (DWORD)-1;
#endif
static PyObject *
tmtotuple(time_module_state *state, struct tm *p
#ifndef HAVE_STRUCT_TM_TM_ZONE
, const char *zone, time_t gmtoff
#endif
)
{
PyObject *v = PyStructSequence_New(state->struct_time_type);
if (v == NULL)
return NULL;
#define SET(i,val) PyStructSequence_SET_ITEM(v, i, PyLong_FromLong((long) val))
SET(0, p->tm_year + 1900);
SET(1, p->tm_mon + 1); /* Want January == 1 */
SET(2, p->tm_mday);
SET(3, p->tm_hour);
SET(4, p->tm_min);
SET(5, p->tm_sec);
SET(6, (p->tm_wday + 6) % 7); /* Want Monday == 0 */
SET(7, p->tm_yday + 1); /* Want January, 1 == 1 */
SET(8, p->tm_isdst);
#ifdef HAVE_STRUCT_TM_TM_ZONE
PyStructSequence_SET_ITEM(v, 9,
PyUnicode_DecodeLocale(p->tm_zone, "surrogateescape"));
SET(10, p->tm_gmtoff);
#else
PyStructSequence_SET_ITEM(v, 9,
PyUnicode_DecodeLocale(zone, "surrogateescape"));
PyStructSequence_SET_ITEM(v, 10, _PyLong_FromTime_t(gmtoff));
#endif /* HAVE_STRUCT_TM_TM_ZONE */
#undef SET
if (PyErr_Occurred()) {
Py_XDECREF(v);
return NULL;
}
return v;
}
/* Parse arg tuple that can contain an optional float-or-None value;
format needs to be "|O:name".
Returns non-zero on success (parallels PyArg_ParseTuple).
*/
static int
parse_time_t_args(PyObject *args, const char *format, time_t *pwhen)
{
PyObject *ot = NULL;
time_t whent;
if (!PyArg_ParseTuple(args, format, &ot))
return 0;
if (ot == NULL || ot == Py_None) {
whent = time(NULL);
}
else {
if (_PyTime_ObjectToTime_t(ot, &whent, _PyTime_ROUND_FLOOR) == -1)
return 0;
}
*pwhen = whent;
return 1;
}
static PyObject *
time_gmtime(PyObject *module, PyObject *args)
{
time_t when;
struct tm buf;
if (!parse_time_t_args(args, "|O:gmtime", &when))
return NULL;
errno = 0;
if (_PyTime_gmtime(when, &buf) != 0)
return NULL;
time_module_state *state = get_time_state(module);
#ifdef HAVE_STRUCT_TM_TM_ZONE
return tmtotuple(state, &buf);
#else
return tmtotuple(state, &buf, "UTC", 0);
#endif
}
#ifndef HAVE_TIMEGM
static time_t
timegm(struct tm *p)
{
/* XXX: the following implementation will not work for tm_year < 1970.
but it is likely that platforms that don't have timegm do not support
negative timestamps anyways. */
return p->tm_sec + p->tm_min*60 + p->tm_hour*3600 + p->tm_yday*86400 +
(p->tm_year-70)*31536000 + ((p->tm_year-69)/4)*86400 -
((p->tm_year-1)/100)*86400 + ((p->tm_year+299)/400)*86400;
}
#endif
PyDoc_STRVAR(gmtime_doc,
"gmtime([seconds]) -> (tm_year, tm_mon, tm_mday, tm_hour, tm_min,\n\
tm_sec, tm_wday, tm_yday, tm_isdst)\n\
\n\
Convert seconds since the Epoch to a time tuple expressing UTC (a.k.a.\n\
GMT). When 'seconds' is not passed in, convert the current time instead.\n\
\n\
If the platform supports the tm_gmtoff and tm_zone, they are available as\n\
attributes only.");
static PyObject *
time_localtime(PyObject *module, PyObject *args)
{
time_t when;
struct tm buf;
if (!parse_time_t_args(args, "|O:localtime", &when))
return NULL;
if (_PyTime_localtime(when, &buf) != 0)
return NULL;
time_module_state *state = get_time_state(module);
#ifdef HAVE_STRUCT_TM_TM_ZONE
return tmtotuple(state, &buf);
#else
{
struct tm local = buf;
char zone[100];
time_t gmtoff;
strftime(zone, sizeof(zone), "%Z", &buf);
gmtoff = timegm(&buf) - when;
return tmtotuple(state, &local, zone, gmtoff);
}
#endif
}
#if defined(__linux__) && !defined(__GLIBC__)
static const char *utc_string = NULL;
#endif
PyDoc_STRVAR(localtime_doc,
"localtime([seconds]) -> (tm_year,tm_mon,tm_mday,tm_hour,tm_min,\n\
tm_sec,tm_wday,tm_yday,tm_isdst)\n\
\n\
Convert seconds since the Epoch to a time tuple expressing local time.\n\
When 'seconds' is not passed in, convert the current time instead.");
/* Convert 9-item tuple to tm structure. Return 1 on success, set
* an exception and return 0 on error.
*/
static int
gettmarg(time_module_state *state, PyObject *args,
struct tm *p, const char *format)
{
int y;
memset((void *) p, '\0', sizeof(struct tm));
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_TypeError,
"Tuple or struct_time argument required");
return 0;
}
if (!PyArg_ParseTuple(args, format,
&y, &p->tm_mon, &p->tm_mday,
&p->tm_hour, &p->tm_min, &p->tm_sec,
&p->tm_wday, &p->tm_yday, &p->tm_isdst))
return 0;
if (y < INT_MIN + 1900) {
PyErr_SetString(PyExc_OverflowError, "year out of range");
return 0;
}
p->tm_year = y - 1900;
p->tm_mon--;
p->tm_wday = (p->tm_wday + 1) % 7;
p->tm_yday--;
#ifdef HAVE_STRUCT_TM_TM_ZONE
if (Py_IS_TYPE(args, state->struct_time_type)) {
PyObject *item;
item = PyStructSequence_GET_ITEM(args, 9);
if (item != Py_None) {
p->tm_zone = (char *)PyUnicode_AsUTF8(item);
if (p->tm_zone == NULL) {
return 0;
}
#if defined(__linux__) && !defined(__GLIBC__)
// Make an attempt to return the C library's own timezone strings to
// it. musl refuses to process a tm_zone field unless it produced
// it. See issue #34672.
if (utc_string && strcmp(p->tm_zone, utc_string) == 0) {
p->tm_zone = utc_string;
}
else if (tzname[0] && strcmp(p->tm_zone, tzname[0]) == 0) {
p->tm_zone = tzname[0];
}
else if (tzname[1] && strcmp(p->tm_zone, tzname[1]) == 0) {
p->tm_zone = tzname[1];
}
#endif
}
item = PyStructSequence_GET_ITEM(args, 10);
if (item != Py_None) {
p->tm_gmtoff = PyLong_AsLong(item);
if (PyErr_Occurred())
return 0;
}
}
#endif /* HAVE_STRUCT_TM_TM_ZONE */
return 1;
}
/* Check values of the struct tm fields before it is passed to strftime() and
* asctime(). Return 1 if all values are valid, otherwise set an exception
* and returns 0.
*/
static int
checktm(struct tm* buf)
{
/* Checks added to make sure strftime() and asctime() does not crash Python by
indexing blindly into some array for a textual representation
by some bad index (fixes bug #897625 and #6608).
Also support values of zero from Python code for arguments in which
that is out of range by forcing that value to the lowest value that
is valid (fixed bug #1520914).
Valid ranges based on what is allowed in struct tm:
- tm_year: [0, max(int)] (1)
- tm_mon: [0, 11] (2)
- tm_mday: [1, 31]
- tm_hour: [0, 23]
- tm_min: [0, 59]
- tm_sec: [0, 60]
- tm_wday: [0, 6] (1)
- tm_yday: [0, 365] (2)
- tm_isdst: [-max(int), max(int)]
(1) gettmarg() handles bounds-checking.
(2) Python's acceptable range is one greater than the range in C,
thus need to check against automatic decrement by gettmarg().
*/
if (buf->tm_mon == -1)
buf->tm_mon = 0;
else if (buf->tm_mon < 0 || buf->tm_mon > 11) {
PyErr_SetString(PyExc_ValueError, "month out of range");
return 0;
}
if (buf->tm_mday == 0)
buf->tm_mday = 1;
else if (buf->tm_mday < 0 || buf->tm_mday > 31) {
PyErr_SetString(PyExc_ValueError, "day of month out of range");
return 0;
}
if (buf->tm_hour < 0 || buf->tm_hour > 23) {
PyErr_SetString(PyExc_ValueError, "hour out of range");
return 0;
}
if (buf->tm_min < 0 || buf->tm_min > 59) {
PyErr_SetString(PyExc_ValueError, "minute out of range");
return 0;
}
if (buf->tm_sec < 0 || buf->tm_sec > 61) {
PyErr_SetString(PyExc_ValueError, "seconds out of range");
return 0;
}
/* tm_wday does not need checking of its upper-bound since taking
``% 7`` in gettmarg() automatically restricts the range. */
if (buf->tm_wday < 0) {
PyErr_SetString(PyExc_ValueError, "day of week out of range");
return 0;
}
if (buf->tm_yday == -1)
buf->tm_yday = 0;
else if (buf->tm_yday < 0 || buf->tm_yday > 365) {
PyErr_SetString(PyExc_ValueError, "day of year out of range");
return 0;
}
return 1;
}
#ifdef MS_WINDOWS
/* wcsftime() doesn't format correctly time zones, see issue #10653 */
# undef HAVE_WCSFTIME
#endif
#define STRFTIME_FORMAT_CODES \
"Commonly used format codes:\n\
\n\
%Y Year with century as a decimal number.\n\
%m Month as a decimal number [01,12].\n\
%d Day of the month as a decimal number [01,31].\n\
%H Hour (24-hour clock) as a decimal number [00,23].\n\
%M Minute as a decimal number [00,59].\n\
%S Second as a decimal number [00,61].\n\
%z Time zone offset from UTC.\n\
%a Locale's abbreviated weekday name.\n\
%A Locale's full weekday name.\n\
%b Locale's abbreviated month name.\n\
%B Locale's full month name.\n\
%c Locale's appropriate date and time representation.\n\
%I Hour (12-hour clock) as a decimal number [01,12].\n\
%p Locale's equivalent of either AM or PM.\n\
\n\
Other codes may be available on your platform. See documentation for\n\
the C library strftime function.\n"
#ifdef HAVE_STRFTIME
#ifdef HAVE_WCSFTIME
#define time_char wchar_t
#define format_time wcsftime
#define time_strlen wcslen
#else
#define time_char char
#define format_time strftime
#define time_strlen strlen
#endif
static PyObject *
time_strftime(PyObject *module, PyObject *args)
{
PyObject *tup = NULL;
struct tm buf;
const time_char *fmt;
#ifdef HAVE_WCSFTIME
wchar_t *format;
#else
PyObject *format;
#endif
PyObject *format_arg;
size_t fmtlen, buflen;
time_char *outbuf = NULL;
size_t i;
PyObject *ret = NULL;
memset((void *) &buf, '\0', sizeof(buf));
/* Will always expect a unicode string to be passed as format.
Given that there's no str type anymore in py3k this seems safe.
*/
if (!PyArg_ParseTuple(args, "U|O:strftime", &format_arg, &tup))
return NULL;
time_module_state *state = get_time_state(module);
if (tup == NULL) {
time_t tt = time(NULL);
if (_PyTime_localtime(tt, &buf) != 0)
return NULL;
}
else if (!gettmarg(state, tup, &buf,
"iiiiiiiii;strftime(): illegal time tuple argument") ||
!checktm(&buf))
{
return NULL;
}
#if defined(_MSC_VER) || (defined(__sun) && defined(__SVR4)) || defined(_AIX) || defined(__VXWORKS__)
if (buf.tm_year + 1900 < 1 || 9999 < buf.tm_year + 1900) {
PyErr_SetString(PyExc_ValueError,
"strftime() requires year in [1; 9999]");
return NULL;
}
#endif
/* Normalize tm_isdst just in case someone foolishly implements %Z
based on the assumption that tm_isdst falls within the range of
[-1, 1] */
if (buf.tm_isdst < -1)
buf.tm_isdst = -1;
else if (buf.tm_isdst > 1)
buf.tm_isdst = 1;
#ifdef HAVE_WCSFTIME
format = PyUnicode_AsWideCharString(format_arg, NULL);
if (format == NULL)
return NULL;
fmt = format;
#else
/* Convert the unicode string to an ascii one */
format = PyUnicode_EncodeLocale(format_arg, "surrogateescape");
if (format == NULL)
return NULL;
fmt = PyBytes_AS_STRING(format);
#endif
#if defined(MS_WINDOWS) && !defined(HAVE_WCSFTIME)
/* check that the format string contains only valid directives */
for (outbuf = strchr(fmt, '%');
outbuf != NULL;
outbuf = strchr(outbuf+2, '%'))
{
if (outbuf[1] == '#')
++outbuf; /* not documented by python, */
if (outbuf[1] == '\0')
break;
if ((outbuf[1] == 'y') && buf.tm_year < 0) {
PyErr_SetString(PyExc_ValueError,
"format %y requires year >= 1900 on Windows");
Py_DECREF(format);
return NULL;
}
}
#elif (defined(_AIX) || (defined(__sun) && defined(__SVR4))) && defined(HAVE_WCSFTIME)
for (outbuf = wcschr(fmt, '%');
outbuf != NULL;
outbuf = wcschr(outbuf+2, '%'))
{
if (outbuf[1] == L'\0')
break;
/* Issue #19634: On AIX, wcsftime("y", (1899, 1, 1, 0, 0, 0, 0, 0, 0))
returns "0/" instead of "99" */
if (outbuf[1] == L'y' && buf.tm_year < 0) {
PyErr_SetString(PyExc_ValueError,
"format %y requires year >= 1900 on AIX");
PyMem_Free(format);
return NULL;
}
}
#endif
fmtlen = time_strlen(fmt);
/* I hate these functions that presume you know how big the output
* will be ahead of time...
*/
for (i = 1024; ; i += i) {
outbuf = (time_char *)PyMem_Malloc(i*sizeof(time_char));
if (outbuf == NULL) {
PyErr_NoMemory();
break;
}
#if defined _MSC_VER && _MSC_VER >= 1400 && defined(__STDC_SECURE_LIB__)
errno = 0;
#endif
_Py_BEGIN_SUPPRESS_IPH
buflen = format_time(outbuf, i, fmt, &buf);
_Py_END_SUPPRESS_IPH
#if defined _MSC_VER && _MSC_VER >= 1400 && defined(__STDC_SECURE_LIB__)
/* VisualStudio .NET 2005 does this properly */
if (buflen == 0 && errno == EINVAL) {
PyErr_SetString(PyExc_ValueError, "Invalid format string");
PyMem_Free(outbuf);
break;
}
#endif
if (buflen > 0 || i >= 256 * fmtlen) {
/* If the buffer is 256 times as long as the format,
it's probably not failing for lack of room!
More likely, the format yields an empty result,
e.g. an empty format, or %Z when the timezone
is unknown. */
#ifdef HAVE_WCSFTIME
ret = PyUnicode_FromWideChar(outbuf, buflen);
#else
ret = PyUnicode_DecodeLocaleAndSize(outbuf, buflen, "surrogateescape");
#endif
PyMem_Free(outbuf);
break;
}
PyMem_Free(outbuf);
}
#ifdef HAVE_WCSFTIME
PyMem_Free(format);
#else
Py_DECREF(format);
#endif
return ret;
}
#undef time_char
#undef format_time
PyDoc_STRVAR(strftime_doc,
"strftime(format[, tuple]) -> string\n\
\n\
Convert a time tuple to a string according to a format specification.\n\
See the library reference manual for formatting codes. When the time tuple\n\
is not present, current time as returned by localtime() is used.\n\
\n" STRFTIME_FORMAT_CODES);
#endif /* HAVE_STRFTIME */
static PyObject *
time_strptime(PyObject *self, PyObject *args)
{
PyObject *func, *result;
func = _PyImport_GetModuleAttrString("_strptime", "_strptime_time");
if (!func) {
return NULL;
}
result = PyObject_Call(func, args, NULL);
Py_DECREF(func);
return result;
}
PyDoc_STRVAR(strptime_doc,
"strptime(string, format) -> struct_time\n\
\n\
Parse a string to a time tuple according to a format specification.\n\
See the library reference manual for formatting codes (same as\n\
strftime()).\n\
\n" STRFTIME_FORMAT_CODES);
static PyObject *
_asctime(struct tm *timeptr)
{
/* Inspired by Open Group reference implementation available at
* http://pubs.opengroup.org/onlinepubs/009695399/functions/asctime.html */
static const char wday_name[7][4] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};
static const char mon_name[12][4] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
};
return PyUnicode_FromFormat(
"%s %s%3d %.2d:%.2d:%.2d %d",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);
}
static PyObject *
time_asctime(PyObject *module, PyObject *args)
{
PyObject *tup = NULL;
struct tm buf;
if (!PyArg_UnpackTuple(args, "asctime", 0, 1, &tup))
return NULL;
time_module_state *state = get_time_state(module);
if (tup == NULL) {
time_t tt = time(NULL);
if (_PyTime_localtime(tt, &buf) != 0)
return NULL;
}
else if (!gettmarg(state, tup, &buf,
"iiiiiiiii;asctime(): illegal time tuple argument") ||
!checktm(&buf))
{
return NULL;
}
return _asctime(&buf);
}
PyDoc_STRVAR(asctime_doc,
"asctime([tuple]) -> string\n\
\n\
Convert a time tuple to a string, e.g. 'Sat Jun 06 16:26:11 1998'.\n\
When the time tuple is not present, current time as returned by localtime()\n\
is used.");
static PyObject *
time_ctime(PyObject *self, PyObject *args)
{
time_t tt;
struct tm buf;
if (!parse_time_t_args(args, "|O:ctime", &tt))
return NULL;
if (_PyTime_localtime(tt, &buf) != 0)
return NULL;
return _asctime(&buf);
}
PyDoc_STRVAR(ctime_doc,
"ctime(seconds) -> string\n\
\n\
Convert a time in seconds since the Epoch to a string in local time.\n\
This is equivalent to asctime(localtime(seconds)). When the time tuple is\n\
not present, current time as returned by localtime() is used.");
#ifdef HAVE_MKTIME
static PyObject *
time_mktime(PyObject *module, PyObject *tm_tuple)
{
struct tm tm;
time_t tt;
time_module_state *state = get_time_state(module);
if (!gettmarg(state, tm_tuple, &tm,
"iiiiiiiii;mktime(): illegal time tuple argument"))
{
return NULL;
}
#if defined(_AIX) || (defined(__VXWORKS__) && !defined(_WRS_CONFIG_LP64))
/* bpo-19748: AIX mktime() valid range is 00:00:00 UTC, January 1, 1970
to 03:14:07 UTC, January 19, 2038. Thanks to the workaround below,
it is possible to support years in range [1902; 2037] */
if (tm.tm_year < 2 || tm.tm_year > 137) {
/* bpo-19748: On AIX, mktime() does not report overflow error
for timestamp < -2^31 or timestamp > 2**31-1. VxWorks has the
same issue when working in 32 bit mode. */
PyErr_SetString(PyExc_OverflowError,
"mktime argument out of range");
return NULL;
}
#endif
#ifdef _AIX
/* bpo-34373: AIX mktime() has an integer overflow for years in range
[1902; 1969]. Workaround the issue by using a year greater or equal than
1970 (tm_year >= 70): mktime() behaves correctly in that case
(ex: properly report errors). tm_year and tm_wday are adjusted after
mktime() call. */
int orig_tm_year = tm.tm_year;
int delta_days = 0;
while (tm.tm_year < 70) {
/* Use 4 years to account properly leap years */
tm.tm_year += 4;
delta_days -= (366 + (365 * 3));
}
#endif
tm.tm_wday = -1; /* sentinel; original value ignored */
tt = mktime(&tm);
/* Return value of -1 does not necessarily mean an error, but tm_wday
* cannot remain set to -1 if mktime succeeded. */
if (tt == (time_t)(-1)
/* Return value of -1 does not necessarily mean an error, but
* tm_wday cannot remain set to -1 if mktime succeeded. */
&& tm.tm_wday == -1)
{
PyErr_SetString(PyExc_OverflowError,
"mktime argument out of range");
return NULL;
}
#ifdef _AIX
if (delta_days != 0) {
tm.tm_year = orig_tm_year;
if (tm.tm_wday != -1) {
tm.tm_wday = (tm.tm_wday + delta_days) % 7;
}
tt += delta_days * (24 * 3600);
}
#endif
return PyFloat_FromDouble((double)tt);
}
PyDoc_STRVAR(mktime_doc,
"mktime(tuple) -> floating point number\n\
\n\
Convert a time tuple in local time to seconds since the Epoch.\n\
Note that mktime(gmtime(0)) will not generally return zero for most\n\
time zones; instead the returned value will either be equal to that\n\
of the timezone or altzone attributes on the time module.");
#endif /* HAVE_MKTIME */
#ifdef HAVE_WORKING_TZSET
static int init_timezone(PyObject *module);
static PyObject *
time_tzset(PyObject *self, PyObject *unused)
{
PyObject* m;
m = PyImport_ImportModule("time");
if (m == NULL) {
return NULL;
}
#if !defined(MS_WINDOWS) || defined(MS_WINDOWS_DESKTOP) || defined(MS_WINDOWS_SYSTEM)
tzset();
#endif
/* Reset timezone, altzone, daylight and tzname */
if (init_timezone(m) < 0) {
return NULL;
}
Py_DECREF(m);
if (PyErr_Occurred())
return NULL;
Py_RETURN_NONE;
}
PyDoc_STRVAR(tzset_doc,
"tzset()\n\
\n\
Initialize, or reinitialize, the local timezone to the value stored in\n\
os.environ['TZ']. The TZ environment variable should be specified in\n\
standard Unix timezone format as documented in the tzset man page\n\
(eg. 'US/Eastern', 'Europe/Amsterdam'). Unknown timezones will silently\n\
fall back to UTC. If the TZ environment variable is not set, the local\n\
timezone is set to the systems best guess of wallclock time.\n\
Changing the TZ environment variable without calling tzset *may* change\n\
the local timezone used by methods such as localtime, but this behaviour\n\
should not be relied on.");
#endif /* HAVE_WORKING_TZSET */
static int
get_monotonic(_PyTime_t *t)
{
// Avoid _PyTime_GetMonotonicClock() which silently ignores errors.
return _PyTime_GetMonotonicClockWithInfo(t, NULL);
}
static PyObject *
time_monotonic(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (get_monotonic(&t) < 0) {
return NULL;
}
return _PyFloat_FromPyTime(t);
}
PyDoc_STRVAR(monotonic_doc,
"monotonic() -> float\n\
\n\
Monotonic clock, cannot go backward.");
static PyObject *
time_monotonic_ns(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (get_monotonic(&t) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}
PyDoc_STRVAR(monotonic_ns_doc,
"monotonic_ns() -> int\n\
\n\
Monotonic clock, cannot go backward, as nanoseconds.");
static int
get_perf_counter(_PyTime_t *t)
{
// Avoid _PyTime_GetPerfCounter() which silently ignores errors.
return _PyTime_GetPerfCounterWithInfo(t, NULL);
}
static PyObject *
time_perf_counter(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (get_perf_counter(&t) < 0) {
return NULL;
}
return _PyFloat_FromPyTime(t);
}
PyDoc_STRVAR(perf_counter_doc,
"perf_counter() -> float\n\
\n\
Performance counter for benchmarking.");
static PyObject *
time_perf_counter_ns(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (get_perf_counter(&t) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}
PyDoc_STRVAR(perf_counter_ns_doc,
"perf_counter_ns() -> int\n\
\n\
Performance counter for benchmarking as nanoseconds.");
static int
_PyTime_GetProcessTimeWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
#if defined(MS_WINDOWS)
HANDLE process;
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER large;
_PyTime_t ktime, utime, t;
BOOL ok;
process = GetCurrentProcess();
ok = GetProcessTimes(process, &creation_time, &exit_time,
&kernel_time, &user_time);
if (!ok) {
PyErr_SetFromWindowsErr(0);
return -1;
}
if (info) {
info->implementation = "GetProcessTimes()";
info->resolution = 1e-7;
info->monotonic = 1;
info->adjustable = 0;
}
large.u.LowPart = kernel_time.dwLowDateTime;
large.u.HighPart = kernel_time.dwHighDateTime;
ktime = large.QuadPart;
large.u.LowPart = user_time.dwLowDateTime;
large.u.HighPart = user_time.dwHighDateTime;
utime = large.QuadPart;
/* ktime and utime have a resolution of 100 nanoseconds */
t = _PyTime_FromNanoseconds((ktime + utime) * 100);
*tp = t;
return 0;
#else
/* clock_gettime */
#if defined(HAVE_CLOCK_GETTIME) \
&& (defined(CLOCK_PROCESS_CPUTIME_ID) || defined(CLOCK_PROF))
struct timespec ts;
if (HAVE_CLOCK_GETTIME_RUNTIME) {
#ifdef CLOCK_PROF
const clockid_t clk_id = CLOCK_PROF;
const char *function = "clock_gettime(CLOCK_PROF)";
#else
const clockid_t clk_id = CLOCK_PROCESS_CPUTIME_ID;
const char *function = "clock_gettime(CLOCK_PROCESS_CPUTIME_ID)";
#endif
if (clock_gettime(clk_id, &ts) == 0) {
if (info) {
struct timespec res;
info->implementation = function;
info->monotonic = 1;
info->adjustable = 0;
if (clock_getres(clk_id, &res)) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
}
if (_PyTime_FromTimespec(tp, &ts) < 0) {
return -1;
}
return 0;
}
}
#endif
/* getrusage(RUSAGE_SELF) */
#if defined(HAVE_SYS_RESOURCE_H) && defined(HAVE_GETRUSAGE)
struct rusage ru;
if (getrusage(RUSAGE_SELF, &ru) == 0) {
_PyTime_t utime, stime;
if (info) {
info->implementation = "getrusage(RUSAGE_SELF)";
info->monotonic = 1;
info->adjustable = 0;
info->resolution = 1e-6;
}
if (_PyTime_FromTimeval(&utime, &ru.ru_utime) < 0) {
return -1;
}
if (_PyTime_FromTimeval(&stime, &ru.ru_stime) < 0) {
return -1;
}
_PyTime_t total = utime + stime;
*tp = total;
return 0;
}
#endif
/* times() */
#ifdef HAVE_TIMES
struct tms t;
if (times(&t) != (clock_t)-1) {
assert(_PyRuntime.time.ticks_per_second_initialized);
if (check_ticks_per_second(ticks_per_second, "_SC_CLK_TCK") < 0) {
return -1;
}
if (ticks_per_second != -1) {
if (info) {
info->implementation = "times()";
info->monotonic = 1;
info->adjustable = 0;
info->resolution = 1.0 / (double)ticks_per_second;
}
_PyTime_t ns;
ns = _PyTime_MulDiv(t.tms_utime, SEC_TO_NS, ticks_per_second);
ns += _PyTime_MulDiv(t.tms_stime, SEC_TO_NS, ticks_per_second);
*tp = _PyTime_FromNanoseconds(ns);
return 0;
}
}
#endif
/* clock */
/* Currently, Python 3 requires clock() to build: see issue #22624 */
return _PyTime_GetClockWithInfo(tp, info);
#endif
}
static PyObject *
time_process_time(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (_PyTime_GetProcessTimeWithInfo(&t, NULL) < 0) {
return NULL;
}
return _PyFloat_FromPyTime(t);
}
PyDoc_STRVAR(process_time_doc,
"process_time() -> float\n\
\n\
Process time for profiling: sum of the kernel and user-space CPU time.");
static PyObject *
time_process_time_ns(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (_PyTime_GetProcessTimeWithInfo(&t, NULL) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}
PyDoc_STRVAR(process_time_ns_doc,
"process_time() -> int\n\
\n\
Process time for profiling as nanoseconds:\n\
sum of the kernel and user-space CPU time.");
#if defined(MS_WINDOWS)
#define HAVE_THREAD_TIME
static int
_PyTime_GetThreadTimeWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
HANDLE thread;
FILETIME creation_time, exit_time, kernel_time, user_time;
ULARGE_INTEGER large;
_PyTime_t ktime, utime, t;
BOOL ok;
thread = GetCurrentThread();
ok = GetThreadTimes(thread, &creation_time, &exit_time,
&kernel_time, &user_time);
if (!ok) {
PyErr_SetFromWindowsErr(0);
return -1;
}
if (info) {
info->implementation = "GetThreadTimes()";
info->resolution = 1e-7;
info->monotonic = 1;
info->adjustable = 0;
}
large.u.LowPart = kernel_time.dwLowDateTime;
large.u.HighPart = kernel_time.dwHighDateTime;
ktime = large.QuadPart;
large.u.LowPart = user_time.dwLowDateTime;
large.u.HighPart = user_time.dwHighDateTime;
utime = large.QuadPart;
/* ktime and utime have a resolution of 100 nanoseconds */
t = _PyTime_FromNanoseconds((ktime + utime) * 100);
*tp = t;
return 0;
}
#elif defined(_AIX)
#define HAVE_THREAD_TIME
static int
_PyTime_GetThreadTimeWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
/* bpo-40192: On AIX, thread_cputime() is preferred: it has nanosecond
resolution, whereas clock_gettime(CLOCK_THREAD_CPUTIME_ID)
has a resolution of 10 ms. */
thread_cputime_t tc;
if (thread_cputime(-1, &tc) != 0) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
if (info) {
info->implementation = "thread_cputime()";
info->monotonic = 1;
info->adjustable = 0;
info->resolution = 1e-9;
}
*tp = _PyTime_FromNanoseconds(tc.stime + tc.utime);
return 0;
}
#elif defined(__sun) && defined(__SVR4)
#define HAVE_THREAD_TIME
static int
_PyTime_GetThreadTimeWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
/* bpo-35455: On Solaris, CLOCK_THREAD_CPUTIME_ID clock is not always
available; use gethrvtime() to substitute this functionality. */
if (info) {
info->implementation = "gethrvtime()";
info->resolution = 1e-9;
info->monotonic = 1;
info->adjustable = 0;
}
*tp = _PyTime_FromNanoseconds(gethrvtime());
return 0;
}
#elif defined(HAVE_CLOCK_GETTIME) && \
defined(CLOCK_PROCESS_CPUTIME_ID) && \
!defined(__EMSCRIPTEN__) && !defined(__wasi__)
#define HAVE_THREAD_TIME
#if defined(__APPLE__) && defined(__has_attribute) && __has_attribute(availability)
static int
_PyTime_GetThreadTimeWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
__attribute__((availability(macos, introduced=10.12)))
__attribute__((availability(ios, introduced=10.0)))
__attribute__((availability(tvos, introduced=10.0)))
__attribute__((availability(watchos, introduced=3.0)));
#endif
static int
_PyTime_GetThreadTimeWithInfo(_PyTime_t *tp, _Py_clock_info_t *info)
{
struct timespec ts;
const clockid_t clk_id = CLOCK_THREAD_CPUTIME_ID;
const char *function = "clock_gettime(CLOCK_THREAD_CPUTIME_ID)";
if (clock_gettime(clk_id, &ts)) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
if (info) {
struct timespec res;
info->implementation = function;
info->monotonic = 1;
info->adjustable = 0;
if (clock_getres(clk_id, &res)) {
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
info->resolution = res.tv_sec + res.tv_nsec * 1e-9;
}
if (_PyTime_FromTimespec(tp, &ts) < 0) {
return -1;
}
return 0;
}
#endif
#ifdef HAVE_THREAD_TIME
#ifdef __APPLE__
/*
* The clock_* functions will be removed from the module
* dict entirely when the C API is not available.
*/
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunguarded-availability"
#endif
static PyObject *
time_thread_time(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (_PyTime_GetThreadTimeWithInfo(&t, NULL) < 0) {
return NULL;
}
return _PyFloat_FromPyTime(t);
}
PyDoc_STRVAR(thread_time_doc,
"thread_time() -> float\n\
\n\
Thread time for profiling: sum of the kernel and user-space CPU time.");
static PyObject *
time_thread_time_ns(PyObject *self, PyObject *unused)
{
_PyTime_t t;
if (_PyTime_GetThreadTimeWithInfo(&t, NULL) < 0) {
return NULL;
}
return _PyTime_AsNanosecondsObject(t);
}
PyDoc_STRVAR(thread_time_ns_doc,
"thread_time() -> int\n\
\n\
Thread time for profiling as nanoseconds:\n\
sum of the kernel and user-space CPU time.");
#ifdef __APPLE__
#pragma clang diagnostic pop
#endif
#endif
static PyObject *
time_get_clock_info(PyObject *self, PyObject *args)
{
char *name;
_Py_clock_info_t info;
PyObject *obj = NULL, *dict, *ns;
_PyTime_t t;
if (!PyArg_ParseTuple(args, "s:get_clock_info", &name)) {
return NULL;
}
#ifdef Py_DEBUG
info.implementation = NULL;
info.monotonic = -1;
info.adjustable = -1;
info.resolution = -1.0;
#else
info.implementation = "";
info.monotonic = 0;
info.adjustable = 0;
info.resolution = 1.0;
#endif
if (strcmp(name, "time") == 0) {
if (_PyTime_GetSystemClockWithInfo(&t, &info) < 0) {
return NULL;
}
}
else if (strcmp(name, "monotonic") == 0) {
if (_PyTime_GetMonotonicClockWithInfo(&t, &info) < 0) {
return NULL;
}
}
else if (strcmp(name, "perf_counter") == 0) {
if (_PyTime_GetPerfCounterWithInfo(&t, &info) < 0) {
return NULL;
}
}
else if (strcmp(name, "process_time") == 0) {
if (_PyTime_GetProcessTimeWithInfo(&t, &info) < 0) {
return NULL;
}
}
#ifdef HAVE_THREAD_TIME
else if (strcmp(name, "thread_time") == 0) {
#ifdef __APPLE__
if (HAVE_CLOCK_GETTIME_RUNTIME) {
#endif
if (_PyTime_GetThreadTimeWithInfo(&t, &info) < 0) {
return NULL;
}
#ifdef __APPLE__
} else {
PyErr_SetString(PyExc_ValueError, "unknown clock");
return NULL;
}
#endif
}
#endif
else {
PyErr_SetString(PyExc_ValueError, "unknown clock");
return NULL;
}
dict = PyDict_New();
if (dict == NULL) {
return NULL;
}
assert(info.implementation != NULL);
obj = PyUnicode_FromString(info.implementation);
if (obj == NULL) {
goto error;
}
if (PyDict_SetItemString(dict, "implementation", obj) == -1) {
goto error;
}
Py_CLEAR(obj);
assert(info.monotonic != -1);
obj = PyBool_FromLong(info.monotonic);
if (obj == NULL) {
goto error;
}
if (PyDict_SetItemString(dict, "monotonic", obj) == -1) {
goto error;
}
Py_CLEAR(obj);
assert(info.adjustable != -1);
obj = PyBool_FromLong(info.adjustable);
if (obj == NULL) {
goto error;
}
if (PyDict_SetItemString(dict, "adjustable", obj) == -1) {
goto error;
}
Py_CLEAR(obj);
assert(info.resolution > 0.0);
assert(info.resolution <= 1.0);
obj = PyFloat_FromDouble(info.resolution);
if (obj == NULL) {
goto error;
}
if (PyDict_SetItemString(dict, "resolution", obj) == -1) {
goto error;
}
Py_CLEAR(obj);
ns = _PyNamespace_New(dict);
Py_DECREF(dict);
return ns;
error:
Py_DECREF(dict);
Py_XDECREF(obj);
return NULL;
}
PyDoc_STRVAR(get_clock_info_doc,
"get_clock_info(name: str) -> dict\n\
\n\
Get information of the specified clock.");
#ifndef HAVE_DECL_TZNAME
static void
get_zone(char *zone, int n, struct tm *p)
{
#ifdef HAVE_STRUCT_TM_TM_ZONE
strncpy(zone, p->tm_zone ? p->tm_zone : " ", n);
#else
tzset();
strftime(zone, n, "%Z", p);
#endif
}
static time_t
get_gmtoff(time_t t, struct tm *p)
{
#ifdef HAVE_STRUCT_TM_TM_ZONE
return p->tm_gmtoff;
#else
return timegm(p) - t;
#endif
}
#endif // !HAVE_DECL_TZNAME
static int
init_timezone(PyObject *m)
{
assert(!PyErr_Occurred());
/* This code moved from PyInit_time wholesale to allow calling it from
time_tzset. In the future, some parts of it can be moved back
(for platforms that don't HAVE_WORKING_TZSET, when we know what they
are), and the extraneous calls to tzset(3) should be removed.
I haven't done this yet, as I don't want to change this code as
little as possible when introducing the time.tzset and time.tzsetwall
methods. This should simply be a method of doing the following once,
at the top of this function and removing the call to tzset() from
time_tzset():
#ifdef HAVE_TZSET
tzset()
#endif
And I'm lazy and hate C so nyer.
*/
#ifdef HAVE_DECL_TZNAME
PyObject *otz0, *otz1;
#if !defined(MS_WINDOWS) || defined(MS_WINDOWS_DESKTOP) || defined(MS_WINDOWS_SYSTEM)
tzset();
#endif
PyModule_AddIntConstant(m, "timezone", _Py_timezone);
#ifdef HAVE_ALTZONE
PyModule_AddIntConstant(m, "altzone", altzone);
#else
PyModule_AddIntConstant(m, "altzone", _Py_timezone-3600);
#endif
PyModule_AddIntConstant(m, "daylight", _Py_daylight);
#ifdef MS_WINDOWS
TIME_ZONE_INFORMATION tzinfo = {0};
GetTimeZoneInformation(&tzinfo);
otz0 = PyUnicode_FromWideChar(tzinfo.StandardName, -1);
if (otz0 == NULL) {
return -1;
}
otz1 = PyUnicode_FromWideChar(tzinfo.DaylightName, -1);
if (otz1 == NULL) {
Py_DECREF(otz0);
return -1;
}
#else
otz0 = PyUnicode_DecodeLocale(_Py_tzname[0], "surrogateescape");
if (otz0 == NULL) {
return -1;
}
otz1 = PyUnicode_DecodeLocale(_Py_tzname[1], "surrogateescape");
if (otz1 == NULL) {
Py_DECREF(otz0);
return -1;
}
#endif // MS_WINDOWS
if (PyModule_Add(m, "tzname", Py_BuildValue("(NN)", otz0, otz1)) < 0) {
return -1;
}
#else // !HAVE_DECL_TZNAME
static const time_t YEAR = (365 * 24 + 6) * 3600;
time_t t;
struct tm p;
time_t janzone_t, julyzone_t;
char janname[10], julyname[10];
t = (time((time_t *)0) / YEAR) * YEAR;
_PyTime_localtime(t, &p);
get_zone(janname, 9, &p);
janzone_t = -get_gmtoff(t, &p);
janname[9] = '\0';
t += YEAR/2;
_PyTime_localtime(t, &p);
get_zone(julyname, 9, &p);
julyzone_t = -get_gmtoff(t, &p);
julyname[9] = '\0';
/* Sanity check, don't check for the validity of timezones.
In practice, it should be more in range -12 hours .. +14 hours. */
#define MAX_TIMEZONE (48 * 3600)
if (janzone_t < -MAX_TIMEZONE || janzone_t > MAX_TIMEZONE
|| julyzone_t < -MAX_TIMEZONE || julyzone_t > MAX_TIMEZONE)
{
PyErr_SetString(PyExc_RuntimeError, "invalid GMT offset");
return -1;
}
int janzone = (int)janzone_t;
int julyzone = (int)julyzone_t;
PyObject *tzname_obj;
if (janzone < julyzone) {
/* DST is reversed in the southern hemisphere */
PyModule_AddIntConstant(m, "timezone", julyzone);
PyModule_AddIntConstant(m, "altzone", janzone);
PyModule_AddIntConstant(m, "daylight", janzone != julyzone);
tzname_obj = Py_BuildValue("(zz)", julyname, janname);
} else {
PyModule_AddIntConstant(m, "timezone", janzone);
PyModule_AddIntConstant(m, "altzone", julyzone);
PyModule_AddIntConstant(m, "daylight", janzone != julyzone);
tzname_obj = Py_BuildValue("(zz)", janname, julyname);
}
if (PyModule_Add(m, "tzname", tzname_obj) < 0) {
return -1;
}
#endif // !HAVE_DECL_TZNAME
if (PyErr_Occurred()) {
return -1;
}
return 0;
}
static PyMethodDef time_methods[] = {
{"time", time_time, METH_NOARGS, time_doc},
{"time_ns", time_time_ns, METH_NOARGS, time_ns_doc},
#ifdef HAVE_CLOCK_GETTIME
{"clock_gettime", time_clock_gettime, METH_VARARGS, clock_gettime_doc},
{"clock_gettime_ns",time_clock_gettime_ns, METH_VARARGS, clock_gettime_ns_doc},
#endif
#ifdef HAVE_CLOCK_SETTIME
{"clock_settime", time_clock_settime, METH_VARARGS, clock_settime_doc},
{"clock_settime_ns",time_clock_settime_ns, METH_VARARGS, clock_settime_ns_doc},
#endif
#ifdef HAVE_CLOCK_GETRES
{"clock_getres", time_clock_getres, METH_VARARGS, clock_getres_doc},
#endif
#ifdef HAVE_PTHREAD_GETCPUCLOCKID
{"pthread_getcpuclockid", time_pthread_getcpuclockid, METH_VARARGS, pthread_getcpuclockid_doc},
#endif
{"sleep", time_sleep, METH_O, sleep_doc},
{"gmtime", time_gmtime, METH_VARARGS, gmtime_doc},
{"localtime", time_localtime, METH_VARARGS, localtime_doc},
{"asctime", time_asctime, METH_VARARGS, asctime_doc},
{"ctime", time_ctime, METH_VARARGS, ctime_doc},
#ifdef HAVE_MKTIME
{"mktime", time_mktime, METH_O, mktime_doc},
#endif
#ifdef HAVE_STRFTIME
{"strftime", time_strftime, METH_VARARGS, strftime_doc},
#endif
{"strptime", time_strptime, METH_VARARGS, strptime_doc},
#ifdef HAVE_WORKING_TZSET
{"tzset", time_tzset, METH_NOARGS, tzset_doc},
#endif
{"monotonic", time_monotonic, METH_NOARGS, monotonic_doc},
{"monotonic_ns", time_monotonic_ns, METH_NOARGS, monotonic_ns_doc},
{"process_time", time_process_time, METH_NOARGS, process_time_doc},
{"process_time_ns", time_process_time_ns, METH_NOARGS, process_time_ns_doc},
#ifdef HAVE_THREAD_TIME
{"thread_time", time_thread_time, METH_NOARGS, thread_time_doc},
{"thread_time_ns", time_thread_time_ns, METH_NOARGS, thread_time_ns_doc},
#endif
{"perf_counter", time_perf_counter, METH_NOARGS, perf_counter_doc},
{"perf_counter_ns", time_perf_counter_ns, METH_NOARGS, perf_counter_ns_doc},
{"get_clock_info", time_get_clock_info, METH_VARARGS, get_clock_info_doc},
{NULL, NULL} /* sentinel */
};
PyDoc_STRVAR(module_doc,
"This module provides various functions to manipulate time values.\n\
\n\
There are two standard representations of time. One is the number\n\
of seconds since the Epoch, in UTC (a.k.a. GMT). It may be an integer\n\
or a floating point number (to represent fractions of seconds).\n\
The Epoch is system-defined; on Unix, it is generally January 1st, 1970.\n\
The actual value can be retrieved by calling gmtime(0).\n\
\n\
The other representation is a tuple of 9 integers giving local time.\n\
The tuple items are:\n\
year (including century, e.g. 1998)\n\
month (1-12)\n\
day (1-31)\n\
hours (0-23)\n\
minutes (0-59)\n\
seconds (0-59)\n\
weekday (0-6, Monday is 0)\n\
Julian day (day in the year, 1-366)\n\
DST (Daylight Savings Time) flag (-1, 0 or 1)\n\
If the DST flag is 0, the time is given in the regular time zone;\n\
if it is 1, the time is given in the DST time zone;\n\
if it is -1, mktime() should guess based on the date and time.\n");
static int
time_exec(PyObject *module)
{
time_module_state *state = get_time_state(module);
#if defined(__APPLE__) && defined(HAVE_CLOCK_GETTIME)
if (HAVE_CLOCK_GETTIME_RUNTIME) {
/* pass: ^^^ cannot use '!' here */
} else {
PyObject* dct = PyModule_GetDict(module);
if (dct == NULL) {
return -1;
}
if (PyDict_DelItemString(dct, "clock_gettime") == -1) {
PyErr_Clear();
}
if (PyDict_DelItemString(dct, "clock_gettime_ns") == -1) {
PyErr_Clear();
}
if (PyDict_DelItemString(dct, "clock_settime") == -1) {
PyErr_Clear();
}
if (PyDict_DelItemString(dct, "clock_settime_ns") == -1) {
PyErr_Clear();
}
if (PyDict_DelItemString(dct, "clock_getres") == -1) {
PyErr_Clear();
}
}
#endif
#if defined(__APPLE__) && defined(HAVE_THREAD_TIME)
if (HAVE_CLOCK_GETTIME_RUNTIME) {
/* pass: ^^^ cannot use '!' here */
} else {
PyObject* dct = PyModule_GetDict(module);
if (PyDict_DelItemString(dct, "thread_time") == -1) {
PyErr_Clear();
}
if (PyDict_DelItemString(dct, "thread_time_ns") == -1) {
PyErr_Clear();
}
}
#endif
/* Set, or reset, module variables like time.timezone */
if (init_timezone(module) < 0) {
return -1;
}
#if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_SETTIME) || defined(HAVE_CLOCK_GETRES)
if (HAVE_CLOCK_GETTIME_RUNTIME) {
#ifdef CLOCK_REALTIME
if (PyModule_AddIntMacro(module, CLOCK_REALTIME) < 0) {
return -1;
}
#endif
#ifdef CLOCK_MONOTONIC
if (PyModule_AddIntMacro(module, CLOCK_MONOTONIC) < 0) {
return -1;
}
#endif
#ifdef CLOCK_MONOTONIC_RAW
if (PyModule_AddIntMacro(module, CLOCK_MONOTONIC_RAW) < 0) {
return -1;
}
#endif
#ifdef CLOCK_HIGHRES
if (PyModule_AddIntMacro(module, CLOCK_HIGHRES) < 0) {
return -1;
}
#endif
#ifdef CLOCK_PROCESS_CPUTIME_ID
if (PyModule_AddIntMacro(module, CLOCK_PROCESS_CPUTIME_ID) < 0) {
return -1;
}
#endif
#ifdef CLOCK_THREAD_CPUTIME_ID
if (PyModule_AddIntMacro(module, CLOCK_THREAD_CPUTIME_ID) < 0) {
return -1;
}
#endif
#ifdef CLOCK_PROF
if (PyModule_AddIntMacro(module, CLOCK_PROF) < 0) {
return -1;
}
#endif
#ifdef CLOCK_BOOTTIME
if (PyModule_AddIntMacro(module, CLOCK_BOOTTIME) < 0) {
return -1;
}
#endif
#ifdef CLOCK_TAI
if (PyModule_AddIntMacro(module, CLOCK_TAI) < 0) {
return -1;
}
#endif
#ifdef CLOCK_UPTIME
if (PyModule_AddIntMacro(module, CLOCK_UPTIME) < 0) {
return -1;
}
#endif
#ifdef CLOCK_UPTIME_RAW
if (PyModule_AddIntMacro(module, CLOCK_UPTIME_RAW) < 0) {
return -1;
}
#endif
}
#endif /* defined(HAVE_CLOCK_GETTIME) || defined(HAVE_CLOCK_SETTIME) || defined(HAVE_CLOCK_GETRES) */
if (PyModule_AddIntConstant(module, "_STRUCT_TM_ITEMS", 11)) {
return -1;
}
// struct_time type
state->struct_time_type = PyStructSequence_NewType(&struct_time_type_desc);
if (state->struct_time_type == NULL) {
return -1;
}
if (PyModule_AddType(module, state->struct_time_type)) {
return -1;
}
#if defined(__linux__) && !defined(__GLIBC__)
struct tm tm;
const time_t zero = 0;
if (gmtime_r(&zero, &tm) != NULL)
utc_string = tm.tm_zone;
#endif
#if defined(MS_WINDOWS)
if (timer_flags == (DWORD)-1) {
DWORD test_flags = CREATE_WAITABLE_TIMER_HIGH_RESOLUTION;
HANDLE timer = CreateWaitableTimerExW(NULL, NULL, test_flags,
TIMER_ALL_ACCESS);
if (timer == NULL) {
// CREATE_WAITABLE_TIMER_HIGH_RESOLUTION is not supported.
timer_flags = 0;
}
else {
// CREATE_WAITABLE_TIMER_HIGH_RESOLUTION is supported.
timer_flags = CREATE_WAITABLE_TIMER_HIGH_RESOLUTION;
CloseHandle(timer);
}
}
#endif
return 0;
}
static int
time_module_traverse(PyObject *module, visitproc visit, void *arg)
{
time_module_state *state = get_time_state(module);
Py_VISIT(state->struct_time_type);
return 0;
}
static int
time_module_clear(PyObject *module)
{
time_module_state *state = get_time_state(module);
Py_CLEAR(state->struct_time_type);
return 0;
}
static void
time_module_free(void *module)
{
time_module_clear((PyObject *)module);
}
static struct PyModuleDef_Slot time_slots[] = {
{Py_mod_exec, time_exec},
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
{0, NULL}
};
static struct PyModuleDef timemodule = {
PyModuleDef_HEAD_INIT,
.m_name = "time",
.m_doc = module_doc,
.m_size = sizeof(time_module_state),
.m_methods = time_methods,
.m_slots = time_slots,
.m_traverse = time_module_traverse,
.m_clear = time_module_clear,
.m_free = time_module_free,
};
PyMODINIT_FUNC
PyInit_time(void)
{
return PyModuleDef_Init(&timemodule);
}
// time.sleep() implementation.
// On error, raise an exception and return -1.
// On success, return 0.
static int
pysleep(_PyTime_t timeout)
{
assert(timeout >= 0);
#ifndef MS_WINDOWS
#ifdef HAVE_CLOCK_NANOSLEEP
struct timespec timeout_abs;
#elif defined(HAVE_NANOSLEEP)
struct timespec timeout_ts;
#else
struct timeval timeout_tv;
#endif
_PyTime_t deadline, monotonic;
int err = 0;
if (get_monotonic(&monotonic) < 0) {
return -1;
}
deadline = monotonic + timeout;
#ifdef HAVE_CLOCK_NANOSLEEP
if (_PyTime_AsTimespec(deadline, &timeout_abs) < 0) {
return -1;
}
#endif
do {
#ifdef HAVE_CLOCK_NANOSLEEP
// use timeout_abs
#elif defined(HAVE_NANOSLEEP)
if (_PyTime_AsTimespec(timeout, &timeout_ts) < 0) {
return -1;
}
#else
if (_PyTime_AsTimeval(timeout, &timeout_tv, _PyTime_ROUND_CEILING) < 0) {
return -1;
}
#endif
int ret;
Py_BEGIN_ALLOW_THREADS
#ifdef HAVE_CLOCK_NANOSLEEP
ret = clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &timeout_abs, NULL);
err = ret;
#elif defined(HAVE_NANOSLEEP)
ret = nanosleep(&timeout_ts, NULL);
err = errno;
#else
ret = select(0, (fd_set *)0, (fd_set *)0, (fd_set *)0, &timeout_tv);
err = errno;
#endif
Py_END_ALLOW_THREADS
if (ret == 0) {
break;
}
if (err != EINTR) {
errno = err;
PyErr_SetFromErrno(PyExc_OSError);
return -1;
}
/* sleep was interrupted by SIGINT */
if (PyErr_CheckSignals()) {
return -1;
}
#ifndef HAVE_CLOCK_NANOSLEEP
if (get_monotonic(&monotonic) < 0) {
return -1;
}
timeout = deadline - monotonic;
if (timeout < 0) {
break;
}
/* retry with the recomputed delay */
#endif
} while (1);
return 0;
#else // MS_WINDOWS
_PyTime_t timeout_100ns = _PyTime_As100Nanoseconds(timeout,
_PyTime_ROUND_CEILING);
// Maintain Windows Sleep() semantics for time.sleep(0)
if (timeout_100ns == 0) {
Py_BEGIN_ALLOW_THREADS
// A value of zero causes the thread to relinquish the remainder of its
// time slice to any other thread that is ready to run. If there are no
// other threads ready to run, the function returns immediately, and
// the thread continues execution.
Sleep(0);
Py_END_ALLOW_THREADS
return 0;
}
LARGE_INTEGER relative_timeout;
// No need to check for integer overflow, both types are signed
assert(sizeof(relative_timeout) == sizeof(timeout_100ns));
// SetWaitableTimer(): a negative due time indicates relative time
relative_timeout.QuadPart = -timeout_100ns;
HANDLE timer = CreateWaitableTimerExW(NULL, NULL, timer_flags,
TIMER_ALL_ACCESS);
if (timer == NULL) {
PyErr_SetFromWindowsErr(0);
return -1;
}
if (!SetWaitableTimerEx(timer, &relative_timeout,
0, // no period; the timer is signaled once
NULL, NULL, // no completion routine
NULL, // no wake context; do not resume from suspend
0)) // no tolerable delay for timer coalescing
{
PyErr_SetFromWindowsErr(0);
goto error;
}
// Only the main thread can be interrupted by SIGINT.
// Signal handlers are only executed in the main thread.
if (_PyOS_IsMainThread()) {
HANDLE sigint_event = _PyOS_SigintEvent();
while (1) {
// Check for pending SIGINT signal before resetting the event
if (PyErr_CheckSignals()) {
goto error;
}
ResetEvent(sigint_event);
HANDLE events[] = {timer, sigint_event};
DWORD rc;
Py_BEGIN_ALLOW_THREADS
rc = WaitForMultipleObjects(Py_ARRAY_LENGTH(events), events,
// bWaitAll
FALSE,
// No wait timeout
INFINITE);
Py_END_ALLOW_THREADS
if (rc == WAIT_FAILED) {
PyErr_SetFromWindowsErr(0);
goto error;
}
if (rc == WAIT_OBJECT_0) {
// Timer signaled: we are done
break;
}
assert(rc == (WAIT_OBJECT_0 + 1));
// The sleep was interrupted by SIGINT: restart sleeping
}
}
else {
DWORD rc;
Py_BEGIN_ALLOW_THREADS
rc = WaitForSingleObject(timer, INFINITE);
Py_END_ALLOW_THREADS
if (rc == WAIT_FAILED) {
PyErr_SetFromWindowsErr(0);
goto error;
}
assert(rc == WAIT_OBJECT_0);
// Timer signaled: we are done
}
CloseHandle(timer);
return 0;
error:
CloseHandle(timer);
return -1;
#endif
}